3 Probit

3.1 Functional Form of Choice Probabilities

The restrictions of the logit model, particularly the IIA property, are due to
the assumption that the unobserved components of utility are indepen-
dently and identically distributed. Let the utility that person n obtains from
alternative i, labeled U,,, be decomposed into an observed part V,, and an
unobserved part e,, for all i in the choice set J,. Then, for the logit model,
any e;, and e;,, i # j, are assumed to have the same distribution, with the
same mean and variance, and also to be uncorrelated. These random
variables being uncorrelated means that any factor that the researcher does
not observe that affects the utility of alternative i does not affect the utility of
alternative j. The two terms e;, and e;, having the same variance means that
the unobserved factors that affect the utility of alternative i have the same
variation as the different (due to zero correlation) unobserved factors that
affect the utility of alternative j. In the real world, these assumptions will
seldom actually hold.

The probit model is derived by relaxing these assumptions about the
unobserved components of utility. In particular, these unobserved compo-
nents are assumed, instead of independent, identical extreme values, to be
distributed jointly normal, with a general variance-covariance matrix. The
critical change here is not from the extreme value distribution to the
normal, since these two distributions for a single random variable are
practically the same. The important distinction is that, with the joint normal
distribution, each e;,, for all i in J,, can have a different variance and can be
correlated with other e, j in J,, j # i

The probit choice probabilities are derived from the assumption of
jointly normal unobserved utility components. As usual, utility is decom-
posed into observed and unobserved parts:

Uy = Vi + €in» forall iinJ,.

Consider the vector composed of each e, for all iin J,;; label this vector &,.
We assume that &, is distributed normal with a mean vector of zero and
variance-covariance matrix denoted Q, whose elements are parameters
that are either specified a priori or estimated by the researcher. That is, the

density function of &, is
#(8,) = 2m) ™| Q| T exp[ —32,Q, ' &),

where |Q, | is the determinate of Q, and m, is the number of alternatives in J,-
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Recall that the probability of choosing alternative i is the probability that
the utility associated with alternative i is higher than that of any other
alternative:

P,, = Prob(V,, + e;, > V;, + ¢;,, for all jin J,, j # i).
Rearranging,
P,, = Prob(e;, < e;, + V|, — V},, for all jin J,, j # i).

To evaluate this expression suppose first that e;, is given. Then the right-
hand side of this expression is the probability that the random variable ;, is
below the known value e;, + ¥, — Vj,, for all jin J,,j # i. That is, for given
€, the expression is simply the cumulative distribution of e;, evaluated at
€in + Vin = Vi, for all jin J,, j in i. Since a cumulative distribution is the
integral of the density function, the probability of choosing alternative i
given a particular value of e,,, labeled P, (e;,), is simply the density of the
random vector &, integrated from negative infinity to e, + V;, — V¥, for
each elementjin J,,j # i

CintVin=Vin eintVin=Vay
Pin(ein) =
€= ep= —

€intVin=Vonpn
o J‘ ¢(én) dem,,u e deZn de,,,

-0

(3.1)

emnn=
where the “---” is over all elements ¢;, in the vector €, except e;,, which is set

equal to its given value.

In actuality, the value of e,, is not given. Consequently, the probability of
choosing alternative i is the probability of choosing it for any given value of
e;, integrated over all possible values of ¢;,. That is,

Pin = J-w I)in (ein)¢(én) dein‘ (3‘2)

€= —w

Substituting (3.1) into (3.2) gives

© ein*+Vin—Vin eintVin—Vap
P, =
€in= "0 €1,= —® e@ap=—0o

ein+vin_ym,ln
o J ¢(’én) dem,,n T deZn deln deim

—a0

(3.3)

€mpn™

where both the parameters entering ¥}, and those entering the variance-
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covariance matrix Q, are determined in estimation or specified a priori by
the researcher.

The probit choice probabilities being in such complex form is the main
disadvantage of the model. In particular, estimation of probit models is very
expensive because of the complexity of the choice probabilities. To evaluate
a log likelihood function (defined in section 2.6) using these choice proba-
bilities, numerous integrations are required for each sampled decision-
maker; and to find the value of the parameters that maximizes the function,
these numerous integrals must be evaluated numerous times. Several alter-
native methods of estimating probit models have been proposed, based on
Monte Carlo methods and approximations (see section 3.4 for a discusston
of these). However, it still remains that estimating a probit model with more
than a few alternatives and a few explanatory variables is prohibitively
expensive.

There are situations, however, in which the probit model, if the expense of
estimation can be borne, is very useful. Two of these are discussed in the

following sections.

3.2 Taste Variation

Suppose utility can be decomposed into a linear-in-parameters part that
depends only on observed data, plus an unobserved part. Assume further
that the parameters are not fixed, but rather vary randomly over decision-
makers. This is represented as follows:

Uin = ﬁnwin + €in>
B, =B+ B
where

w,, is a vector-valued function of observed data,

B, is a vector of coefficients of w;, for person n, unknown to the researcher,
f is the mean of B, over all persons, and

B, is the deviation of the coefficient vector of person n from the mean

coefficients (i.e., B, = B, — B)-
Substituting the equation for B,,
Uin = Bwin + anin + €in-

The last two terms on the right-hand side are both unobserved (since B, is
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unobserved); denote their sum as 7;, to obtain
Uin = B, + 1.

If both f, and e, are normally distributed, then 7, is also normally dis-
tributed, and the choice probabilities, stated in terms of fw;,, are probit.
Estimation of the model provides values for § and the variance-covariance

matrix for 7.
For example, consider a two-alternative choice situation in which one

explanatory variable enters the representative utility of each alternative. In
this case,
Uln = ﬁnyln + eln;

U2n = ﬂnyZIt + €2ns

where y,, and y,, are the values that the explanatory variable y takes for
person n in each of the two alternatives (e.g., y could be the cost of obtaining
the alternative). Assume that g, is normally distributed with mean B and
variance oj. Assume further that e,, and e,, are independently normally
distributed each with zero mean and variance ¢2. (The assumption of
independence simplifies the example but is not necessary.) With these
assumptions, utility can be expressed as

Uin = BYin + 1

Uzn = BYan + f2n;

where 7,, and 7,, are jointly normally distributed. The # have zero mean:
E() = E(B, yiu + €:) = O, i=12

The variance-covariance matrix for 5 is determined as follows. The variance
of each is

Vitta) = V (B, vin + 1)
= yio} + o2, i=1,2,
given that f§, and e;, are uncorrelated. Their covariance is
E(n t120) = E((Buy1n + €1 (Bay2n + €22)
= E(B?y10Y2m + €19€2n + €180 V1n + 2080y 20)

2
= ylnyZna-ﬂ >
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since e,, and e,, ar¢ uncorrelated and B, is uncorrelated with either e.
Therefore, in this example

Q = [yfno-,l? + 0-ez ylnyZMGﬂz :I
" ylnyZno-ﬂ; YZzno-; + 0.22

2 1 0
=O'2[ yln ylny2n]+o_3[ ]
1 Y1nY2n V2, 0 1

One last step is required for estimation. Note that decisionmakers’ choices
are not affected by a multiplicative transformation of utility: U, 1s larger
than U, for all j # i if and only if U,/A is larger than U,/4 for all j # L.
Consequently, the model U, = BYin + Nin» Where Var(n,) = yioj + ol,is
equivalent to the model U = ( B/0.)Yn + i, Where Var (i) = yi(og/0.) +
1. Since any set of parameters B, o%,and 62 that have the same ratios resuit
in the same utility specification, a normalization is applied for estimation. A
convenient normalization for this case is 62 = 1. Under this normalization,

2

Yin VinY2n 1 0

Q, = 02\: ] + [ ]
g ylnyZn y%n 0 1

The values of y;, and y,, are observed by the researcher. The parameters o}
and B are determined through estimation of the model on a sample of
decisionmakers. Thus, the researcher learns both the mean (B) and the
variance (o7) of the random coefficients of the observed variables entering

utility.
3.3 Nonindependence from Irrelevant Alternatives

Independence or nonindependence from irrelevant alternative only
becomes an issue in situations of three or more alternatives (since with only
two alternatives there is no other alternative for the ratio of the two
probabilities to be independent or nonindependent from). Consider a
simple three-alternative case in which a home buyer can choose among
purchase-money mortgages offered by three different lending institutions.
One of the mortgages has a fixed interest rate, while the other two have
variable rates. In this situation, it is unrealistic to expect the choice proba-
bilities to exhibit IIA. Improving the characteristics of one variable rate
loan (i.e., decreasing its initial interest rate) would be expected to reduce the
probability of the other variable rate loan much more (proportionately)
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than the probability of the fixed rate loan, since the (unobserved) concern
about risk that is associated with variable rate loans must be overcome in
switching from a fixed to a variable rate loan but not(or not to the degree) in
switching between two kinds of variable rate loans.

This situation can be modeled by probit with the source of non-IIA
explicitly incorporated. Label the fixed rate loan as F and the two variable
rate loans as VA and VB. Suppose the utility of homebuyer n associated
with each loan depends on the initial interest rate of the loan (I,,, which is
different for each of the three loans and varies over homebuyers on the
basis of their credit worthiness) and the maximum possible increase in the
interest rate (M,,, which is zero for the fixed rate loan and positive but
perhaps different for each of the two variable rate loans). In addition,
assume that utility depends on two unobserved factors: the homebuyer’s
perception of, and concern about, the degree of risk associated with the
possibility of increased mortgage payments (labeled R;,, which is zero for
the fixed rate loan and varies randomly for each of the two variable rate
loans), and the homebuyer’s perception of the ease of dealing with each
institution (labeled #; and depending on the location, reputation, and so on
of each institution). With linear-in-parameters utility and suppressing
alternative-specific constants for notational simplicity, we have

U,=oal, + M, + e, i=F, VA, VB,

wheree;,, = — R, + n;, and the negative sign before R, reflects the fact that
risk is undesirable.

One would expect R,, to be correlated over the two variable rate loans: if
the homebuyer thinks interest rates will rise and is concerned about the
ability to keep up payments with an increased loan rate, then the concern
would be applicable for both the variable rate loans.! Thus, even if ;, is
mndependent across alternatives, the entire unobserved component of
utility, e;,, is correlated.

Let n,, be distributed independently identically normal with zero mean
and variance w? and not correlated with R,,. Also let R,, be normally
distributed for each of the two variable rate loans, with zero mean, variance
o? for each loan, and a covariance across the variable rate loans of 625. (R,
for the fixed rate loan is nonstochastically zero.) Then the unobserved
component of utility is also normally distributed with zero mean and
variance-covariance



Probit 61

0 0 0 1 0 0
Q. =0 o2 ozl +w|0 1 O]
0 o3 c> 0 O 1

Estimation of probit choice probabilities provides values of the coeffi-
cients « and B in the observed component of utility as well as the variance
and covariance of the perceived risk associated with each variable rate
loan.? The more general case in which the variance of e;, and R;, is different
for each loan, and in which 1. is correlated over alternatives, can also be
specified.

3.4 Estimation

The most straightforward (at least theoretically) way to estimate para-
meters in a probit model is through maximum likelihood techniques. The
log likelihood function, defined in section 2.6 for logit models, is

LL= Y Y 0inlogPa, (34)

neN ielJ,

where 8,, equals one if decisionmaker n chose alternative i and zero other-
wise, and N is the total number of decisionmakers in the sample. Substi-
tution of the formula for probit choice probabilities, 1e., expression (3.3)
into (3.4), gives LL asan explicit function of the parameter vector entering
representative utility, and the parameters entering the variance-covariance
matrix, Q,, of the unobserved component of utility. The values of these two
sets of parameters that maximize LL are, under fairly general conditions,
consistent and efficient.

As mentioned, however, calculating probit probabilities for any given
parameters involves numerous integrations; and these integrations must be
performed numerous times in the search for the maximizing parameter
values. Consequently, estimation of probit models with more than just a few
alternatives and few explanatory variables is extremely expensive with
standard maximum likelihood methods.

For this reason, alternative estimation methods have been developed.
Two are particularly prominent: (1) 2 method based on an approximation
by C.Clark and (2)a Monte Carlo method that utilizes randomly generated
values for the unobserved component of utility. Each of the methods will
now be discussed.
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Estimation with the Clark Approximation

Clark (1961) demonstrated that the maximum of two normally distributed
variables is distributed approximately normal. As will be shown, using this
approximation reduces the number of integrals that must be evaluated in
the caiculation of probit choice probabilities to only one. Since the exact
formula for choice probabilities in a situation of K alternatives involes K
integrals, this approximation can considerably reduce the cost of estimating
probit models.

Consider a choice situation with three alternatives labeled 1, 2, and 3.
Denote the vector of utilities associated with these alternatives ( U,,U,, Ug),
assumed to be distributed jointly normal with mean vector ( Vi, V2, Vs) and
variance-covariance matrix Q, where the subscript denoting decisionmaker
is suppressed for simplicity. Consider the choice probability for alternative
3. By equation (3.3), the formula for P, involves three integrals. However,
using Clark’s approximation, P; can be approximated by a formula with
only one integral.

Define z = max(U,, U,). Since U, and U, are normal, it is possible to
derive the mean and variance of z and the covariance of z with U,. Label
these variables as follows:

E(z) = V;
Var(z) = o2;
cov(z, U;) = a&.

Though the maximum of two normally distributed variables is not itself
normally distributed, Clark showed that treating the maximum as if it is
normally distributed does not introduce substantial error. That is,
z ~ N(V,, 67) with covariance of a2, with U,.

By definition, P; = Prob(U; > z). That is, the probability of choosing
alternative 3 is the probability that U, is greater than the maximum of U,
and U,, and hence is greater than both. Rearranging, Py = Prob(z — U; <
0). Since U, is normally distributed and z is approximately so, z — Us is
also approximately normally distributed, with mean V. — V; and variance
ol + 03 — 202, where o2 is the variance of U,. Therefore,

P3=Prob(z—U3<0)=Jo ¢( s— (1 V) )ds,

s= -0 ‘/0'22+0'32—20'223
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where ¢ is the standard normal density. Approximated in this way, P,
involves only one integral.

The procedure can be applied recursively when more than three alterna-
tives are involved. Consider a situation with four alternatives labeled 1, 2, 3,
and 4. Define z = max(U,, U,) and y = max(U,, U,, U;). By definition y =
max(z, Us). Since U, and U, are normal, z is approximately normal; then,
since U, is normal and z is approximately normal, y is also approximately
normal. The probability of choosing alternative 4 is P, = Prob(U, > y) =
Prob(y — U, < 0). Since y is approximately normal and U, is normal,
their difference is approximately normal, and P, is simply the density of this
approximately normal variable integrated from negative infinity to zero.
Instead of performing four integrations as required by expression (3.3), Py
can be approximated by a formula with only one integral. Situations with
more alternatives are handled analogously. For a more detailed discussion,
see Daganzo, Bouthelier, and Sheffi (1977).

Monte Carlo Method

The Monte Carlo method approximates the probit choice probabilities by
simulating the choices of each decisionmaker under numerous, randomly
generated values for unobserved utility.

The process begins by the researcher specifying particular values of the
parameters entering ¥, and the variance-covariance matrix of the vector é,
(consisting of elements e;, for all i in J,). Given the joint distribution of the
vector &, (including values for the parameters entering this matrix), a
random number generator produces a realization of this vector. Adding this
realization to the observed component of utility (calculated at given values
of the parameters entering V;,) gives total utility. Comparing total utility
across alternatives identifies the alternative that has the highest total utility.

Choice probabilities are then approximated by repeating this process
numerous time with the parameters held constant. In each randomly gen-
erated realization of unobserved utility, one of the alternative has highest
utility. The proportion of times alternative i has the highest utility is an
estimate of P,,. Obviously, as the number of repetitions increases, this
proportion can be expected to become arbitrarily close to P,,. Since the
distribution of &, depends on the parameters entering Q, and the value of
representative utility depends on the parameters entering V;,, the Monte
Carlo estimate of P,, depends on these parameters.

Choice probabilities calculated in this way for the given parameter values
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are then entered into the log likelihood function to determine the value
of the function at the given values of the parameters. The entire process
is then repeated for various different parameter values specified by the
researcher. The parameters that result in the highest value of the log
likelihood function are taken as the parameter estimates.

While both the Monte Carlo method and that based on the Clark
approximation are less expensive than the standard maximum likelihood
estimation of probit models, they do not completely solve the problem of
probit estimation. The Clark approximation has been found in some situ-
ations to be very inaccurate. Especially bothersome is the fact that, in most
cases, the researcher does not know the degree of inaccuracy unless stan-
dard maximum likelihood estimation is performed for comparison, in
which case the approximation method is redundant. The Monte Carlo
method does not necessarily entail the accuracy problems of the Clark
approximation method, since the true probabilities can be approximated to
any degree of accuracy by simply generating a sufficiently large number of
realizations of unobserved utility for each sampled decisionmaker. Unfor-
tunately, in most cases, when the number of repetitions is increased suffi-
ciently to assure accuracy, the expense of the Monte Carlo method is not
appreciably lower than that of the standard maximum likelihood method.
For more details on estimation of probit models see Daganzo (1979) and
Lerman and Manski (1981).



