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Abstract

This paper describes a recursive method for estimating random co-

efficient models. Starting with a trial value for the moments of the

distribution of coefficients in the population, draws are taken and then

weighted to represent draws from the conditional distribution for each

sampled agent (i.e., conditional on the agent’s observed dependent vari-

able.) The moments of the weighted draws are calculated and then

used as the new trial values, repeating the process to convergence. The

recursion is a simulated EM algorithm that provides a method of sim-

ulated scores estimator. The estimator is asymptotically equivalent to

the maximum likelihood estimator under specified conditions. The re-

cursive procedure is faster than maximum simulated likelihood (MSL)

with numerical gradients, easier to code than MSL with analytic gra-

dients, assures a positive definite covariance matrix for the coefficients

at each iteration, and avoids the numerical difficulties that often oc-

cur with gradient-based optimization. The method is illustrated with a

mixed logit model of households’ choice among energy suppliers.

Keywords: Mixed logit, probit, random coefficients, EM algorithm.
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1 Introduction

Random coefficient models, such as mixed logit or probit, are widely used be-

cause they parsimoniously represent the fact that different agents have different

preferences. The parameters of the model are the parameters of the distribu-

tion of coefficients in the population. The specifications generally permit full

covariance among the random coefficients. However, this full generality is sel-

dom realized in empirical applications due to the numerical difficulty of max-

imizing a likelihood function that contains so many parameters. As a result,

most applications tend to assume no covariance among coefficients (Chen and

Cosslett, 1998, Goett et al., 2000, Hensher et al., 2005) or covariance among

only a subset of coefficients (Train, 1998, Revelt and Train, 1998).1

This paper presents a procedure that facilitates estimation of random co-

efficient models with full covariance among coefficients. In its simplest form,

it is implemented as follows. For each sampled agent, draws are taken from

the population distribution of coefficients using a trial value for the mean and

covariance of this distribution. Each draw is weighted proportionally to the

probability of the agent’s observed dependent variable under this draw. The

mean and covariance of these weighted draws over all sampled agents are then

calculated. This mean and covariance become the new trial values, and the pro-

cess is repeated to convergence. The procedure provides a method of simulated

scores estimator (Hajivassiliou and McFadden, 1998), which is asymptotically

equivalent to maximum likelihood under well-known conditions discussed be-

low. The recursive procedure constitutes a simulated EM algorithm (Dempster

et al., 1977; Ruud, 1991), which converges to a root of the score condition.

The procedure is related to the diagnostic tool described by Train (2003,

section 11.5) of comparing the conditional and unconditional densities of co-

1Restrictions on the covariances are not as benign as they might at first appear. For exam-

ple, Louviere (2003) argues, with compelling empirical evidence, that the scale of utility (or,

equivalently, the variance of random terms over repeated choices by the same agent) varies

over people, especially in stated-preference experiments. Models without full covariance of

utility coefficients imply the same scale for all people. If in fact scale varies, the variation in

scale, which does not affect marginal rates of substitution (MRS), manifests erroneously as

variation in independent coefficients that does affect estimated MRS.
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efficients for an estimated model. In particular, to evaluate a model, draws

are taken from the conditional distribution of coefficients for each agent in the

sample, and then the distribution of these draws is compared with the esti-

mated population (i.e., unconditional) distribution. If the model is correctly

specified, the two distributions should be similar, since the expectation of the

former is equal to the later. In the current paper, this concept is used as an

estimation criterion rather than a diagnostic tool.

The procedure is described and applied in the sections below. Section 2

provides the basic version under assumptions that are more restrictive than

needed but facilitate explanation and implementation. Section 3 generalizes

the basic version. Section 4 applies the procedure to data on households’

choices among energy suppliers.

2 Basic Version

Each agent faces exogenous observed explanatory variables x and observed

dependent variable(s) y. We assume in our notation that y is discrete and

x is continuous, though these assumptions can be changed with appropriate

change in notation. Let β be a vector of random coefficients that affect the

agent’s outcome and are distributed over agents in the population with density

f(β | θ), where θ are parameters that characterize the density, such as its mean

and covariance. For the purposes of this section, we specify f to be the normal

density, independent of x; these assumptions will be relaxed in section 3. Let

m(β) be the vector-valued function consisting of β itself and the vectorized

lower portion of (ββ′), Then, by definition, θ =
∫

m(β)f(β | θ)dβ. That is, θ

are the unconditional moments of β.

Consider now the behavioral model. Given β, the behavioral model gives

the probability that an agent facing x has outcome y as some function L(y |
β, x), which we assume in this section depends on coefficients β and not (di-

rectly) on elements of θ. In a mixed logit model with repeated choices for each

agent, L is a product of logits. In other models, L, which we call the kernel of

the behavioral model, takes other forms.2 Since β is not known, the probability

2If all random elements of the behavioral model are captured in β, then L is an indicator
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of outcome y is P (y | x, θ) =
∫

L(y | β, x)f(β | θ)dβ.

The density of β can be determined for each agent conditional on the agent’s

outcome. This conditional distribution is the distribution of β among the

subpopulation of agents who, when faced with x, have outcome y. By Bayes’

identity, the conditional density is h(β | y, x, θ) = L(y | β, x)f(β | θ)/P (y |
x, θ). The moments of this conditional density are

∫
m(β)h(β | y, x, θ)dβ, and

the expectation of such moments in the population is:

M(θ) =
∫

x

∑
y

S(y | x)
∫

β
m(β)h(β | y, x, θ) dβ g(x) dx

where g(x) is the density of x in the population and S(y | x) is the share of

agents with outcome y among those facing x.

Denote the true parameters as θ∗. At the true parameters S(y | x) =

P (y | x, θ∗), such that the expected value of the moments of the conditional

distributions equals the unconditional moments:

M(θ∗) =
∫

x

∑
y

S(y | x)
∫

β
m(β)

L(y | β, x)f(β | θ∗)dβ

P (y | x, θ∗)
g(x)dx

=
∫

x

∑
y

∫
β
m(β)L(y | β, x)f(β | θ∗)dβg(x)dx

=
∫

x

∫
β
m(β)[

∑
y

L(y | β, x)]f(β | θ∗)dβg(x)dx

=
∫

x

∫
β
m(β)f(β | θ∗)dβg(x)dx

= θ∗.

since L(y | β, x) sums to one over all possible values of y.

The estimation procedure uses a sample analog to the population expecta-

tion M(θ). The variables for sampled agents are subscripted by n = 1, ..., N.

The sample average of the moments of the conditional distributions is then:

M(θ) =
1

N

∑
n

∫
β
m(β)

L(yn | β, xn)

P (yn | xn, θ)
f(β | θ)dβ.

This quantity is simulated as follows: (1) For each agent, take R draws of β from

f(β | θ) and label the r-th draw for agent n as βnr. (2) Calculate L(yn | βnr, xn)

function of whether or not the observed outcome arises under that β.
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for all draws for all agents. (3) Weight draw βnr by wnr = L(yn|βnr,xn)
1
R

∑
r′ L(yn|βnr′ ,xn)

,

such that the weights average to one over draws for each given agent. (4)

Average the weighted moments:

M̃(θ) =
∑
n

∑
r

wnr m(βnr)/NR

The estimator θ̂ is defined by M̃(θ̂) = θ̂. The recursion starts with an

initial value of θ and repeatedly calculates θt+1 = M̃(θt) until θT+1 = θT

within a tolerance. Since the first two moments determine the covariance, the

procedure is equivalently applied to the mean and covariance directly. Note

that the covariance in each iteration is necessarily positive definite, since it is

calculated as the covariance of weighted draws.

We first examine the properties of the estimator and then the recursion.

2.1 Relation of estimator to maximum likelihood

Given the specification of P (yn | xn, θ), the score can be written:

sn(θ) =
∂logP (yn | xn, θ)

∂θ

=
1

P (yn | xn, θ)

∫
L(yn | β, xn)

∂f(β | θ)

∂θ
dβ

=
∫ ∂logf(β | θ)

∂θ

L(yn | β, xn)

P (yn | xn, θ)
f(β | θ)dβ.

The maximum likelihood estimator is a root of
∑

n sn(θ) = 0.

Let b be the mean and W the covariance of the normally distributed coef-

ficients, such that logf(β | b,W ) = k − 1
2
log(|W |)− 1

2
(β − b)′W−1(β − b). The

derivatives entering the score are:

∂logf

∂b
= −W−1(β − b)

∂logf

∂W
= −1

2
W−1 +

1

2
W−1[(β − b)(β − b)′]W−1.

It is easy to see that
∑

n sn(θ0) = 0 for some θ0 if and only if M(θ0) = θ0, such

that, in the non-simulated version, the estimator is the same as MLE.

Consider now simulation. A direct simulator of the score is

s̃n(θ) =
1

R

∑
r

wnr
∂logf(β | θ)

∂θ
.
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A method of simulated scores estimator is a root of
∑

n s̃n(θ) = 0. As in the non-

simulated case,
∑

s̃n(θ0) = 0 iff M̃(θ0) = θ0, such that the recursive estimator

is this MSS estimator. Hajivassiliou and McFadden (1998) give properties of

MSS estimators. In our case, the score simulator is not unbiased, due to the

inverse probability that enters the weights. In this case, the MSS estimator is

consistent and asymptotically equivalent to MLE if R rises at a rate greater

than
√

N .

These properties, and the requirement on the draws, are the same as

for maximum simulated likelihood (MSL; Hajivassiliou and Ruud, 1994, Lee,

1995.) However, the estimator is not the same as the MSL estimator. For MSL,

the probability is expressed as an integral over a parameter-free density, with

the parameters entering the kernel. The gradient then involves the derivatives

of the kernel rather than the derivatives of the density. That is, the coefficients

are treated as functions β(θ, μ) with μ having a parameter-free distribution.

The probability is expressed as P (y | x, θ) =
∫

L(y | β(θ, μ), x)f(μ)dμ and

simulated as P̃ (y | x, θ) =
∑

r L(y | β(θ, μr), x)/R for draws μ1, ...μR. The

derivative of the log of this simulated probability is

˜̃s(θ) =
1

P̃ (y | x, θ)

1

R

∑
r

∂L(y | β(θ, μr), x)

∂θ
,

which is not numerically the same as s̃(θ) for a finite number of draws. In

particular, the value of θ that solves
∑

n s̃n(θ) = 0 is not the same as the value

that solves
∑

n
˜̃sn(θ) = 0 and maximizes the log of the simulated likelihood

function. Either simulated score can serve as the basis for a MSS estimator,

and they are asymptotically equivalent to each other under the maintained

condition that R rises faster than
√

N . The distinction is the same as for any

MSS estimator that is based on a simulated score that is not the derivative of

the log of the simulated probability.3

The simulated scores at θ̂ provide an estimate of the information matrix,

analogous to the BHHH estimate for standard maximum likelihood: Î =

S ′S/N , where S is the NxK matrix of K-dimensional scores for N agents.

3An important class are the unbiased score simulators that Hajivassiliou and McFadden

(1998) discuss, which, by definition, differ from the derivative of the log of the simulated

probability because the latter is necessarily biased due to the log operation.
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The covariance matrix of the estimated parameters is then estimated as V =

Î−1/N = (S ′S)−1, under the maintained assumption that R rises faster than√
N . Also, the scores can be used as a convergence criterion, using the statistic

s̄′V s̄, where s̄ =
∑

n s̃n/N .

2.2 Simulated EM algorithm

We can show that the recursive procedure is an EM algorithm and, as such,

is guaranteed to converge. In general, an EM algorithm is a procedure for

maximizing a likelihood function in the presence of missing data (Dempster,

et al., 1977). For sample n = 1, . . . , N , with discrete observed sample out-

come yn and continuous missing data zn for observation n (and suppress-

ing notation for observed explanatory variables), the likelihood function is∑
n log

∫
P (yn | z, θ)fn(z | θ)dz, where fn(z | θ) is the density of the miss-

ing data for observation n which can depend on parameters θ. The recursion

is specified as:

θt+1 = argmaxθ

∑
n

∫
hn(z | yn, θt)logP (yn, z | θ)dz

where P is the probability-density of both the observed outcome and missing

data, and h is the density of the missing data conditional on y. It is called

EM because it consists of an expectation that is maximized. The term being

maximized is the expected log-likelihood of both the outcome and the missing

data, where this expectation is over the density of the missing data conditional

on the outcome. The expectation is calculated using the previous iteration’s

value of θ in hn, and the maximization to obtain the next iteration’s value is

over θ in logP (yn, z | θ). This distinction between the θ entering the weights

for the expectation and the θ entering the log-likelihood is the key element of

the EM algorithm. Under conditions given by Boyles (1983) and Wu (1983),

this algorithm converges to a local maximum of the original likelihood function.

As with standard gradient-based methods, it is advisable to check whether the

local maximum is global, by, e.g., using different starting values.

In the present context, the missing data are the β’s which have the same

unconditional density for all observations, such that the above notation is trans-
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lated to zn=βn and fn(z | θ) = f(β | θ)∀n. The EM recursion becomes:

θt+1 = argmaxθ

∑
n

∫
h(β | yn, xn, θt)log[L(yn | β, xn)f(β | θ)]dβ. (1)

Since L(yn | β, xn) does not depend on θ, the recursion becomes

θt+1 = argmaxθ

∑
n

∫
h(β | yn, xn, θt)logf(β | θ)dβ (2)

The integral is approximated by simulation, giving:

θt+1 = argmaxθ

∑
n

∑
r

wnr(θt)logf(βnr | θ) (3)

where the weights are expressed as functions of θt since they are calculated

from θt. Note, as stated above, that in the maximization to obtain θt+1, the

weights are fixed, and the maximization is over θ in f . The function being

maximized is the log-likelihood function for a sample of draws from f weighted

by w(θt). In the current section, f is the normal density, which makes this

maximization easy. In particular, for a sample of weighted draws from a normal

distribution, the maximum likelihood estimator for the mean and covariance

of the distribution is simply the mean and covariance of the weighted draws.

This is our recursive procedure.4

3 Generalization

We consider non-normal distributions, fixed coefficients, and parameters that

enter the kernel but not the distribution of coefficients.

3.1 Non-normal distributions

For distributions that can be expressed as a transformation of normally dis-

tributed terms, the transformation can be taken in the kernel, L(y | T (β), x)

4EM algorithms have been used extensively to examine Gaussian mixture models for

cluster analysis and data mining (e.g., McLachlan and Peel, 2000.) In these models, the

density of the data is described by a mixture of Gaussian distributions, and the goal is to

estimate the mean and covariance of each Gaussian distribution and the parameters that mix

them. In our case, the data being explained are discrete outcomes rather than continuous

variables, and the Gaussian is the mixing distribution rather than the quantity that is mixed.
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for transformation T , and all other aspects of the procedure remain the same.

The parameters of the model are still the mean and covariance of the normally

distributed terms, before transformation. Draws are taken from a normal with

given mean and covariance, weights are calculated for each draw, the mean and

covariance of the weighted draws are calculated, and the process is repeated

with the new mean and covariance. The transformation affects the weights,

but nothing else. A considerable degree of flexibility can be obtained in this

way. Examples include lognormals with transformation exp(β), censored nor-

mal with max(0, β), and Johnson’s SB distribution with exp(β)/(1 + exp(β)).

The empirical application in section 4 explores the use of these kinds of trans-

formations.

For any distribution, the EM algorithm in eqn (4) states that the next

value of the parameter, θt+1, is the MLE of θ from a sample of weighted draws

from the distribution. With a normal distribution, the MLE is the mean and

covariance of the weighted draws. For many other distributions, the same

is true, namely, that the parameters of the distribution are moments whose

MLE is the analogous moments in the sample of weighted draws. When this

is not the case, then the moments of the weighted draws are replaced with

whatever constitutes the MLE of parameters based on the weighted draws.

The equivalence of
∑

s̃n(θ) = 0 and M̃(θ) = θ arises under any f when M̃ is

defined as the MLE estimator from weighted draws from f .

3.2 Fixed coefficients and parameters in the kernel

The procedure can be conveniently modified to allow random coefficients to

contain a systematic part that would ordinarily appear as a fixed coefficient

in the kernel. Let βn = Γzn + ηn where zn is a vector of observed variables

relating to agent n, Γ is a conforming matrix, and ηn is normally distributed.

The parameters θ are now Γ and the mean and covariance of η. The density of β

is denoted f(β | zn, θ) since it depends on z. The probability for observation n

is P (yn | xn, zn, θ) =
∫

L(yn | β, xn)f(β | zn, θ)dβ, and the conditional density

of β is h(β | yn, xn, zn, θt) = L(yn | β, xn)f(β | zn, θ)/P (yn | xn, zn, θ). The EM
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recursion is

θt+1 = argmaxθ

∑
n

∫
h(β | yn, xn, zn, θt)log[L(yn | β, xn)f(β | zn, θ)]dβ.

As before, L does not depend on θ and so drops out, giving:

θt+1 = argmaxθ

∑
n

∫
h(β | yn, xn, znθt)logf(β | zn, θ)dβ.

which is simulated by

θt+1 = argmaxθ

∑
n

∑
r

wnr(θt)logf(βnr | zn, θ) (4)

where wnr = L(yn | βnr, xn)/
∑

r′
1
R
L(yn | βnr′ , xn). Given a value of θ, draws of

βn are obtained by drawing η from its normal distribution and adding Γzn. The

weight for each draw of βn is determined as before, proportional to L(yn | βn, x).

Then the ML estimate of θ is obtained from the sample of weighted draws.

Since β is specified as a system of linear equations with normal errors, the

MLE of the parameters is the weighted seemingly unrelated regression (SUR)

of βn on zn (e.g., Greene, 2000, section 15.4). The estimated coefficients of zn

are the new value of Γ; the estimated constants are the new means of η; and

the covariance of the residuals is the new value of the covariance of η.

For fixed parameters that are not implicitly part of a random coefficient,

an extra step must be added to the procedure. To account for this generality,

let the kernel depend on parameters λ that do not enter the distribution of

the random β: i.e., L(y | β, x, λ). Denote the parameters as 〈θ, λ〉, where θ is

still the mean and covariance of the normally distributed coefficients. The EM

recursion given in eq (1) becomes:

〈θt+1, λt+1〉 = argmaxθ,λ

∑
n

∫
h(β | yn, xn, θt, λt)log[L(y | β, x, λ)f(β | θ)]dβ.

Unlike before, L now depends on the parameters and so does not drop out.

However, L depends only on λ, and f depends only on θ, such that the two

sets of parameters can be updated separately. The equivalent recursion is:

θt+1 = argmaxθ

∑
n

∫
h(β | yn, xn, θt, λt)logf(β | θ)dβ
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as before and

λt+1 = argmaxλ

∑
n

∫
h(β | yn, xn, θt, λt)logL(y | β, x, λ)dβ.

The latter is the MLE for the kernel model on weighted observations. If,

e.g., the kernel is a logit formula, then the updated value of λ is obtained by

estimating a standard (i.e., non-mixed) logit model on weighted observations,

with each draw of β providing an observation. A more realistic situation is a

model in which the kernel is a product of GEV probabilities (McFadden, 1978),

with λ being the nesting parameters, which are the same for all agents. The

updated values of the nesting parameters are obtained by MLE of the nested

logit kernel on the weighted observations, where the only parameters in this

estimation are the nesting parameters themselves. The parameters associated

with the random coefficients are updated the same as before, as the mean and

covariance of the weighted draws.

Alternative-specific constants in discrete choice models can be handled in

the way just described. However, if the constants are the only parameters that

enter the kernel, then the contraction suggested by Berry, Levinsohn, and Pakes

(1995) can be applied rather than estimating them by ML.5 For constants α,

this contraction is a recursive application of αt+1 = αt + ln(S) − ln(Ŝ(θt, αt)),

where S is the sample (or population) share choosing each alternative, and

Ŝ(θ, α) is the predicted share based on parameters θ and α. This recursion

would ideally be iterated to convergence with respect to α for each iteration of

the recursion for θ. However, it is probably effective with just one updating of

α for each updating of θ.

4 Application

We apply the procedure to a mixed logit model, using data on households’

choice among energy suppliers in stated-preference (SP) exercises. SP exercises

are often used to estimate preferences for attributes that are not exhibited in

5If the kernel is the logit formula, then the contraction gives the MLE of the constants,

since both equate sample and predicted shares for each alternative; see, e.g., Train 2003, p.

66.
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markets or for which market data provide insufficient variation for meaningful

estimation. A general description of the approach, with a review of its history

and applications, is provided by, e.g., Louviere et al. (2000). In an SP survey,

each respondent is presented with a series of choice exercises. Each exercise

consists of two or more alternatives, with attributes of each alternative de-

scribed. The respondent is asked to identify the alternative that they would

choose if facing the choice in the real world. The attributes are varied over

situations faced by each respondent as well as over respondents, to obtain the

variation that is needed for estimation.

In the current application, respondents are residential energy customers,

defined as a household member who is responsible for the household’s elec-

tricity bills. Each respondent was presented with 12 SP exercises representing

choice among electricity suppliers. Each exercise consisted of four alternatives,

with the following attributes of each alternative specified: the price charged by

the supplier in cents per kWh; the length of contract that binds the customer

and supplier to that price (varying from 0 for no binding to 5 years); whether

the supplier is the local incumbent electricity company (as opposed to a en-

trant); whether, if an entrant, the supplier is a well-known company like Home

Depot (as opposed to a entrant that is not otherwise known); whether time-

of-use rates are applied, with the rates in each period specified; and whether

seasonal rates are applied, with the rates in each period specified. Choices

were obtained for 361 respondents, with nearly all respondents completing all

12 exercises. These data are described by Goett (1998). Huber and Train

(2001) used the data to compare ML and Bayesian methods for estimation of

conditional distributions of utility coefficients.

The behavioral model is specified as a mixed logit with repeated choices

(Revelt and Train, 1998). Consumer n faces J alternatives in each of T choice

situations. The utility that consumer n obtains from alternative j in choice

situation t is Unjt = β′
nxnjt + εnjt, where xnjt is a vector of observed variables,

βn is random with distribution specified below, and εnjt is iid extreme value. In

each choice situation, the agent chooses the alternative with the highest utility,

and this choice is observed but not the latent utilities themselves. By specifying

εnjt to be iid, all structure in unobserved terms is captured in the specification
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of β′
nxnjt. McFadden and Train (2000) show that any random utility choice

model can be approximated to any degree of accuracy by a mixed logit model

of this form.6

Let ynt denote consumer n’s chosen alternative in choice situation t, with

the vector yn collecting the choices in all T situations. Similarly, let xn be the

collection of variables for all alternatives in all choice situation. Conditional

on β, the probability of the consumer’s observed choices is a product of logits:

L(yn | β, xn) =
∏
t

eβ′xnytt

∑
j eβ′xnjt

.

The (unconditional) probability of the consumer’s sequence of choice is:

P (yn | xn, θ) =
∫

L(yn | β, xn)f(β | θ)dβ

where f is the density of β, which depends on parameters θ. This f is the

(unconditional) distribution of coefficients in the population. The density of β

conditional on the choices that consumer n made when facing variables xn is

h(β | yn, xn, θ) = L(yn | β, xn)f(β | θ)/P (yn | xn, θ).

We first assume that β is normally distributed with mean b and covariance

W . The recursive estimation procedure is implemented as follows, with b and

W used explicitly for θ:

1. Start with trial values b0 and W0.

2. For each sampled consumer, take R draws of β, with the r-th draw for

consumer n created as βnr = b0 + C0η where C0 is the lower triangular

Choleski factor of W0 and η is a vector of iid standard normal draws.

3. Calculate a weight for each draw as wnr = L(yn | βnr, xn)/ 1
R

∑
r′ L(yn |

βnr′ , xn).

4. Calculate the weighted mean and covariance of the N ·R draws, and label

them b1 and W1.

6It is important to note that McFadden and Train’s theorem is an existence result only

and does not provide guidance on finding the appropriate distribution and specification of

variables that attains a close approximation.
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5. Repeat steps (2)-(4) using b1 and W1 in lieu of b0 and W0, continuing to

convergence.

The last choice situation for each respondent was not used in estimation and

instead was reserved as a “hold-out” choice to assess the predictive ability

of the estimated models. For simulation, 200 randomized Halton draws were

used for each respondent. These draws are described by, e.g., Train (2003). In

the context of mixed logit models, Bhat (2001) found that 100 Halton draws

provided greater accuracy than 1000 pseudo-random draws; his results have

been confirmed by Train (2000), Munizaga and Alvarez-Diaziano (2001) and

Hensher (2001).

The estimated parameters are given in Tables 1, with standard errors cal-

culated as described above, using the simulated scores at convergence. Table 1

also contains the estimated parameters obtained by maximum simulated likeli-

hood (MSLE.) The results are quite similar. Note that the recursive estimator

(RE) treats the covariances of the coefficients as parameters, while the param-

eters for MSLE are the elements of the Choleski factor of the covariance. (The

covariances are not parameters in MLE because of the difficulty of assuring

that the covariance matrix at each iteration is positive definite when using

gradient-based methods. By construction, the RE assures a positive definite

covariance at each iteration, since each new value is the covariance of weighted

draws.) To provide a more easily interpretable comparison, Table 2 gives the

estimated standard deviations and correlation matrix implied by the estimated

parameters for each method.

The estimated parameters were used to calculate the probability of each

respondent’s choice in their last choice situation. The results are given at the

bottom of Table 1. Two calculation methods were utilized. First, the prob-

ability was calculated by mixing over the population density of parameters

(i.e., the unconditional distribution), i.e., PnT =
∫

L(ynT | β, xnT )f(β | θ̂)dβ,

where T denotes the last choice situation. This is the appropriate formula

to use in situations for which previous choices by each sampled agent are not

observed. RE gives an average probability of 0.3742, and MSLE gives 0.3620.

The probability is slightly higher for RE than MSLE, which indicates that RE

predicts somewhat better. The same result was observed for all the alternative
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specifications discussed below. The second calculation mixes over the condi-

tional density for each respondent, using h(β | y, x, θ̂) instead of f(β | θ̂). This

formula is appropriate when previous choices of agents have been observed.

The probability is of course higher under both estimators than when using the

unconditional density, since each respondent’s previous choices provide useful

information about how they will choose in a new situation. The average prob-

ability from RE is again higher than that from MSLE. However, unlike the

unconditional probability calculation, this relation is reversed for some of the

alternative specifications discussed below.

The MSLE algorithm converged in 141 iterations and took 7 minutes, 4

seconds using analytic gradients and 3 hours, 20 minutes using numerical gra-

dients.7 For RE, I defined convergence as each parameter changing by less

than one-half of one percent and the convergence statistic given above being

less than 1E-4. The first of these criteria was the more stringent in this case,

in that the second was met (at 0.82E-4) once the first was. RE converged in

162 iterations and took 7 minutes, 59 seconds. Since RE does not require the

coding of gradients, the implication of these time comparisons is that using

RE instead of MSLE reduces either the researcher’s time in coding analytic

gradients or the computer time in using numerical gradients.

Alternative convergence criteria were explored for RE, both more relaxed

and more stringent. Using a more relaxed criterion of each parameter changing

less than one percent, estimation required 63 iterations; took 3 minutes, 1

second; and obtained a convergence statistic of 1.2E-4. When the criterion was

tightened to each parameter changing by less than one-tenth of one percent,

estimation required 609 iterations; took 29 minutes, 3 seconds; and obtained

a convergence statistic of 0.44E-4. The estimated parameters changed little

by applying the stricter criterion. Interestingly, the more relaxed criterion

7All estimation was in Gauss on a PC with a Pentium 4 processor, 3.2GHz, with 2 GB

of RAM. For MSLE, I used Gauss’ maxlik routine with my codes for the mixed logit log-

likelihood function and for analytic gradients under normally distributed coefficients. For

RE, I wrote my own code; one of the advantages of the approach is the ease of coding it. I

will shortly be developing RE routines in matlab, which I will make available for downloading

from my website at http://elsa.berkeley.edu/∼train.
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obtained parameters that were a bit closer to the MSL estimates. For example,

the mean and standard deviation of the price coefficient were -0.927 and .611

after 62 iterations and -0.9954 and 0.5471 after 162 iterations, compared to the

MSL estimates of -0.939 and 0.691.

Step-sizes are compared across the algorithms by examining the iteration

log. Table 3 gives the iteration log for the mean and standard deviation of the

price coefficient, which is indicative for all the parameters. The RE algorithm

moves, at first, considerably more quickly toward the converged values than the

gradient-based MSLE algorithm. However, it later slows down and eventually

takes smaller steps than the MSLE algorithm. As Dempster et al. (1977) point

out, this is a common feature of EM algorithms. However, Ruud (1991) notes

that the algorithm’s slowness near convergence is balanced by greater numerical

stability, since it avoids the numerical problems that are often encountered

in gradient-based methods, such as overstepping the maximum and getting

“stuck” in areas of the likelihood function that are poorly approximated by a

quadradic. We observed these problems with MSLE in two of our alternative

specifications, discussed below, where new starting values were required after

the MSLE algorithm failed at the original starting values. We encountered no

such problems with RE.8

Alternative starting values were tried in each algorithm. Several different

convergence points were found with each of the algorithms. All of them were

similar to the estimates in Table 1, and none obtained a higher log-likelihood

value. However, the fact that different converged values were obtained indi-

cates that the likelihood function is “rippled” around the maximum. This

phenomenon is not unexpected given the large number of parameters and the

relatively small behavioral differences associated with different combinations

of parameter values. Though this issue might constitute a warning about esti-

mation of so many parameters, restricting the parameters doesn’t necessarily

8The recursion can be used as an “accelerator” rather than an estimator, by using it

for initial iterations and then switching to MSL near convergence. This procedure takes

advantage of its larger initial steps and the avoidance of numerical problems, which usually

occur in MSL further from the maximum, while retaining the familiarity of MSL and its

larger step-sizes near convergence.
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resolve the issue as much as mask it. In any case, the issue is the same for

MSLE and RE.

Table 4 gives statistics for several alternative specifications. The columns

in the table are for the following specifications:

1. All coefficients are normally distributed. This is the specification in Table

1 and is included here for comparison.

2. Price coefficient is lognormally distributed, as −exp(βp), with βp and the

coefficients of the other variables normally distributed. This specification

assures a negative price coefficient for all agents.

3. The coefficients of price, TOU rates and seasonal rates are lognormally

distributed, and the other coefficients are normal. This specification as-

sures that all three price-related attributes have negative coefficients for

all agents.

4. Price coefficient is censored normal, min(0, βp), with others normal. This

specification prevents positive price coefficients but allows some agents

to place no importance on price, at least in the range of prices considered

in the choice situations.

5. Price coefficient is distributed as SB from 0 to 2, as 2exp(βp)/(1 +

exp(βp)), others normal. This distribution is bounded on both sides and

allows a variety of shapes within these bounds; see Train and Sonnier

(2005) for an application and discussion of its use.

6. The model is specified in willingness-to-pay space, using the concepts

from Sonnier et al. (2007) and Train and Weeks (2005). Utility is re-

parameterized as U = αp + αβ′z + ε for price p and non-price attributes

z, such that β is the agent’s willingness to pay (wtp) for attribute z. This

parameterization allows the distribution of wtp to be estimated directly.

Under the usual parameterization, the distribution of wtp is estimated

indirectly by estimating the distribution of the price and attribute coef-

ficients, and deriving (or simulating) the distribution of their ratio.
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MSLE and RE provide fairly similar estimates under all the specifications.

In cases when the estimated mean and standard deviation of the underlying

normal for the price coefficient are somewhat different, the difference is less

when comparing the mean and standard deviation of the coefficient itself. For

example, in specifications (2) and (3), a fifty percent difference in the estimated

mean of the underlying normal translates into less than four percent difference

in the mean of the coefficient itself.

For all the specifications, the log of the simulated likelihood (L̃L) is lower at

convergence with RE than with MSLE. This difference is by construction, since

the MSL estimates are those that maximize the L̃L, while the RE estimates are

those that set the simulated scores equal to zero with the simulated scores not

being the derivative of the L̃L. However, despite this difference, it would be

useful if the L̃L under the two methods moved in the same direction when the

specification is changed. This is not the case. L̃L is higher for specification (3)

than specification (1) under either estimator. However, for specification (4),

L̃L under RE is higher while that under MSLE is lower than for specification

(1). The change under MSLE does not necessarily provide better guidance,

since simulation error can affect MSLE both in the estimates that are obtained

and the calculation of the log-likelihood at those estimates.

The average probability for the “hold-out” choice using the population den-

sity is higher under RE than MSLE for all specifications. When using the

conditional density, neither method obtains a higher average probability for all

specifications. These results were mentioned above.

For MSLE, I used numerical gradients rather than recoding the analytic

gradients. The run times in Table 4 therefore reflect equal amounts of recoding

time for each method. Run times are much lower for RE than MSLE when

numerical gradients are used for MSLE. With analytic gradients, MSLE would

be about the same speed as RE,9 but of course would require more coding

time. As mentioned above, the ML algorithm failed for two of the specifications

9In some cases, MSLE is slower even with analytic gradients. For example, specification

(2) was took 333 iterations in MSLE, while RE took 139. An iteration in MSLE with analytic

gradients takes about the same time as an iteration in RE, such that for specification (2),

MSLE with analytic gradients would be slower than RE.
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(namely, 5 and 6) when using the same starting values as for the others; these

runs were repeated with the converged values from specification (2) used as

starting values.

5 Summary

A simple recursive estimator for random coefficients is based on the fact that

the expectation of the conditional distributions of coefficients is equal to the

unconditional distribution. The procedure takes draws from the unconditional

distribution at trial values for its moments, weights the draws such that they

are equivalent to draws from the conditional distributions, calculates the mo-

ments of the weighted draws, and then repeats the process with these calculated

moments, continuing until convergence. The procedure constitutes a simulated

EM algorithm and provides a method of simulated scores estimator. The es-

timator is asymptotically equivalent to MLE if the number of draws used in

simulation rises faster than
√

N , which is the same condition as for MSL. In

an application of mixed logit on stated-preference data, the procedure gave

estimates that are similar to those by MSL, was faster than MSL with numeri-

cal gradients, and avoided the numerical problems that MSL encountered with

some of the specifications.
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Table 1: Mixed Logit Model of Electricity Supplier Choice

All coefficients normally distributed

Recursive estimator (RE), Maximum simulated likelihood estimator (MSLE)

Parameters RE MSLE

(Std errors in parentheses)

Means

1. Price -0.9954 (0.0521) -0.9393 (0.0520)

2. Contract length -0.2404 (0.0231) -0.2428 (0.0256)

3. Local utility 2.5464 (0.1210) 2.3328 (0.1337)

4. Well known co. 1.8845 (0.0742) 1.8354 (0.0104)

5. TOU rates -9.3126 (0.4571) -9.1682 (0.4400)

6. Seasonal rates -9.6898 (0.4496) -9.0710 (0.4365)

Covariances Choleski

11 0.5471 (0.0726) 0.6909 (0.0611)

21 0.0266 (0.0439) -0.0333 (0.0290)

22 0.1222 (0.0146) 0.4180 (0.0236)

31 0.9430 (0.2672) -1.6089 (0.1523)

32 0.3602 (0.1039) 0.2419 (0.1475)

33 2.8709 (0.3321) 1.4068 (0.1468)

41 0.5208 (0.1689) -0.9107 (0.1218)

42 0.2668 (0.0681) 0.1526 (0.1192)

43 1.3065 (0.3543) 0.6746 (0.1216)

44 1.1015 (0.1339) -1.0424 (0.0997)

51 4.5204 (1.2492) -4.6228 (0.4740)

52 0.2707 (0.3972) -0.1813 (0.1690)

53 7.9995 (2.4263) 1.8399 (0.1740)

54 4.5092 (1.5356) 0.3592 (0.2026)

55 45.050 (5.9201) 2.6309 (0.1631)

61 4.4860 (1.1875) -5.3688 (0.4862)

62 0.1156 (0.3933) -0.3913 (0.1302)

63 7.5672 (2.2439) 0.4850 (0.1691)

64 3.8878 (1.3968) 0.5309 (0.2054)

65 39.927 (10.578) 1.1074 (0.1544)

66 41.916 (5.2169) 1.7984 (0.1371)

Log of Sim. Likelihood -3482.93 -3423.08

Average probability of chosen alt. in last situation.

Unconditional density 0.3742 0.3620

Conditional density 0.5678 0.5632
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Table 2: Standard deviations and correlations

Std devs Correlations

RE MSLE RE bottom, MSLE top

Price 0.740 0.691 1.000 0.079 0.748 0.589 0.819 0.921

Contract 0.350 0.419 0.103 1.000 0.172 0.145 0.033 0.006

Local util 1.694 2.151 0.752 0.608 1.000 0.736 0.822 0.736

Well known 1.050 1.547 0.671 0.728 0.735 1.000 0.578 0.511

TOU rates 6.712 5.643 0.911 0.115 0.703 0.640 1.000 0.879

Seasonal 6.474 5.827 0.937 0.051 0.690 0.572 0.919 1.000
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Table 3: Iterations

Price coefficents

Iteration Mean Std dev

RE MSLE RE MSLE

1 0 0 2.449 0.2000

2 0.1431 0.1108 0.6650 0.1259

3 0.0479 0.0718 0.3641 0.1567

4 -0.0553 0.0174 0.2944 0.1120

5 -0.1405 0.1127 0.2657 0.2430

6 -0.2136 0.0567 0.2567 0.2217

7 -.2762 -0.0326 0.2575 0.1552

8 -.3293 -0.0162 0.2625 0.1717

9 -.3746 -0.0070 0.2702 0.1687

10 -.4132 -0.0064 0.2800 0.1514

20 -.6416 -0.3322 0.4191 0.0697

30 -0.7607 -0.5693 0.5346 0.3825

40 -0.8357 -0.7316 0.5947 0.4505

50 -0.8869 -0.7919 0.6325 0.5633

60 -0.9217 -0.8913 0.6573 0.6173

70 -0.9446 -0.9272 0.6738 0.6414

80 -0.9602 -0.9399 0.6854 0.6559

90 -0.9711 -0.9325 0.6941 0.6485

100 -0.9776 -0.9415 0.7006 0.6593

110 -0.9827 -0.9462 0.7044 0.6688

120 -0.9856 -0.9464 0.7087 0.6786

130 -0.9848 -0.9425 0.7178 0.6862

140 -0.9832 -0.9396 0.7282 0.6904

150 -0.9862 NA 0.7341 NA

160 -0.9932 NA 0.7381 NA
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Table 4: Alternative Specifications

All Price Price Price Price WTP

normal log TOU censor SB space

normal season normal

lognorm

Price

Underlying normal

Mean

RE -.9954 -.2441 -.1692 -1.0203 -.1761 -0.0892

MSLE -.9393 -.1655 -.2466 -.9828 -.0915 -.1125

Std dev

RE .7397 .5560 .6274 .6253 1.316 .2941

MSLE .6909 .4475 .7903 .6530 1.7964 .2444

Coefficient

Mean

RE -.9954 -.9144 -1.028 -1.033 -.9335 -.9551

MSLE -.9393 -.9397 -1.068 -1.002 -.9711 -.9207

Std dev

RE .7397 .5503 .7140 .5971 .4990 .2871

MSLE .6909 .4411 .9946 .6155 .5958 .2284

Probability

for last choice

Population density

RE .3742 .3629 .3702 .3785 .3688 .3696

MSLE .3620 .3557 .3539 .3565 .3662 .3649

Conditional densities

RE .5678 .5501 .5640 .5630 .5634 .5309

MSLE .5632 .5569 .5674 .5691 .5637 .5415

Log Sim. Likelihd

RE -3482.93 -3510.81 -3467.49 -3508.84 -3474.66 -3554.66

MSLE -3423.08 -3456.63 -3420.58 -3420.21 -3424.19 -3494.48

Run time

RE 7m59s 6m45s 12m2s 11m27s 10m14s 22m32s

MSLE* 3h20m30s 7h54m34s 3h31m31s 6h26m46s 2h51m9s 4h6m5s

*Using numerical derivatives. Staring values for (5) and (6) are estimates from (2).
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