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Summary Data at different levels of aggregation are often used in two-stage estimation,
with estimates obtained at the higher level of aggregation entering the estimation at the lower
level of aggregation. An example is customers within markets: first-stage estimates on mar-
ket data provide variables that enter the second-stage model on customers. We derive the
asymptotic covariance matrix of the second-stage estimates for situations such as these. We
implement the formulae in the Petrin–Train application of households’ choice of TV recep-
tion and compare the calculated standard errors with those obtained without correction. In
this application, ignoring the sampling variance in the first-stage estimates would be seriously
misleading.
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1. INTRODUCTION

In applications where one model is embedded within another, it is often convenient to esti-
mate the model in two stages. One result of such estimation is that the second-stage model
contains variables constructed from parameters estimated in the first stage. Thus, the covari-
ance matrix of the second-stage estimator includes noise induced by the first-stage estimates.
Amemiya (1978) derives the asymptotic covariance for two-stage estimation of multinomial
logit models when both stages use the same observations. Heckman (1979) determines the cor-
rect asymptotic covariance matrix of the two step estimator that accounts for sample selection
bias. In his application, the second-stage observation is a subset of the first-stage observation.
Murphy and Topel (1985) give the covariance for two-stage estimation by maximum likelihood
and least squares when, again, both stages use the same observations. Greene (2000) shows how
Murphy and Topel’s results are applied under various specific models, and Newey and McFadden
(1994) and McFadden (1999) extend them to the generalized method of moments.

This paper derives the asymptotic covariance of the second-stage estimator when the two
stages use different numbers of observations and the data for the second stage are nested in the
observations for the first stage. For example, the second stage might model customers’ demand
in different markets (N2 customers each of whom buys in one ofN1 markets). If the price in each
market is correlated with the unobserved portion of customers’ demand (due to, for example,
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an omitted product attribute), then some form of instrumental variables estimation is needed to
account for this correlation. The first stage specifies price as a function of instruments using
market-level data, and the second stage utilizes the predicted price or the residual in estimation
of the customer-level model.

Kuksov and Villas-Boas (2001) derive a similar formula for a related set-up. Their samples
are not nested; instead, each unit of observation in the second stage appears repeatedly in all
of the first-stage observations (i.e. each customer is observed in each of several time periods.)
They allow correlation over first-stage observations in the unobservables associated with each
second-stage unit (i.e. correlation for the same customer over time). In contrast, our formula uses
independence over first-stage observations.

We apply our formula to the Petrin–Train application of households’ choice of TV recep-
tion. They are concerned that the prices of the TV reception alternatives are correlated with the
unobserved attributes of the alternatives. To correct for this endogeneity, they specify a first-
stage linear regression of prices on exogenous variables and instrumental variables using market
level data. The second stage is a mixed logit model. The dependent variable is the TV recep-
tion choice of a customer in a given market, and the independent variables are market level
prices, market level residuals estimated in the first stage and other observed attributes of the
alternatives.

2. FRAMEWORK

First stage. Estimated parameterŝθ1 solve moment conditions̄h(θ̂1) = 0 whereh̄(θ1) =
1

N1

∑
m hm(θ1, zm), N1 is the number of observations, andhm(θ1; zm) is a vector of moments for

observationm which depends on datazm.

Second stage. Estimated parameterŝθ2 solve moment conditions̄g(θ̂2, θ̂1) = 0 whereḡ(θ2, θ̂1)

=
1

N2

∑
n gn(θ2, θ̂1; xn), N2 is the number of observations, andgn(θ2, θ̂1; xn) is the moment for

observationn based on its data and the first-stage estimates.
Eachn in the second stage corresponds to anm in the first stage (e.g.n indexes customers,
m indexes markets, and each customer buys in one market). Therefore, there are one or more
observations in the second-stage sample from each group in the first-stage sample. Also,xn in
the second stage can include one or more elements ofzm for them corresponding ton.

Take a Taylor expansion of both the first- and second-stage moment conditions around the
true parametersθ∗

1 andθ∗

2 (assuming that the moment conditions are bounded and differentiable
around the true parameters) and evaluate it asymptotically. For the first stage:

0
a
= h̄(θ∗

1 ) − A(θ̂1 − θ∗

1 ),

and for the second stage:

0
a
= ḡ(θ∗

2 , θ∗

1 ) − B(θ̂1 − θ∗

1 ) − C(θ̂2 − θ∗

2 ),

where

A = −plim∇θ1h̄(θ∗

1 )

B = −plim∇θ1 ḡ(θ∗

2 , θ∗

1 )

C = −plim∇θ2 ḡ(θ∗

2 , θ∗

1 ),
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and where
a
= denotes equality up to asymptotically negligible remainder terms.1 Then

(θ̂1 − θ∗

1 )
a
= A−1h̄(θ∗

1 ) = A−1 1

N1

∑
m

hm(θ∗

1 , zm),

and

(θ̂2 − θ∗

2 )
a
= C−1(ḡ(θ∗

2 , θ∗

1 ) − B(θ̂1 − θ∗

1 ))

a
= C−1

(
1

N2

∑
n

gn(θ
∗

2 , θ∗

1 ; xn) − B A−1 1

N1

∑
m

hm(θ∗

1 , zm)

)
. (1)

Given that theN2 second-stage observations can be grouped intoN1 first-stage observations, we
can re-write

N2∑
n=1

gn(θ2, θ1; xn) =

N1∑
m=1

Nm∑
`=1

g`m(θ2, θ1; x`m),

whereNm is the number of observations among theN2 second-stage observations that corre-
spond to observationm of the first stage (e.g. number of customers in marketm) andg`m is the
second-stage moment for the`th second-stage observation that corresponds to themth first-stage
observation. Then equation (1) becomes

(θ̂2 − θ∗

2 )
a
= C−1

 1

N2

N1∑
m=1

Nm∑
`=1

g`m(θ∗

2 , θ∗

1 ; x`m) − B A−1 1

N1

N1∑
m=1

hm(θ∗

1 , zm)


or, expressed more conveniently,

(θ̂2 − θ∗

2 )
a
= C−1

 1

N1

N1∑
m=1

Nm∑
`=1

N1

N2
g`m(θ∗

2 , θ∗

1 ; x`m) − B A−1 1

N1

N1∑
m=1

hm(θ∗

1 , zm)

 .

Defineg̃m =
∑Nm

`=1 C−1 N1
N2

g`m(θ∗

2 , θ∗

1 ; x`m) andh̃m = C−1B A−1hm(θ∗

1 , zm). Then:

√
N1(θ̂2 − θ∗

2 )
a
=

1
√

N1

N1∑
m=1

(g̃m − h̃m).

Finally, lettingXm = g̃m − h̃m, we have

√
N1(θ̂2 − θ∗

2 )
a
=

1
√

N1

N1∑
m=1

Xm.

Asymptotically,
√

N1(θ̂2−θ∗

2 )
a
∼ N(0, Var(Xm)), such that̂θ2

a
∼ N(θ∗

2 , Var(Xm)/N1). Var(Xm)

is approximated by its sample analog,1
N1

∑
m X̂mX̂′

m, with X̂m calculated at the estimated para-
meters (andA, B, andC replaced by sample analogs). This is a re-expression of the Murphy

1A andC are square matrices in this notation, such that the parameters are exactly identified by the moment conditions.
The notation can of course be generalized.
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and Topel (1985) result for an application in which the correlation in the random components
of the first and second steps take a particular form due to the nested structure of the data. Note
that if there is no error in the first stage (i.e.hm(θ∗

1 ) = 0 ∀m), then this formula for the asymp-
totic covariance becomes the robust covariance estimator ofθ̂2 that allows for correlation over
observations within each market.2 Also note that these formulae assume thatN1 → ∞, though
Var(Xm) will decline asN2 increases as well.

3. APPLICATION

We adapt and apply the formula to the model of Petrin and Train (2002). Their model is a mixed
logit of choice at the consumer level that uses an explanatory variable that is estimated by regres-
sion on market level data. They examine customers’ choice of TV reception, with the alternatives
being: antenna only, cable with basic or extended service, cable with premium packages, or satel-
lite. Each customer lives in a franchise area, called a market, and the price and other attributes
of the alternatives vary over markets. Some attributes of the alternatives, such as quality of pro-
gramming, are not measurable and hence not included as explanatory variables in the customer
choice model. Since the omitted attributes are expected to be related to price, their omission
induces correlation between the unobserved portion of utility and price. One of the ways they
address this correlation is through a control function approach; in particular, they regress market
price against market-level instruments and then enter the residual of this price regression as an
explanatory variable in the customer-level choice model. Unobserved utility conditional on this
price residual need not be correlated with price; the density of this conditional unobserved utility
determines the form of the choice model.

The model is specified as follows. The first stage consists of OLS applied to linear
regressions:

pmj = β ′

j zm + µmj,

wherepmj is the price of alternativej in marketm andzm are instruments. The estimated resid-
uals µ̂mj = pmj − β̂ ′

j zm are calculated. The utility that customern who resides in marketm
obtains from alternativej is specified as

Unmj = α′wnmj + λ j µmj + εnmj.

The explanatory variableswnmj include the price and other observed attributes of alternativej
in marketm, interacted in some cases with demographics of the customer. In estimation, theµ̂mj

is used in lieu of the trueµmj. Petrin and Train assume that the errorεnmj contains a component
that is normally distributed and common to all non-antenna alternatives, plus an i.i.d. extreme
value term. Their choice model is therefore a mixed logit, with mixing over the normal error
component.

The price of antenna only is zero for all customers, and the price of satellite does not vary
over markets. Price regressions are therefore estimated only for the two cable alternatives, and
only the utility for these two alternatives includes price residuals. The two cable alternatives are
denotedj = 2, 3.

2The robust covariance estimator is the ‘cluster’ estimator implemented by Rogers (1993) and marketed by Stata.
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With this specification, we haveθ ′

1 = 〈β ′

2, β
′

3〉 andθ ′

2 = 〈α′, λ2, λ3〉. The first-stage moments
areh′

m = 〈zmµm2, zmµm2〉 and the second-stage moments aregnm = ∇θ2 Lnm(θ2, θ̂1), where
Lnm is the log-likelihood for customern in marketm. We need to calculateA, B andC.

Matrix A is the expected moment matrix of the instruments. LetZ be the matrix whosemth
row is z′

m. ThenA is approximated by its sample analog,(
Z′Z/N1 0

0 Z′Z/N1

)
.

Matrix C is the negative of the expected Hessian in the second-stage model evaluated at the
true parameters:C = −∇θ2θ2L(θ∗

2 , θ∗

1 ), whereL is the expected log-likelihood of an observation.
Using the information identity,C can be approximated by the sample variance of the scores at
the estimated parameters,

1

N2

N1∑
m=1

Nm∑
`=1

∇θ2 L`m(θ̂2, θ̂1)∇θ2 L`m(θ̂2, θ̂1)
′,

whereL`m is the log-likelihood for thè th household in marketm.
Matrix B is the expected derivative of the second-stage scores with respect to the first-stage

parameters:B = −∇θ2θ1L(θ∗

2 , θ∗

1 ). Analogous to the proof for the information identity,B =

∇θ2L(θ∗

2 , θ∗

1 )∇θ1L(θ∗

2 , θ∗

1 )′. Its empirical analog is therefore1N2

∑N1
m=1

∑Nm

`=1 ∇θ2 L`m(θ̂2, θ̂1)∇θ1

L`m(θ̂2, θ̂1)
′. The first term is the score. The second term takes a particularly convenient form in

this application. Note that
∂L`m

∂λ j
=

1

P̀ m

∂ P̀ m

∂(λ j µmj)
µmj,

whereP̀ m is the probability of the chosen alternative of the`th customer in marketm. Since, by
definition,µmj = pmj − β ′

j zm, we have

∂L`m

∂βk
j

=
1

P̀ m

∂ P̀ m

∂(λ j µmj)

∂λ j µmj

∂βk
j

=
1

P̀ m

∂ P̀ m

∂(λ j µmj)
(−λ j z

k
m) =

∂L`m

∂λ j

(
−

λ j

µm j
zk

m

)
,

where superscriptk refers to thekth element ofβ j andzm. Then, collecting elements, we have:

∇θ1 L`m(θ̂2, θ̂1) = −

(
∇λ2 L`m(θ̂2, θ̂1)

λ̂2
µ̂m2

zm

∇λ3 L`m(θ̂2, θ̂1)
λ̂3

µ̂m3
zm

)
.

Using these quantities,Xm is calculated as

Xm =

Nm∑
`=1

C−1 N1

N2
g`m(θ̂2, θ̂1; x`m) − C−1B A−1hm(θ̂1, zm),

where the termsA, B, C, g`m, andhm are defined as above. The covariance of the second-stage
estimator is then calculated as the empirical covariance ofXm over the markets in the sample,
divided byN1.

Table 1 gives the estimated model from Petrin and Train (2002). The first column of standard
errors is calculated from the formulae just described. The second column gives the standard
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Table 1.Mixed logit model of TV reception choice.

Explanatory variable Estimates Standard errors

Asympt. formula Uncorrected

Price, in dollars per month (1–4) −0.0969 0.0407 0.0174

Price for income group 2 (1–4) 0.0150 0.0023 0.0024

Price for income group 3 (1–4) 0.0247 0.0033 0.0030

Price for income group 4 (1–4) 0.0269 0.0035 0.0033

Price for income group 5 (1–4) 0.0308 0.0034 0.0036

Number of cable channels (2,3) 0.0026 0.0035 0.0015

Number of premium channels (3) 0.0448 0.0243 0.0162

Number of over-the-air channels (1) 0.0222 0.0151 0.0089

Whether pay per view is offered (2,3) 0.5813 0.1741 0.0761

Indicator: ATT is cable company (2) −0.1949 0.2388 0.1060

Indicator: ATT is cable company (3) −0.2370 0.2345 0.1199

Indicator: Adelphia Comm is cable company (2) 0.3425 0.2932 0.1224

Indicator: Adelphia Comm is cable company (3) 0.2392 0.3030 0.1491

Indicator: Cablevision is cable company (2) 0.1342 0.3608 0.2402

Indicator: Cablevision is cable company (3) 0.7350 0.3838 0.2516

Indicator: Charter Comm is cable company (2) −0.0580 0.2311 0.1006

Indicator: Charter Comm is cable company (3) −0.1757 0.1856 0.1270

Indicator: Comcast is cable company (2) −0.0938 0.3682 0.1190

Indicator: Comcast is cable company (3) 0.1656 0.2723 0.1316

Indicator: Cox Comm is cable company (2) −0.0577 0.3267 0.1475

Indicator: Cox Comm is cable company (3) 0.0874 0.4386 0.1691

Indicator: Time-Warner is cable company (2) −0.0817 0.2261 0.0995

Indicator: Time-Warner is cable company (3) −0.0689 0.2017 0.1203

Education level of household (2) −0.0619 0.0267 0.0220

Education level of household (3) −0.1123 0.0329 0.0278

Education level of household (4) −0.1967 0.0367 0.0368

Household size (2) −0.0518 0.0290 0.0240

Household size (3) 0.0134 0.0291 0.0287

Household size (4) 0.0050 0.0447 0.0358

Household rents dwelling (2–3) −0.2436 0.0913 0.0863

Household rents dwelling (4) −0.2149 0.1327 0.1562

Single family dwelling (4) 0.7649 0.2022 0.1521

Residual for extended-basic cable price (2) 0.0805 0.0422 0.0177

Residual for premium cable price (4) 0.0873 0.0423 0.0178

Alternative specific constant (2) 2.972 0.8984 0.5012

Alternative specific constant (3) 2.903 1.379 0.6904

Alternative specific constant (4) 4.218 2.319 1.087

Error components, standard deviation (2–4) 0.5553 0.6826 0.6410

Log-likelihood at convergence:−14635.47

Number of observations: 11810
Alternatives: (1) Antenna only, (2) basic and extended cable, (3) premium cable, (4) satellite. Variables enter alternatives
in parentheses and zero in other alts.
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errors that are produced by the standard maximum likelihood estimation routine, which treats
the estimated price residuals as true. In this application, ignoring the sampling variance in the
first-stage estimates would be seriously misleading. For example, the standard error on the base
price coefficient rises from 0.0174 without correction to 0.0407 when the first-stage sampling
variance is considered.3 As expected, the standard error correction has the greatest impact for
the base price coefficient and the coefficients of the price residuals. The impact is minimal for
the demographic variables.
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