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Abstract

We describe the properties of ðt;m; sÞ-nets and Halton draws. Four types of ðt;m; sÞ-nets, two types of

Halton draws, and independent draws are compared in an application of maximum simulated likelihood

estimation of a mixed logit model. All of the quasi-random procedures are found to perform far better than

independent draws. The best performance is attained by one of the ðt;m; sÞ-nets. The properties of the nets

imply that two of them should outperform the other two, and our results confirm this expectation. The two

more-accurate nets perform better than both types of Halton draws, while the two less-accurate nets

perform worse than the Halton draws.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The use of simulation in the analysis of travel behavior is one of the most important devel-
opments to have arisen over the past two decades. Simulation methods have been used to ex-
amine: mode choice (e.g., Bhat, 1998), vehicle choice (Brownstone and Train, 1999), destination
choice (Train, 1998), congestion pricing (Small et al., 2002), preferences regarding travel condi-
tions (Hensher and Greene, 2002), stop-making behavior (Bhat, 1999), and a host of other issues.
In his review of the past 30 years of travel demand analysis, McFadden (2000) emphasizes the
impact of simulation on the field and the power that these techniques provide for researchers.

The power of simulation generally comes at a price. In particular, simulation methods are
computationally intensive and usually require a considerable amount of computer time. In this
paper, we examine ways to perform simulation with less computer time for a given level of ac-
curacy and/or, conversely, greater accuracy for a given amount of computer time. We introduce
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the topic by describing the nature of simulation and the procedures that have been used to per-
form it.

At its most fundamental level, simulation is a procedure for approximating expectations. Any
choice probability is the expectation of a statistic over a density: P ¼

R
gðeÞf ðeÞde, where f is the

density of random factors e and g is a calculable function. This expectation is simulated by
evaluating the statistic g at numerous values of the random terms e and averaging the results. If
each evaluation point is drawn independently from density f , then the simulated probability is
unbiased and consistent for the true probability. Most applications have used this procedure of
simulating with independent random draws. 1

Instead of taking independent random draws, simulation can potentially be improved by se-
lecting evaluation points more systematically. ‘‘Quasi-random’’ draws are designed to provide
better coverage than independent draws over the density for which the expectation is defined. This
improved coverage usually translates into smaller expected approximation error. When the sim-
ulated probabilites are used in model estimation, the greater precision in the simulated proba-
bilities translates into greater precision in parameter estimates. When simulated probabilities are
used in the context of maximum likelihood estimation (which then becomes maximum simulated
likelihood, MSL), the log transformation induces bias 2 in addition to the simulation variance.
Quasi-random draws have the potential to reduce both the bias and variance induced by simu-
lation, thereby reducing the root-mean-squared-error (RMSE) of the estimates relative to inde-
pendent random draws.

Two important types of quasi-random draws are those based on Halton sequences and ðt;m; sÞ-
nets, defined below. Halton draws have been examined by Bhat (2001, in press) and Train (2000,
2003) in the context of MSL on discrete choice models and have been found to provide far more
accuracy than a comparable number of independent draws. S�andor and Andr�as (2001) examined
ðt;m; sÞ-nets in the calculation of probit probabilities and found them to perform well relative to
Halton and independent draws. They did not, however, examine their use in estimation of model
parameters.

The purpose of the current paper is to examine the performance of ðt;m; sÞ-nets relative to
Halton and independent draws in MSL estimation. To our knowledge, it is the first such com-
parison. We conduct a Monte Carlo experiment using data on consumers� choice of vehicle within
a mixed logit specification. We compare the RMSE of the estimated parameters for four kinds of
ðt;m; sÞ-nets, two kinds of Halton draws, and independent draws. We find, in summary, that the
best ðt;m; sÞ-nets perform better than Halton draws, and that both types of draws perform far
better than independent draws. Also, the performance of the ðt;m; sÞ-nets relative to each other
corresponds to expectations, given the properties of these nets.
1 Actually, draws are obtained from random number generators, which possess many of the properties of random

draws but, like anything a computer does, is not truly random. The draws are called pseudo-random to reflect this fact.

In this paper, we use the term ‘‘independent, random’’ to refer to these pseudo-random draws, since doing so facilitates

comparison with the other forms of simulation that we discuss, many of which also entail taking draws from random

number generators and are hence also partly pseudo-random.
2 Even though the simulated probability is unbiased for the true probability, the log of the simulated probability is

not unbiased for the log of the true probability. See Lee (1995) and Hajivassiliou and Ruud (1994) for the properties of

MSL.
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2. Halton draws

We first define a Halton sequence in one dimension and then show how a sequence in multiple
dimensions is created. We next describe procedures for introducing randomness, since Halton
sequences are deterministic.

2.1. One dimension

A Halton sequence is defined in terms of a base. The sequence in base 10 is most easily ex-
plained; sequences in other bases are created the same as in base 10 except with conversion to and
from the new base as initial and final steps.

A Halton sequence in base 10 is created in two simple steps:

1. List the integers: 0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, . . .
2. From each integer, create a decimal number by reversing the digits in the integer and putting

them after a decimal point. That is, 1 becomes 0.1, 12 becomes 0.21, 256 becomes 0.652. The
sequence is now: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.01, 0.11, 0.21, 0.31, . . .

Note that the sequence cycles through the unit interval every 10 elements. That is, the sequence
consists of successive subsequences of length 10 with the elements in each subsequence rising in
value and the first element of a subsequence being lower than the last element of the immediately
previous subsequence. Note also that successive elements in each subsequence are spaced the same
distance apart (1/10 apart to be precise).

A Halton sequence in any other base is created by converting to this base before step 2 and
converting back to base 10 after step 2. The steps for a Halton sequence in base 2 are:

1. List the integers (in base 10): 0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, . . .
2. Convert these integers to base 2. The base-2 integers are: 0, 1, 10, 11, 100, 101, 110, 111, 1000,

1001, 1010, 1011, 1100, 1101, . . .
3. From each base-2 integer, create a base-2 decimal number by reversing the digits in the integer

and putting them after the decimal point. The sequence becomes: 0, 0.1, 0.01, 0.11, 0.001, 0.101,
0.011, 0.111, 0.0001, 0.1001, 0.0101, 0.1101, 0.0011, 0.1011, . . .

4. Convert these base-2 decimal numbers back to base 10: 0, 1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8, 1/16, 9/
16, 5/16, 13/16, 3/16, 11/16, . . . In general, this conversion is calculated as

Pm
k¼1 dk=b

k where dk is
the kth digit after the decimal and b is the base.

The sequence cycles every b elements, and each element in the cycle is 1=b units apart.

2.2. Multiple dimensions

The Halton sequence just described provides points on the unit line. Halton sequences are
created in multiple dimensions by using a different base for each dimension. For example, a
Halton sequence in two dimensions can be created from the Halton sequences in bases 10 and 2.
The sequence is: (0, 0), (0.1, 0.5), (0.2, 0.25), (0.3, 0.75), . . .
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The first dimension cycles every 10 elements and the second dimension cycles every two ele-
ments. Since 10 is a multiple of 2, the cycles overlap and every pair that rises in the second di-
mension also rises in the first dimension. As a result, the elements are correlated over the two
dimensions. To prevent the overlapping of cycles, Halton sequences in multiple dimensions are
usually based on prime numbers only, such that none is a multiple of another. For our appli-
cation, a sequence in five dimensions was created from the Halton sequences for bases 2, 3, 5, 7
and 11.

2.3. Randomization

Randomness can be introduced to a Halton sequence in several ways. Wang and Hickernell
(2000) suggest a random start procedure. Draw an integer randomly between 0 and some large K
and label the draw N0. For a Halton sequence of length L, create a sequence starting at 0 of length
N0 þ L and discard the first N0 elements. Or, stated differently, create a Halton sequence starting at
integer N0 in step 1 above.

In estimation, a set of evaluation points is used for each observation within the sample. Halton
sequences with random starting points can be constructed in two ways for estimation. A ‘‘short’’
sequence can be created for each observation by randomly choosing a starting integer separately
for each observation. With this method, which we label HS, each observation has its own ran-
domized Halton sequence. Alternatively, one long sequence for the entire sample can be created
from a randomly chosen starting point. With N observations and R evaluation points for each
observations, a sequence of length N � R is created from a randomly chosen starting point. Each
subsequence of length R is assigned to each observation. We label this procedure HL. The po-
tential advantage of HL arises because Halton sequences are created such that each subsequent
point fills in an area that had not been covered by previous points. With one long sequence, the
evaluation points for each observation can be self-correcting over observations, as discussed by
Train (2000, 2003). The disadvantage of HL is that it contains less randomness than HS.

Tuffin (1996) proposes an alternative randomization procedure for Halton sequences, which is
discussed and utilized by Bhat (in press). The Halton sequence is shifted by adding a draw from a
standard uniform distribution to each element of the sequence. For any element c of the original
sequence in one dimension, the new element is k ¼ cþ l if cþ l < 1 and k ¼ cþ l � 1 if
cþ l P 1, where l is a draw from a standard uniform. Each element is shifted up by l, and if this
shifting pushes the element to the end of the unit line (i.e., to 1), then the shifting ‘‘wraps around’’
back to the beginning of the line (i.e., to 0) and continues. For Halton sequences in multiple
dimensions, a separate draw is used for each dimension.

In estimation on a sample of observations, Tuffin�s procedure can be applied to a sequence for
the entire sample (analogous to HL for a random starting point.) However, if one sequence is
created and then randomly shifted separately for each observation (analogous to HS), the rela-
tions among the points in each dimension remain the same for all observations. For this reason,
we use the random start procedure in our application.

A randomized Halton sequence is a set of draws from the uniform distribution. To obtain
draws from density f with cumulative distribution F , each element c is transformed as F �1ðcÞ.
This inverse-cumulative transformation assumes independence over dimensions; this indepen-
dence can always be assured by placing the covariance terms within g rather than f .
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3. (t,m, s)-Nets in base b

The defining terms of a ðt;m; sÞ-net in base b are most readily understood in the context of an
example. In our application, there are five dimensions of integration, and we are using 64
evaluation points for each observation. The term s is the dimension of the space, which in our
case is 5. The term m relates to the number of points that are contained in the net. In our case,
we have 64 points. For base b ¼ 2, 64 can be written as 26. The term m is the power to which the
base is raised to obtain the length of the sequence, in this case 6. Stated equivalently, a ðt;m; sÞ-
net in base b has length bm. There is a reason for defining the net in terms of m instead of simply
the length of the sequence. A ðt;m; sÞ-net can only be constructed for lengths that are some
power of the net�s base. A ðt;m; sÞ-net in base 2 can only have length 2, 4, 8, 16, 32, 64, 128, etc.;
it cannot have a length of, say, 100. In this regard, ðt;m; sÞ-nets are less flexible than Halton
sequences, since a Halton sequence can have any length. A net of length 64 can be created in
base 4 as well as base 2, with m ¼ 3 such that 43 ¼ 64. In our application, we will utilize nets of
the form ðt; 6; 5Þ in base 2, ðt; 3; 5Þ in base 4, and ðt; 2; 5Þ in base 8. We defer the explanation of t
until later.

In one dimension, ðt;m; sÞ-nets are created the same as Halton sequences but with an extra step.
Recall that in step 3, the sequence is expressed in decimals; for example, in base 2, the decimal
sequence is 0, 0.1, 0.01, 0.11, 0.001, 0.101, 0.011, 0.111, 0.0001, 0.1001, 0.0101, 0.1101, 0.0011,
0.1011, . . . For a ðt;m; sÞ-net, each element of this sequence of decimals is transformed in a par-
ticular way. Consider the fourth element, 0.110. Let c be the vector comprised of the digits of this
decimal. That is, c ¼ h1; 1; 0i. A new vector, k is created by the transformation k ¼ Mc where M is
a ‘‘generating matrix’’ and the matrix multiplication is performed modulo 2 (so that k has ele-
ments that take 0 or 1). For example, suppose the transformation matrix is
M ¼
1 1 1

0 1 1

0 0 1

0
@

1
A

Then the digits of the fourth element of the sequence are transformed to become
k ¼
1 1 1

0 1 1

0 0 1

0
@

1
A

1

1

0

0
@

1
A ¼

0

1

0

0
@

1
A

where the top element uses the fact that 1 + 1 modulo 2 is 0 (since 2 divided by 2 has no re-
mainder.) The fourth element is changed from 0.110 to 0.010.

Nets in multiple dimensions are created by using the same base for all dimensions but applying
a different generating matrix in each dimension. In contrast, a Halton sequence uses a different
base in each dimension but the same generating matrix for all dimensions (namely, the identity
matrix, which does not change the digits). A Halton sequence is not a ðt;m; sÞ-net since its di-
mensions are defined in different bases whereas all dimensions of a ðt;m; sÞ-net are defined in the
same base. The desirable properties of a ðt;m; sÞ-net, discussed below, arise from the construction
of appropriate generating matrices.
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The steps for a ðt;m; sÞ-net in base 2 are:

1. List the integers (in base 10): 0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12 , 13, . . .
2. Convert these integers to base 2. The base-2 integers are: 0, 1, 10, 11, 100, 101, 110, 111, 1000,

1001, 1010, 1011, 1100, 1101, . . .
3. From each base-2 integer, create a base-2 decimal number by reversing the digits in the integer

and putting them after the decimal point. The sequence becomes: 0, 0.1, 0.01, 0.11, 0.001, 0.101,
0.011, 0.111, 0.0001, 0.1001, 0.0101, 0.1101, 0.0011, 0.1011, . . .

4. Transform each element of the sequence by k ¼ Mc, using a different M for each dimension.
The arithmetic in this calculation is performed modulo 2.

5. Convert these base-2 decimal numbers back to base 10.

For interpretation, consider a (0, 2, 2)-net in base 2. This net has 22 ¼ 4 elements in two di-
mensions. For this illustration, t is set at 0, which provides the best coverage, as we will see. Each
dimension is divided into 2 equal segments (where 2 is the base), creating four squares of size (1/
2)	 (1/2)¼ 1/4. This division is shown by the solid lines in Fig. 1. Then each of the segments in
each dimension is divided into two equal subsegments, creating four smaller squares within each
of the larger squares, and a total of 16 squares within the unit square. The goal is to place the four
points in the unit square in a way that gives the best coverage. There are 16 small squares and only
four points to allocate among them. What provides the best coverage? The points in Fig. 1
constitute a (0, 2, 2)-net, which has the following desirable coverage properties. First, there is one
point in each of the four large squares, and so the four points provide as good coverage over the
two dimensions as possible with four points. Second, in each dimension, there is one point in each
of the four subsegments along that dimension (that is, between 0 and 1/4, between 1/4 and 1/2, and
so on. The points therefore obtain even coverage over each dimension considered separately.

The coverage properties can be stated more precisely. Each of the four larger squares has size 1/
4 and contains one point. Each tall rectangle, of height 1 and width 1/4, has size 1/4 and contains
one point. And each long rectangle, of height 1/4 and length 1, has size 1/4 and contains one point.
Fig. 1. (0, 2, 2)-Net in base 2.
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The situation can be described in a way that facilitates generalization. The unit square can be
partitioned into subspaces (squares or rectangles) in a variety of ways. Consider any partitioning
that satisfies the following conditions: each dimension is segmented into 1, 2 or 4 equal parts (of
length 1, 1/2, or 1/4), with possibly a different number of segments in each dimension, but with
each subspace created by the segmentation having a size of 1/4. Under any such partitioning, the
net contains exactly one point in each subspace.

We can now define t. A ðt;m; sÞ-net in base b contains exactly bt points in each s-dimensional
subspace if the subspaces are created by segmenting each dimension into bk segments of 1=bk

length for some k ¼ 0; . . . ;m and have volume bt�m. Note that there are bm=bt subspaces in any
such partitioning, such that, with bt points in each subspace, the total number of points is bm. In
our (0, 2, 2)-net in base 2, t ¼ 0, such that exactly 20 ¼ 1 point lies in each subspace of size
20–2 ¼ 1=4 when the subspaces are created by (i) segmenting each dimension into two segments of
length 1/2, such that each subspace is a square of size 1/2 by 1/2, or (ii) segmenting the x-dimension
into 4 parts of length 1/4 and the y-dimension into 1 part of length 1, such that each subspace is a
tall rectangle of size 1/4 or (iii) segmenting the x-dimension into 1 part and the y-dimension into
four parts, creating long rectangles of size 1/4. (Stated alternatively: the product of the number of
segments over dimensions must equal bm�t. With b ¼ 2, t ¼ 0 and m ¼ 2, the product must be 4.
The possibilities are 2 � 2, 1 � 4, and 4 � 1.)

The coverage properties of different nets can be compared in two ways. First, for given m, s and
b, a lower t gives better coverage, since the partitioning consists of more subspaces and fewer
points in each subspace. (The placement of points within each subspace is not designed to provide
good coverage within the subspace, and so better coverage of the unit space is attained with fewer
points in more subspaces.) With t ¼ 0, each appropriately defined subspace contains exactly one
point. However, a t of 0 is not attainable for all values of m, s and b. The development of methods
for creating ðt;m; sÞ-nets, discussed below, has been motivated by (or at least can be explained by)
the desire for nets with lower values of t for given values of the m, s and b.

The second comparison relates to the fact that a net with N points can often be created with
different bases; for example, a net with 64 points can be obtained with b ¼ 2 and m ¼ 6, b ¼ 4 and
m ¼ 3, or b ¼ 8 and m ¼ 2. It is not necessarily the case that the same value of t can be attained for
each of these nets. However, if the same value of t can be attained with different values of b and m,
then the coverage properties of the nets can be compared. In particular, for given s, t and number
of points bm, a net with with higher m and correspondingly lower b obtains better coverage. This is
most readily explained in terms of our application. With 64 points in five dimensions, a t of 0 is
attainable with bases 4 and 8: a (0, 3, 5)-net in base 4, which we label N1, and a (0, 2, 5)-net in base
8, which we label N2. N1 provides better coverage than N2, for the following reason. Both nets
contain 1 point in each appropriately defined subspace of volume 1/64. With N1 these subspaces
are defined by any of the following dimensions: (a) 1/4 for three edges and 1 for two edges, (b) 1/16
for one edge, 1/4 for one edge, and 1 for three edges, or (c) 1/64 for one edge and 1 for the other
four. N2 defines the subspaces as (a) 1/8 for two edges and 1 for three edges, or (b) 1/64 for one
edge and 1 for the other four. With N1, the space can be partitioned in three different ways and get
a point in each subspace; while with N2, the space can be partitioned in only two different ways
and get a point in each subspace.

A few words about the history of ðt;m; sÞ-nets are useful to place the nets that we use in our
application in context. Sobol (1967) developed a type of ðt;m; sÞ-net in base 2; for Sobol nets,



320 Z. S�andor, K. Train / Transportation Research Part B 38 (2004) 313–327
the value of t depends on s. Faure (1982) developed ðt;m; sÞ-nets in any prime b, so long as bP s.
For these, t ¼ 0. Niederreiter (1987) generalized Faure�s procedure to powers of primes, for bP s
with still t ¼ 0. Niederreiter (1988) then generalized the method further to apply to prime powers
b < s. These nets (based on the 1988 generalization) are called Niederreiter nets. When bP s,
Niederreiter nets are the same as the earlier Niederreiter (1987) nets, and when b is a prime as well
as being P s, Niederreiter nets are Faure nets. When b < s, the minimum attainable t in Nie-
derreiter nets depends on b and s. For b ¼ 2, Niederreiter nets differ from Sobol nets, but have at
least as good coverage. In particular, for s6 7, the value of t is the same for Sobol and Nieder-
reiter nets, while for s > 7, a lower t and hence better coverage is attainable with Niederreiter nets
than Sobol nets (Niederreiter, 1988).

Even more flexibility in creating nets is provided by the fact that one extra dimension can al-
ways be added to any of the nets created by the above-cited procedures. That is, an ðt;m; sþ 1Þ-
net in base b can be created from a ðt;m; sÞ-net in base b, as follows. Each of the N ¼ bm points in
the net in s dimensions is a vector with s elements. Add a final sþ 1-th element to each vector,
with this final element being n=N , n ¼ 0; . . . ;N � 1. For example, a (0, 3, 5)-net in base 4 can be
obtained by creating a Niederreiter (0, 3, 4)-net in base 4. Since b ¼ s, this Niederreiter net has
t ¼ 0. A (0, 3, 5)-net in base 4 is then created by adding n=64, n ¼ 0; . . . ; 63 as a final element to
each of the N points.

More recently, Niederreiter and Xing (1996) developed nets with t the same or lower than is
attainable with Niederreiter nets. The possibility of lower t arises only when b < s, since t ¼ 0 for
Niederreiter nets with bP s. Pirsic (2002) provides an implementation procedure for Niederreiter–
Xing nets with b ¼ 2 and various values of s. Niederretier–Xing nets have not yet been imple-
mented for other bases. In our application, we use the (2, 6, 5)-net in base 2 that Pirsic provides,
which we label N3. We also use a Niederreiter (3,6,5)-net in base 2, which we label N4. Note that
t ¼ 3 is the smallest value of t that is attainable for a Niederreiter (t,6,5)-net in base 2, while t ¼ 2
is attainable in a Niederreiter–Xing net with the same m, s and b. This is an example of how
Niederreiter–Xing nets can attain better coverage than Niederreiter nets with the same b, s and m.

To summarize, our application uses 64 points, which allows us to have nets in base 2, 4, and 8.
The nets that we use are:

• N1: a (0, 3, 5)-net in base 4, created from a Niederreiter (0,3,4)-net in base 4 by adding an el-
ement n=64,

• N2: a (0, 2, 5)-net in base 8, created by Niederreiter�s procedure.
• N3: a (2, 6, 5)-net in base 2, created by Niederreiter–Xing�s procedure.
• N4: a (3, 6, 5)-net in base 2, created from a Niederreiter (3,6,4)-net in base 2 by adding an ele-

ment n=64.

The generating matrices for these nets are available from the authors. The matrices for N1, N2,
and N4 are derived from the implementation procedure that Bratley et al. (1992) give for Nie-
derreiter nets. The matrices for N3 are obtained from Pirsic�s implementation of Niederreiter–
Xing nets.

We expect N1 to perform better than N2, since the former has higher m and correspondingly
lower b than the latter, while t, s and bm are the same. We expect N3 to perform better than N4
since it has a lower t and yet the same values of s, b and m.
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Nets N1 and N2 can be characterized as orthogonal array-based Latin hypercubes (Tang,
1993), as explained by S�andor and Andr�as (2001). Any ð0; 2; sÞ-net is an orthogonal array-based
Latin hypercube (OALH) of strength 2, and vice versa. Any ð0; 3; sÞ-net is also an OALH, but the
reverse is not necessarily true. For example, the definition of an OALH does not guarantee that
each property of a (0, 3, 5)-net in base 4 is satisfied because the rectangles of size 1/4 by 1/16 are
not guaranteed to contain exactly one point in the OALH.

3.1. Randomization

Owen (1995) suggests a procedure for randomizing a ðt;m; sÞ-net that retains the coverage
properties of the net. The randomization consists of, first, randomly re-ordering the numbers in
the base, and, second, shifting each element by a random amount. Consider first the re-ordering of
numbers. In base 2, there are two numbers, 0 and 1, and there are two possibilities for their
ordering: either 1 is ‘‘larger’’ than 0, or 0 is ‘‘larger’’ than 1. An equal probability is given for each
possible ordering. An ordering is chosen randomly and the numbers are changed to reflect this
new ordering. For example, a draw from a standard uniform is taken. If the draw is below 0.5, the
first ordering is used, and the 1s and 0s are left the way they are. If the draw is above 0.5, the
second ordering is used, and, to reflect this ordering, the 1s are changed into 0s and the 0s into 1s.
This reordering is performed on each digit of the decimals from step 3, sequentially for each
successive digit such that the reordering of each digit depends on the previous digits. The reason
why this is so will be apparent in the graphical interpretation below. For example, the first eight
elements of the sequence in base 2 from step 3 are: 0.000, 0.100, 0.010, 0.110, 0.001, 0.101, 0.011,
0.111. We take a draw from a uniform to determine the ordering for the first digit. If 0.632 is
drawn, then the 1s in the first digit are changed to zeros and vice versa. The sequence becomes:
0.100, 0.000, 0.110, 0.010, 0.101, 0.001, 0.111, 0.011. For the second and third digit we apply
different random reorderings if the previous digits are different. For reordering the second digit we
use two different random reorderings depending on whether the first digit is 0 or 1. If the two
draws corresponding to 0 and 1 are 0.115 and 0.821, respectively, and the third digit is not
changed, then the sequence becomes: 0.110, 0.000, 0.100, 0.010, 0.111, 0.001, 0.101, 0.011. For
reordering the third digit we apply four different random reorderings depending on whether the
first two digits are 00, 01, 10 or 11. For nets in multiple dimensions, the random reordering is
applied to each dimension independently.

This randomization has a graphical interpretation. The points in Fig. 2 are created using the
procedure described in the previous section, prior to randomization. Each point is at the lower-left
corner (i.e., origin) of a 1/4 by 1/4 subspace; we discuss later how these points are moved into the
interior of the subspaces. Randomization changes the placement of the 16 subspaces and hence
the placement of these points. In Fig. 2, the first dimension is the x-axis. Changing the 1s to 0s and
vice versa in the first digit is equivalent to interchanging the two tall 1/2	 1 rectangles, which gives
Fig. 3. Changing the 1s to 0s and vice versa in the second digit is equivalent to interchanging the 1/
4	 1 rectangles within each of the 1/2	 1 rectangles, as shown in Fig. 4. Now we can see that
using two different random reorderings if the first digit takes 0 and 1 ensures that the random
interchange of the 1/4	 1 rectangles within the first 1/2	 1 rectangle is independent of the random
interchange of the 1/4	 1 rectangles within the second 1/2	 1 rectangle. The same process is then
applied to the other dimension (to the long rectangles).



Fig. 2. Net created from steps 1–4 without randomization.

Fig. 3. Randomization of first digit.

Fig. 4. Randomization of the second digit.
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As stated above, a ðt;m; sÞ-net created through appropriate generating matrices gives points on
the lower-left corners of the subspaces. Random re-ordering of the numbers does not change this
attribute. To move the points inside their respective subspaces, a draw is taken from a uniform
between 0 and 1=bm, where 1=bm is the width of each side of the subspace. In our application, a
draw is taken between 0 and 1/64. A separate draw is added to each element of the sequence.
Separate draws are taken for each dimension. These random draws move all the points into their
respective subspaces. For example, random shifting applied to the points in Fig. 4 provide the
points shown earlier in Fig. 1. These draws, which are from a uniform distribution, are trans-
formed to the density of interest the same as with Halton sequences.

Owen-randomization could be applied to Halton sequences as shown by Wang and Hickernell
(2000). The way it is applied is similar to the randomization of ðt;m; sÞ-nets but here the reordering
of the different digits is independent, that is, it does not depend on the previous digits. However,
the advantage of Owen-randomization is that it preserves the properties of a ðt;m; sÞ-net. Since
Halton sequences are not ðt;m; sÞ-nets and do not have their desirable properties, the motivation
for this form of randomization is missing. Also, Wang and Hickernell (2000) show that, for five
dimensions, the random start procedure tends to be more efficient than Owen-randomization for
Halton sequences. It is not obvious how the simpler randomization methods like the random shift
or random start procedures can be adapted to ðt;m; sÞ-nets. If these procedures are applied di-
rectly then the ðt;m; sÞ-net property of these sequences will not be guaranteed.
4. Application

We use data described by Train and Hudson (2000) on customers� choice among alternative-
fueled vehicles. Each of 538 surveyed customers was given a card that listed three vehicles along
with descriptions of the vehicles. The customer was asked to state which of the vehicles he/she
would choose to buy. Each vehicle was described in terms of its price, operating cost, range,
performance, and engine type. Three engine types were included in the experiments: gas internal
combustion (ICV), electric (EV), or gas–electric hybrid (HV). Range was defined as the number of
miles that the vehicle could be driven before refueling/recharging. Three levels of performance
were distinguished, each of which was described in terms of top speed and number of seconds
needed to reach 60 miles per hour. These two performance factors were not varied independently.
The three performance levels were coded as 0, 1 and 1.5, since the analysis in Train and Hudson
(2000) indicates that customers valued the increment from low to medium performance twice as
much as the increment from medium to high. Operating cost was denoted in dollars per month. A
mixed logit model (Revelt and Train, 1998; Brownstone and Train, 1999) was specified with a
fixed coefficient for price and independent normal coefficients for operating cost, range, perfor-
mance, an EV dummy, and an HV dummy.

The model was first estimated 10 times by MSL with 10,000 independent random draws for
each observation in each run. The mean of these estimates are designed the ‘‘true’’ estimates,
against which the other methods of constructing draws are compared. The variance of these es-
timates is extremely small such that interpreting the mean as the simulation-free estimates is
warranted. Nevertheless, a more conservative interpretation is that the comparisons reveal how
well each method performs relative to taking 10,000 independent draws. Table 1 gives the ‘‘true’’



Table 1

Mixed logit model of vehicle choice average estimates and standard errors over 10 sets of draws

Explanatory variable Estimate Standard error

Price )0.1278 0.0209

Operating cost Mean )0.0689 0.0152

S.D. 0.0580 0.0342

Range Mean 1.0730 0.9472

S.D. 0.1523 10.3274

EV dummy Mean )5.8695 1.8540

S.D. 3.5259 1.4138

HV dummy Mean )0.6757 0.4818

S.D. 2.0843 0.9619

Performance Mean 0.8701 0.2727

S.D. 2.311 0.6713

10,000 independent random draws per observation.
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estimates as well as the mean standard errors. Note that the mean standard errors are not the
variance of the estimates over the 10 sets of draws. Rather they are the average of the 10 standard
errors obtained in the 10 runs. (More precisely, they are the square root of the average of the
squared standard errors.) As such, they reflect sampling variance.

The model was estimated 10 times with each of the six types of randomized sequences described
above: HL, HS, and N1-N4. Each of these runs used 64 draws per observation. We also estimated
the model 10 times with 64 independent random draws, which we call R64, and, again with 512
random draws (8 times as many), which we call R512. For each type of draw, the RMSE was
calculated for the 10 estimates against the ‘‘true’’ estimates. The bias (i.e., the difference between
the mean estimates and the ‘‘true’’) and the standard deviation of the estimates were also cal-
culated.

McFadden (1989) has pointed out that simulation variance is related to sampling variance. In
particular, for the method of simulated moments with fixed weights and an accept–reject simu-
lator, simulation variance is proportional to sampling variance. A similar relation can be expected
to occur with other simulation-assisted estimators, though not necessarily as direct proportion-
ality. Intuitively, the reason for the relation between simulation and sampling variance is clear:
large sampling variance means that the log-likelihood function is fairly flat near the maximum;
and when the likelihood function is fairly flat near its maximum, errors induced by simulation can
move the maximum considerably. Conversely, when the likelihood function is highly peaked at its
maximum, which means small sampling variance, simulation error is unlikely to move the max-
imum as much.

To reflect this relation and facilitate comparisons over parameters, RMSE, bias and standard
deviation are expressed as a proportion of the standard errors from Table 1. The results are given
in Tables 2–4. For example, Table 2 indicates that method N4 provides an RMSE for the first
parameter that is 37.7% of its standard error.

The methods are reported in these tables in ascending order of performance, based on the av-
erage over parameters of the RMSE as a proportion of standard error (the last row of Table 2).
One exception to this ordering is R512 which is given last since it uses more draws. The relative
performance is similar for each parameter individually as for the average over parameters. Also,



Table 2

RMSE as share of standard error of estimate

Parameter R64 N4 N2 HL HS N3 N1 R512

Price 0.45624 0.37703 0.49449 0.17848 0.19757 0.19502 0.17944 0.16082

Op. cost mean 0.43343 0.25428 0.34965 0.22577 0.17425 0.18536 0.13843 0.13305

Op. cost S.D. 0.31277 0.53546 0.34316 0.60126 0.21181 0.20657 0.20708 0.13333

Range mean 0.34205 0.18757 0.16852 0.12352 0.13154 0.07443 0.14126 0.18009

Range S.D. 0.08662 0.07738 0.08208 0.04337 0.04757 0.05956 0.06015 0.06757

EV mean 0.49436 0.29077 0.29615 0.19987 0.23985 0.19512 0.15641 0.21433

EV S.D. 0.92837 0.52265 0.37281 0.21659 0.35563 0.28710 0.23988 0.34307

HV mean 0.33895 0.17561 0.16964 0.12252 0.19639 0.16860 0.09083 0.10072

HV S.D. 0.52460 0.47166 0.25146 0.32478 0.33307 0.21315 0.18886 0.18733

Perf. mean 0.41280 0.26837 0.34762 0.18218 0.16642 0.18180 0.11368 0.08774

Perf. S.D. 0.65319 0.33003 0.60770 0.22955 0.18060 0.27523 0.18548 0.10334

Average RMSE as share 0.45303 0.31735 0.31666 0.22254 0.20315 0.18563 0.15468 0.15558

Table 3

Bias as share of standard error of estimate

Parameter R64 N4 N2 HL HS N3 N1 R512

Price 0.40245 0.08611 0.06346 0.09516 0.08398 0.11111 0.06619 0.09838

Op. cost mean 0.40069 0.08515 0.02790 0.18885 0.08208 0.08873 0.05533 0.10278

Op. cost S.D. 0.13339 0.12298 0.12714 0.34857 0.06168 0.08555 0.15657 0.05996

Range mean 0.26429 0.12579 0.11267 0.08235 0.09025 0.01824 0.09293 0.13959

Range S.D. 0.06463 0.06130 0.05666 0.03880 0.04009 0.04839 0.04769 0.05483

EV mean 0.43984 0.12333 0.05010 0.14954 0.16833 0.05458 0.03259 0.16535

EV S.D. 0.60243 0.23262 0.13267 0.14708 0.27031 0.08168 0.08610 0.26170

HV mean 0.28903 0.09243 0.03255 0.09267 0.13084 0.00559 0.03586 0.05302

HV S.D. 0.35815 0.18037 0.00449 0.01456 0.22657 0.04021 0.07968 0.07457

Perf. mean 0.32338 0.00661 0.10346 0.11248 0.08822 0.07197 0.02226 0.05005

Perf. S.D. 0.43730 0.06143 0.20908 0.08003 0.00167 0.18745 0.02600 0.08526

Average bias as share 0.33778 0.10710 0.08365 0.12274 0.11309 0.07214 0.06374 0.10414

Table 4

Standard deviation as share of standard error of estimate

Parameter R64 N4 N2 HL HS N3 N1 R512

Price 0.22654 0.38692 0.51693 0.15917 0.18851 0.16894 0.17581 0.13410

Op. cost mean 0.17420 0.25256 0.36739 0.13043 0.16202 0.17154 0.13376 0.08905

Op. cost S.D. 0.29821 0.54933 0.33598 0.51642 0.21359 0.19819 0.14286 0.12553

Range mean 0.22888 0.14667 0.13210 0.09704 0.10088 0.07606 0.11214 0.11994

Range S.D. 0.06078 0.04977 0.06260 0.02042 0.02699 0.03659 0.03864 0.04164

EV mean 0.23787 0.27756 0.30767 0.13978 0.18009 0.19747 0.16126 0.14374

EV S.D. 0.74457 0.49335 0.36725 0.16759 0.24360 0.29013 0.23601 0.23384

HV mean 0.18663 0.15740 0.17550 0.08447 0.15438 0.17762 0.08797 0.09026

HV S.D. 0.40405 0.45938 0.26502 0.34200 0.25734 0.22065 0.18049 0.18115

Perf. mean 0.27045 0.28280 0.34982 0.15107 0.14874 0.17598 0.11751 0.07595

Perf. S.D. 0.51145 0.34181 0.60147 0.22679 0.19036 0.21243 0.19358 0.06155

Average S.D. as share 0.30397 0.30887 0.31652 0.18502 0.16968 0.17506 0.14364 0.11789
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the ordering is nearly the same for bias and standard deviation as for RMSE. This result is con-
sistent with McFadden�s (1989) observation that simulation bias is proportional to the variance in
the simulated probability, such that bias and variance, and hence RMSE, move together.

All of the quasi-random draws greatly outperform the same number of independent random
draws (R64). This result is consistent with, and generalizes, the findings of Bhat (2001) and Train
(2000), who found that Halton draws greatly outperform independent random draws. As an in-
dication of the potential savings from quasi-random draws, eight times as many independent draws
(R512) are required to reach the same level of performance as the best quasi-random method.

The ðt;m; sÞ-nets perform in accordance with expectations. N1 outperforms N2, as expected
since N1 has larger m and yet the same t, s, and bm. N3 outperforms N4, as expected since N3 has
lower t and the same m, s, and b.

Consider now the Halton draws. HS, which contains randomization over observations, per-
forms slightly better than HL. The better ðt;m; sÞ-nets (that is, N1 and N3) outperform both of the
Halton methods. However, the other two ðt;m; sÞ-nets perform worse than the Halton draws. This
result suggests that researchers cannot rely on ðt;m; sÞ-nets to always be more accurate than
Halton draws. Unfortunately, since the coverage for Halton draws and ðt;m; sÞ-nets cannot be
directly compared, there is currently no means to determine whether a particular ðt;m; sÞ-net will
outperform Halton draws.
5. Conclusion

This paper compares several types of quasi-random draws with independent random draws in
MSL estimation of a mixed logit model. The quasi-random draws include four types of ðt;m; sÞ-
nets and two types of Halton draws. All of the quasi-random draws vastly outperform independent
random draws. Two of the ðt;m; sÞ-nets are known on theoretical grounds to have better coverage
than the other two, and the two with better coverage are found to perform better in our application.
Also, the two more accurate ðt;m; sÞ-nets outperformed the two types of Halton draws.

Several issues arise. As mentioned above, the coverage properties of Halton draws and ðt;m; sÞ-
nets cannot be directly compared. Our finding that two types of ðt;m; sÞ-nets performed better
than the Halton draws while the other two ðt;m; sÞ-nets performed worse is actually an example of
the issue: it is not possible to determine beforehand, given our current knowledge, whether a given
ðt;m; sÞ-net will perform better or worse than Halton draws. Another issue arises in regard to the
dimensions of integration for simulation. Our application entails integration over only five di-
mensions. It is possible that the performance of ðt;m; sÞ-nets relative to the types of Halton draws
that we have studied is greater for higher-dimensioned models, because of the multi-dimensional
coverage properties that are intrinsic to ðt;m; sÞ-nets. Also, scrambled Halton draws (Bhat, in
press), which we have not examined, become an attractive alternative in high dimensions. As these
issues illustrate, this field contains many potentially fruitful directions for research.
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