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1 Introduction

The economic theory of consumer behavior assumes the decision-maker has con-

sistent (complete and transitive) preferences over all possible alternatives and chooses

the most preferred alternative from the feasible set. Applied demand analysis, there-

fore, addresses four types of questions (Varian (1982), Varian (1983)): (i) Consistency.

Is behavior consistent with a model of utility maximization? (ii) Structure. Does the

rationalizing utility function have some special structural properties? (iii) Recov-

erability. Can the underlying preferences be recovered from observed choices? (iv)

Extrapolation. How can we forecast behavior in other circumstances?

In the economic approach, the demand analyst, therefore, tests whether behavior

can be rationalized by some preference ordering (or posit a utility function with some

special structure), derives the associated demand function, and fits it to data using

some econometric technique. There is a wide variety of formats to this economic

approach, ranging from nonparametric to semiparametric to parametric methods.

The estimated preference parameters can then be used to extrapolate and forecast

behavior. By now such analysis is quite standard (Deaton and Muellbauer (1980)).

While economic models revolve around constructing parameter estimates of the

underlying utility function and using those to forecast behavior, machine learning

models are built solely for the purpose of extrapolation by seeking functions that

minimize out-of-sample prediction error. As pointed by Mullainathan and Spiess

(2017), among others, machine learning (ML) does not produce stable estimates of the

underlying preference parameters. As a result, the “revealed” preference ordering may

not be the “true,” underlying preference ordering. In that case, positive predictions

and welfare conclusions based on the “revealed” preferences will be misleading, at

least when applied in other settings. ML, therefore, should be used in economics

where improved prediction has large applied value.

This paper explores the promise of ML in predicting demand behavior. To fix

ideas, consider a sequence of standard consumer decision problems – the selection of a

bundle of commodities from a standard budget set. Let pi denote the i-th observation

of the price vector and xi denote the associated demand bundle. Assume we have

i = 1, ..., n observations of these prices and quantities generated by some consumer’s

choices. The question we ask (and answer) is which approach – economics or ML –

provides the “best estimate” of the demand bundle x0 when the prevailing prices are
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p0 based on previously observed behavior (pi,xi)?

The key dual concepts in this regard are completeness and restrictiveness by

Fudenberg et al. (2022b,a). The completeness of a model is the fraction of the pre-

dictable variation in the data that the model captures. A more complete model better

captures the regularities in the data, but the model might have enough flexibility to

accommodate any regularity. The restrictiveness of a model discern completeness

due to the “right” regularities by evaluating its distance to synthetic data. An

unrestrictive model is complete on any possible data, so the fact that it is complete

on the actual data is uninstructive.

In this paper, we compare the completeness and restrictiveness of economic mod-

els to that of a variety of ML models using data from an economically important

experimental setting that can be interpreted as a portfolio choice problem – the

selection of a bundle of contingent commodities from a standard budget set. These

decision problems are presented using the graphical experimental interface of Choi

et al. (2007b). Because of the user-friendly interface, each subject faces a large menu

of highly heterogeneous budget sets, and the large amount of data generated by this

design allows us to apply statistical models to individual data rather than pooling

data or assuming homogeneity across subjects.1

In the experiment, there are two equiprobable states of nature denoted by s = 1, 2

and two associated Arrow securities, each of which promises a token (the experimental

currency) payoff in one state and nothing in the other. Let x = (x1, x2) ≥ 0 denote

a bundle of securities, where xs denotes the number of units of security s. A bundle

x must satisfy the budget constraint p · x = m, where m is the endowment and

p = (p1, p2) ≥ 0 is the vector of security prices and ps denotes the price of security s.

The data set consists of observations on 956 subjects. For each subject, we have 50

observations {(pi,xi)}50
i=1 over a wide range of budget sets.2

1There is no general reason to suppose that treating aggregate data as if they had been generated
by a single type (or a mixture of types) is valid. Clearly, even high-level consistency in individual-level
decisions does not imply that aggregate data are consistent. In fact, the considerable heterogeneity
in subjects’ behaviors entails that even if behaviors are individually consistent, they are mutually
inconsistent. Thus, any aggregate-level economic analysis is inevitably misspecified because there
is no utility function that pooled choices maximize (Afriat’s Theorem). We, therefore, argue that
it is clearly advantageous to estimate individual-level parameters and then generate individual-level
distributions rather than to pool data and estimate type-level parameters.

2The power of the experiment depends on two factors. The first is that the number of decisions
made by each subject is large. The second is that the range of choice sets is generated so that budget
lines cross frequently (see Choi et al. (2007b)).
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For each subject, we calculate the completeness and restrictiveness of Expected

Utility Theory (EUT). We then compare, subject-by-subject, the completeness of this

economic model and the most complete prediction model among eight ML models

across three main families of ML models – regularized regressions, tree-based, and

neural networks. For each subject, we also assess, using revealed preference tests, how

closely individual choice behavior complies with the Generalized Axiom of Revealed

Preference (GARP) and with monotonicity with respect to first-order stochastic

dominance (FOSD). EUT, as well as almost all models that generalize EUT, embody

ordering (completeness and transitivity) and monotonicity.

Figure 1 depicts our main result. The horizontal axis presents quartiles of consis-

tency scores with GARP and FOSD. Note that the quartiles are over the distribution

of subjects scores. The consistency score intervals for the quartiles are [0, 0.831),

[0.831, 0.950), [0.950, 0.988) and [0.988, 1). The vertical axis indicates the fraction

of subjects for whom EUT is more complete than the most complete ML model

within each class – regularized regressions, tree-based, and neural networks – as well

as more complete than the best ML model overall (the horizontal lines). Over all

subjects, the economic model is more complete for 65.4% and this fraction increases

monotonically from 54.2% for subjects in the bottom quartile of consistency scores

to 73.8% for subjects in the top quartile, who are (almost) perfectly rationalizable

by the economic model. For those who are generally consistent with GARP and

FOSD, there is little room for improving the prediction of the economic model. We

note additionally that EUT is not less restrictive than most ML models, designed

specifically for prediction, so its higher individual-level completeness indicates that it

is better tuned to capture the heterogeneous demand behaviors of subjects.
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Figure 1: The fraction of subjects for whom EUT is more complete than the most
complete regularized regressions, tree-based, and neural networks model, as well as
more complete than the best ML model overall (the horizontal lines), quartiles of
consistency scores with GARP and FOSD (Nishimura et al. (2017) and Polisson
et al. (2020)). This score measures the amount by which each budget constraint must
be relaxed in order to remove all violations of GARP and FOSD and it is bounded
between 0 and 1. The closer it is to 1, the smaller the perturbation of budget lines
required to remove all violations and thus the closer the data are to satisfying GARP
and FOSD. The quartiles are [0, 0.831), [0.831, 0.950), [0.950, 0.988) and [0.988, 1).

Importantly, we also find that EUT outperforms RDU – EUT is more complete

(by a small margin) for more subjects and more restrictive (because it is nested).3 In

Appendix Figure A.1, we present the results for RDU instead of EUT and the his-

tograms appear nearly identical. Much of the experimental and behavioral literature

3This is consistent with the results of Choi et al. (2007a) that the parameter estimates vary
dramatically across subjects, yet about half of the subjects are well-approximated by preferences
consistent with EUT.
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on decisions under risk is directed towards finding violations of EUT. But EUT is

part of the core of economics; it is not something that one can or should abandon

lightly, even as a matter of parsimony. We interpret our results as a ‘victory’ for EUT

which is foundational to so much of economics. This is of course based on one set of

experimental results so we explore this and other themes in work-in-progress based

on extensions of the present experimental design.

The rest of the paper is organized as follows. The next section provides a discussion

of the closely related literature and the main references. Section 3 describes the

experimental data and introduces the template for our analysis. Section 4 discusses

the results and their importance. Section 5 discusses the contributions that the paper

offers, provides directions for future research, and contains some concluding remarks.

2 Related Literature

Our paper contributes to the body of work that seeks to use ML techniques

to enhance economic models – theoretical and empirical. We will not attempt to

review this large and growing literature. Mullainathan and Spiess (2017), Athey

(2018) and Kleinberg et al. (2018) provide an excellent, though now somewhat dated,

overview/assessment of the contributions of ML to economics. Instead, we focus

attention on some recent papers that compare standard economic models of individual

decision-making to ML models. Fudenberg et al. (2022a) provide a more thorough

review of the particularly relevant papers to our study that the reader may wish to

consult.

Peysakhovich and Naecker (2017) compare the performances of EUT and promi-

nent non-EUT alternatives to the performance of regularized regression models using

experimental data on the willingness to pay for three-outcome lotteries under risk

(known probabilities) and ambiguity (unknown probabilities). While the economic

models perform as well as the regularized regression models at predicting choices

under risk, they “fail to compete” predicting choices under ambiguity. Peysakhovich

and Naecker (2017) also report that the economic models of choice under risk are

substantially outperformed by regularized regressions on the aggregated data but

perform equally well when individual-level parameters are included.

Fudenberg et al. (2022b) and Fudenberg et al. (2022a) respectively develop the

measures of completeness and restrictiveness, which we adopt here to evaluate a
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model’s prediction accuracy and flexibility. Fudenberg et al. (2022b) calculate the

completeness of models predicting certainty equivalents for binary lotteries under

risk (as well as predicting initial play in matrix games and human generation of

random sequences). Fudenberg et al. (2022b) observe that a three-parameter spec-

ification generated by Cumulative Prospect Theory (CPT), proposed by Kahneman

and Tversky (1979), is a nearly complete model for predicting their aggregate-level

data of certainty equivalents. Using the same experimental data, Fudenberg et al.

(2022a) show that CPT achieves much higher completeness then a two-parameter

specification generated by Disappointment Aversion, proposed by Gul (1991), but

CPT is also substantially less restrictive.4

We share the point of view of Peysakhovich and Naecker (2017), that individual

heterogeneity requires behavior to be examined at an individual level, but we go fur-

ther. Most importantly, previous studies evaluate prediction accuracy and flexibility

from a small number of individual decisions and relatively extreme choice scenarios.

Aside from pure technicalities, our dataset has a number of advantages over earlier

datasets: First, the choice of a bundle subject to a budget constraint provides more

information about preferences than a typical discrete choice. Second, we present each

subject with many choices, yielding a much larger data set. This makes it possible to

analyze behavior at the level of the individual subject, without the need to pool data

or assume that subjects are homogeneous. Third, because choices are from standard

budget sets, we are able to use classical revealed preference analysis to decide if

subject behavior is consistent with the essence of all models of economic decision-

making – maximizing a well-behaved utility function – and relate the consistency

scores to prediction accuracy at the individual level.

4We do not compare the performances of non-EUT models. As Dembo et al. (2021) show,
data from three-dimensional budget sets – involving three states with three associated securities
– provide a much stronger test in terms of power than data from two-dimensional budget lines
used in this paper, especially of the various generalizations of EUT that differ widely by how
they weaken the independence axiom (while maintaining ordering and monotonicity with respect
to FOSD). In the case of three states, the prominent non-EUT models make a specific and quite
extreme set of restrictions on the structure of the utility function, thus yielding a set of empirically
testable restrictions on observed behavior. We are pursuing this in a separate paper using further
experimental data.
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3 Framework for Analysis

In this section, we define the key concepts that we refer to throughout the paper.

We first explain the dual measures of completeness and restrictiveness by Fudenberg

et al. (2022b,a), with which we evaluate the prediction accuracy and flexibility of a

model. We then describe the EUT model, RDU model, and ML models that we eval-

uate. To economize on space, we relegate the description of the experimental design

and procedures to Appendix B. The technical discussion on testing for consistency

with GARP and FOSD is relegated to Appendix C.

3.1 Measures

In our preferred interpretation of the experiment, there are two equiprobable states

of nature s = 1, 2 and an Arrow security for each state. Let xs ≥ 0 denote the demand

for the security that pays off in state s and ps > 0 denote the corresponding price.

The budget set is then given by B = {x : p · x = m}, where x = (x1, x2) is a demand

allocation, p = (p1, p2) is a price vector and m is the endowment. We also define

the token share of the security that pays off in one state to be the number of tokens

payable in that state as a fraction of the sum of tokens payable in both states, and

denote x = x1/(x1 + x2) to be the token share for the first state. Let D := (Bi, xi) be

the data generated by a subject’s choices from linear budget sets, where Bi denotes

the i-th observation of the budget line and xi denotes the corresponding token share.5

Also let B denote the set of budget lines.

Following the terminology and notation of Fudenberg et al. (2022a), a predictive

mapping f : B → [0, 1] is a map from budget lines into token shares. Mappings are

evaluated using the mean-squared error (MSE) loss function ` : [0, 1] × [0, 1] → R
where `(f(Bi), xi) is the error assigned to a predicted token share f(Bi) when the

chosen token share is xi, so the normalized maximum error per observation is 1. The

expected prediction error for a mapping f is the expected loss

EP (f) = EP [`(f(Bi), xi)]

5More precisely, the data generated by an individual’s choices are
{(
x̄i1, x̄

i
2, x

i
1, x

i
2

)}50
i=1

, where(
x̄i1, x̄

i
2

)
are the endpoints of the budget line and

(
xi1, x

i
2

)
are the coordinates of the choice made by

the subject and xi1/x̄
i
1 +xi2/x̄

i
2 = 1 is the the budget line in decision round i = 1, ...50. Without loss

of generality, the income m is normalized to 1.
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where P denotes the joint distribution of (B, x). We are interested in comparing

families of parametric mappings FΘ = {fθ}θ∈Θ, where the prediction error of a family

of parametric mappings FΘ is denoted by the lowest expected prediction error of

mappings in the family

EP (FΘ) = EP [`(f ∗Θ(Bi), xi)]

where f ∗Θ = arg minf∈FΘ
EP (f).

In recent work, Fudenberg et al. (2022b) and Fudenberg et al. (2022a) propose a

method to use ML techniques to evaluate a theory’s prediction accuracy and flexibility.

The key dual measures in this regard are completeness and restrictiveness. The

completeness of a model is the fraction of the predictable variation in the data that

the model captures. A more complete model better captures the regularities in the

data, but the model might have enough flexibility to accommodate any regularity.

A more flexible model need not have higher completeness, but such a model is

necessarily less parsimonious and thus less falsifiable with an available set of data.

The restrictiveness of a model discern completeness due to the “right” regularities by

evaluating its distance to synthetic data. An unrestrictive model can be complete on

any possible data, so the fact that it is complete on the actual data is uninstructive.

The completeness and restrictiveness of nested models can be easily compared – the

completeness/restrictiveness of a nested model is lower/higher than of the associated

nesting model. Yet, in practice, the use of out-of-sample prediction estimates for

completeness may result in nested models having a higher completeness.

Completeness Completeness is the amount that a mapping improves predictions

over a naive baseline relative to the amount that an ideal mapping with irreducible

error improves predictions over a naive baseline. That is, the completeness of a family

of mappings FΘ, denoted by κΘ, is defined by

κΘ =
EP (fn)− EP (f ∗Θ)

EP (fn)− EP (f ∗)

where fn is a naive benchmark mapping and the (perfect) predictor with irreducible

error is defined by

f ∗(Bi) = arg min
x̂∈[0,1]

EP [`(x̂, xi)|Bi].

9



Since subjects see budget sets at most once, it is possible to construct a function from

budget sets to demand that will achieve zero error, and thus we assume that f ∗(Bi) =

0. The naive baseline fn is assumed to be i.i.d uniform choice over the interval

[0, 1]. Given a subject’s true demand x, the error of a naive model is `(xnaive, x) =

(xnaive − x)2. If xnaive ∼ U [0, 1], then the expected squared error conditional on the

actual choice x is: ∫ 1

0

(x− η)2dη =
1

3
(1− 3x+ 3x2)

We follow Fudenberg et al. (2022b) and use 10-fold cross-validation as an estimate

of model expected error. For each subject, the data of 50 budget lines and associated

choices is randomly partitioned into 10 “folds” of five observations. For each fold

k, the other nine folds of 45 observations are used to estimate a model and obtain

predictions for the budget lines in k. We then take the average MSE across the folds

for an estimate of expected model error. The estimate of completeness is calculated

by plugging in the cross-validation estimates of model, naive, and irreducible error.

This estimate is shown to be consistent in Fudenberg et al. (2022b) and shown to be

normally distributed around the true completeness value in Fudenberg et al. (2022a).

We emphasize the term individual to highlight that we analyze prediction accuracy

at the individual level. Clearly, even a high level of consistency in the individual-level

decisions does not imply that aggregate data are consistent. In fact, the considerable

heterogeneity in subjects’ behaviors entails that although behaviors are individually

consistent, they are mutually inconsistent. Thus, any aggregate-level estimation of

an economic model in inevitably misspecified because there is no utility function that

pooled choices maximize (Afriat’s Theorem).

Restrictiveness Restrictiveness is a model-level distance concept which measures

the model’s flexibility by evaluating the distance of the model to synthetic data. For

high completeness models, restrictiveness distinguishes between flexible models that

can conform to most mappings f and between models that accurately describe subject

behavior. Analyzed together, desirable models are more complete at the individual

level and more restrictive at the model level – they explain individual behaviors well,

and explain only those behaviors. Let FM denote “permissible mappings” – mappings

that are ex ante feasible for a decision-maker to have – and let µ denote a distribution

over mappings from FM. For any two mappings f and f ′, define the distance between
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the two functions as

d(f, f ′) = EPB
[`(f(Bi), f ′(Bi)]

where PB is the marginal distribution over B, and similarly

d(FΘ, f
′) = inf

f ′∈FΘ

d(f, f ′)

is the distance between f and the closest mapping from FΘ. Similar to completeness,

restrictiveness is normalized using a naive mapping fn. Hence, the restrictiveness of

a family of mappings FΘ, denoted by rΘ, is defined by

rΘ =
Eµ[d(FΘ, f)]

Eµ[d(fn, f)]
.

Like completeness, we use the uniformly random naive benchmark. We let the

permissible mappings FM be the set of aggregated agents, where a response to a

budget line corresponds to a response of a real subject. To generate the distribution

µ, real subject responses from all 956 subjects are pooled together and partitioned

by decile of the price ratio between the cheaper and more expensive good. For

each observed budget line, a relative token allocation for the cheaper good is drawn

uniformly randomly from that line’s decile. The selected allocation may either be

x = x1

x1+x2
or 1 − x depending on which good is cheaper. We group the budget lines

by subject, resulting in a set of 956 “representative agents” with synthetic data drawn

from µ. Each model is evaluated at the agent level, and the resulting within-sample

errors are used to calculate restrictiveness.

3.2 The economic models

We consider preferences orderings consistent with classical expected utility (EUT).

In this environment, the EUT utility function takes the form

U(x1, x2) = 0.5u(x1) + 0.5u(x2),

where u(·) is the Bernoulli index. For each subject, we estimated the EUT model using

a constant relative risk aversion (CRRA) specification and a constant absolute risk
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aversion (CARA) specification.6 For each subject, we use the specification – CRRA

or CARA – that makes more accurate predictions and compare the performance of

this specification to the performances of a variety of ML models.

We additionally consider a non-EUT behavioral model, which is consistent with

Quiggin’s rank-dependent utility (RDU) model (Quiggin (1982)).7 The RDU function

takes the form:

U(xL, xH) = (1− w)u(xL) + wu(xH),

where w ∈ (0, 1), (xL, xH) is a rank-ordered allocation with payoffs xL ≤ xH , and u(·)
is the Bernoulli index. The RDU formulation encompasses a number of non-EUT

models and embeds EUT as a parsimonious and tractable special case when w = 0.5

(since each state has an equal likelihood of occurring).8 If w < 0.5, interpreted as

“pessimism”, the indifference curves have a ‘kink’ at safe allocations, where x1 = x2,

that lie on the 45-degree line. Such allocations will be chosen for a nonnegligible set of

price ratios around p1 = p2, which is inconsistent with EUT (as prices are randomly

generated, smooth preferences should give rise to allocations satisfying x1 = x2 with

probability zero).9

3.3 Machine learning models

We consider eight models across three main families of ML models – regularized

regressions, tree-based, and neural networks. Each class is commonly used in the

6For CRRA, we assume u(·) takes the power form u(xs) = x1−ρs /(1 − ρ) where ρ ≥ 0 is the
Arrow-Pratt measure of relative risk aversion. For CARA, we assume u(·) takes the exponential
form u(xs) = −e−γxs where γ ≥ 0 is the coefficient of absolute risk aversion. The economic
parameter vector is thus θ = (w, ρ) for CRRA and θ = (w, γ) for CARA.

7Machina (1994) concludes that RDU is “the most natural and useful modification of the classical
expected utility formula.” Starmer (2000) points out that although the number of non-EUT models
“is well into double figures,” the preferences generated by rank-dependent utility is the leading
contender. See Diecidue and Wakker (2001) for a comprehensive discussion.

8Another interpretation of this preference ordering is that it displays loss or disappointment
aversion (Gul, 1991). In this interpretation, the safe allocation x1 = x2 is taken to be the reference
point.

9We note that while we do make comparisons between EUT and non-EUT models of choice under
risk, in addition to our main comparison to ML models, the two-dimensional test has relatively
low power. As pointed out by Dembo et al. (2021), an experiment involving three states and
three associated securities has a number of important advantages in comparing EUT to non-EUT
alternatives over experiments involving two states and two associated securities used here. Dembo
et al. (2021) conclude that violations of EUT run deeper than violations of the Independence Axiom,
thus challenging the most prominent non-EUT alternatives.
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ML, and increasingly economics, literatures. We include multiple approaches because

there is no declared ‘winning’ method.10 For each subject, we consider both the most

complete (accurate) ML model within each class, and then additionally the most

complete of all eight models considered. To economize on space in the main text, we

only briefly describe each model, elaborating in more detail in Appendix D.11

Regularized regressions Regularized regression, in its simplest form, assumes a

linear relationship between outcomes and covariates, whose coefficient is estimated

using OLS with a penalty term. Roughly, the penalty term lets the model “learn”

which variables are important, and which to ignore. While including a penalty biases

the coefficients, doing so also reduces the chance of overfitting. We consider two

popular models of regularized regression that add the norm of the coefficient vector

as the penalty, which differ in which norm is implemented. First, we consider Lasso

(Tibshirani (1996)), which penalizes using the L1 norm. Second, we consider ridge

regression (Hoerl and Kennard (1970)), which penalizes using the L2 norm. The norm

is multiplied by a parameter λ, which affects the degree to which the magnitudes of

coefficients affect the objective function.

Tree-based Unlike the linear relationship assumed in regularized regression, tree-

based models partition the set of budget lines B into subsets (based on the prices

and the endowment) and estimate a submodel on each of the subsets. The resulting

tree-based model is thus a piecewise function with each partition having a separately

applied submodel.

Partitioning is done recursively. That is, given some subset of budget lines, the

model considers a further binary partition that minimizes the size-weighted error of

both partitions. 12

10As Athey and Imbens (2019) state “[t]here are no formal results that show that, for supervised
learning problems, deep learning or neural net methods are uniformly superior to regression trees
or random forests, and it appears unlikely that general results for such comparisons will soon be
available, if ever[,]”

11We will not attempt to review the large and growing literature on machine learning. We provide
references to seminal papers to refer to specific models. Hastie et al. (2009) and Daumé (2017)
provide an in-depth treatment that the reader may wish to consult.

12This partitioning process, if allowed to continue without restraint, would end with each data
point in its own partition, with perfect within-sample prediction. To prevent such overfitting, we
limit the decision trees by setting a minimum number of observations per partition and limiting the
“depth”, or number of partitions away from B, of a tree. Exact details can be found in Appendix
D.
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The standard decision tree submodel, denoted Mean, takes the sample mean token

share x of each subset. We use Mean as well as three extensions. The first two

extensions, known more broadly as model trees (Quinlan et al. (1992)), change the

estimated submodel from a sample mean to a linear regression (Linear), and support

vector regression (SVR) with a normal radial basis function. The former is more

familiar to economists, whereas the latter considers a nonlinear case that minimizes

error whilst remaining as “flat” as possible. Mean is nested in Linear and SVR.

The last tree-based model, the random forest, (RF) averages the decision rules

of multiple standard decision trees. Each tree is given a bootstrapped data set, and

is generally seen as an improvement over singular decision trees (Breiman (2001)).

Because each tree not trained on the original data set, there is no nesting and thus

no restrictiveness or completeness guarantees between RF and the other tree-based

models. Additionally, since trees are inherently nonparametric, they cannot be easily

described by a parameter vector θ.

Neural networks Neural networks, specifically multilayer perceptrons, transform

budget sets into relative demand by nonlinear regression, whose functional form

assumes a series of nested transformations. The transformation takes two parts.

First, a budget set B undergoes an affine transformation W (0)B + b(0), where W (0)

and b(0) are a matrix and vector of size n0×2 and n0×1, respectively. The dimension

n0 is prespecified by the analyst. Second, the affine transformation is transformed

by a function σ(0) : Rn0 → Rn0 to obtain a new vector B(1) = σ(0)(W (0)B + b(0)).

The function σ is also prespecified. The resulting vector, B(1), is referred to as

a “hidden layer”. It is then used as the input to generate another hidden layer,

B(2) = σ(1)(W (1)B+b(1)), using a new affine transformation defined by W (1)

n1×n0

and b(1)

n1×1
,

then transformed by σ(1). This process continues for the number of hidden layers

prespecified by the analyst. The final affine transformation results in a scalar value

that can be interpreted as the estimated relative demand.

For a multilayer perceptron, the parameter values W (i) and b(i) are estimated,

while the analyst has the freedom to choose the number of layers, the dimensions

of each layer, the σ(i) functions, and a number of parameters associated with the

estimation of W (i) and b(i). We use the layer count, layer dimension, and σ(i) values

from Zhao et al. (2020).13

13See Appendix D for more detail.
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4 Results

The experiment allows us to analyze behavior at the level of the individual subject

and to test whether choices are consistent with the primary axioms of revealed pref-

erence. Table 1 provides a population-level summary of our results, complementing

the information provided in Figure 1 above. The left column of Table 1 reports the

average completeness of each model, as well the 95% confidence interval for average

completeness, and the next column reports the win rate of EUT against each model

(that is, the fraction of subjects for whom EUT is more complete).14 The next two

blocks of four columns report the win rate of EUT against each model and its absolute

completeness difference by quartiles of the consistency score with GARP and FOSD.

The right column reports the restrictiveness of each model. Panel A of Table A.1

reports the results for the three families of ML models – regularized regressions, tree-

based, and neural networks. For regularized regressions and tree-based models, we

report restrictiveness as weighted averages of the most complete model in the class

for each subject. Panels B and C report the results for each regularized regression

and tree-based model, respectively.

14We calculate the mean completeness confidence intervals by bias-corrected and accelerated
bootstrapping, with 10000 resamples of size 956.
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Table 1: The completeness and restrictiveness of EUT and ML models

Absolute completeness difference
EUT’s win rate against between EUT and ML by

Average EUT’s win rate ML by rationality quartiles rationality quartiles

Panel A: EUT and ML model classes Completeness against model 1st 2nd 3rd 4th 1st 2nd 3rd 4th Restrictiveness

EUT 89.3% - - - - - - - - - 18.5%
[88.4%, 90.0%]

Regularized Regressions 79.5% 88.5% 72.1% 91.6% 91.3% 99.2% 3.7% 7.8% 9.7% 17.8% 20.6%
[77.8%, 80.6%]

Tree-based Models 89.1% 69.7% 62.9% 71.5% 70.4% 73.8% -1.4% 0.9% 0.5% 0.6% 9.4%
[88.4%, 89.9%]

Neural Networks 71.6% 94.2% 84.6% 95.4% 97.9% 99.2% 9.3% 14.6% 16.6% 30.5% 14.3%
[68.7%, 73.7%]

Panel B: Regularized regressions

Lasso 75.9% 92.2% 80.0% 95.0% 94.2% 99.6% 7.0% 11.8% 13.8% 21.1% 20.6%
[74.2%, 76.9%]

OLS 70.2% 90.3% 75.8% 92.5% 93.8% 99.2% 11.2% 10.6% 15.8% 38.8% 20.6%
[57.5%, 74.7%]

Ridge 70.6% 90.3% 75.8% 92.5% 93.8% 99.2% 11.1% 10.4% 15.4% 37.9% 20.6%
[58.2%, 75.0%]

Panel C: Tree-based models

Mean 86.6% 84.8% 79.2% 89.1% 86.3% 84.8% 3.0% 3.7% 2.2% 1.9% 12.3%
[85.7%, 87.4%]

Linear 82.9% 87.1% 83.3% 87.4% 87.1% 90.7% 12.4% 6.1% 3.5% 3.4% 5.4%
[81.6%, 84.0%]

SVR 85.7% 89.1% 80.8% 88.7% 92.5% 94.5% 4.1% 4.1% 2.7% 3.3% 10.7%
[84.8%, 86.6%]

RF 88.0% 80.9% 73.3% 81.2% 82.9% 86.1% 0.5% 1.7% 1.2% 1.5% 11.9%
[87.2%, 88.8%]
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Three main insights arise from Panel A of Table 1 about the prediction accuracy

(completeness) and model flexibility (restrictiveness) of the economic model as com-

pared to that of the families of ML models. Similar insights arise from Panels B and

C when comparing the economic model to each regularized regression and tree-based

model.

• First, the completeness of EUT is comparable to the completeness of the tree-

based models (achieving 89.3% and 89.1% of the feasible reduction in prediction

error, respectively), but it is significantly more complete than regularized re-

gression models and neural networks (achieving completeness of only 79.5% and

71.6%, respectively). Furthermore, EUT’s completeness win rate increases from

69.7% against tree-based models to 88.5% against regularized regression models

and to 94.2% against neural networks.

• Second, the win rate of EUT almost always increases by consistency quartiles

against all three families of ML models, Perhaps as expected, the predictive

accuracy of EUT is improved compared to the accuracy of ML models when

individual choices more closely satisfy the axioms on which the economic model

is based.

• Third, while EUT does not achieve a large improvement in completeness com-

pared to tree-based models, it is substantially more restrictive (21.6% compared

to only 11.0%). Moreover, the restrictiveness of EUT is comparable to the re-

strictiveness of the regularized regression models and neural networks (achieving

restrictiveness of 23.8% and 16.9%, respectively), but these ML models are

significantly less complete than EUT.

In Appendix Table A.1, we present near-identical results with RDU instead of

EUT. Recall that the RDU model reduces to EUT when w = 0.5 (since each state has

an equal likelihood of occurring). RDU is therefore less restrictive than EUT (21.6%

compared to 19.3%) and it is also only moderately less restrictive than the regularized

regression models (19.3% compared to 23.8%). Table 2 provides a population-level

summary of our results comparing the economic models, EUT and RDU, in the same

format as Table A.1. Panel A of Table 2 reports the results taking a weighted average

of the most complete u(·) specification for each subject. Panels B and C report the
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results assuming u(·) takes the CRRA and CARA specifications, respectively.15 The

main insights that arise from Table 2 are that the average completeness of EUT is the

same as the completeness of RDU but it is more restrictive. Also worthy of note is

that EUT’s overall win rate against RDU is above 50 percent but it is monotonically

decreasing by consistency quartiles from the mid-high 60s in the bottom quartile to

low 40s in the top quartile. Despite this, the absolute improvement of EUT over

RDU is essentially zero under both CARA and CRRA in all consistency quartiles.

We consider this a ‘victory’ for the economic models, especially for the instrumental

characterization of EUT.

Table 2: The completeness and restrictiveness of EUT and RDU

Absolute completeness difference
EUT’s win rate against between EUT and RDU by

Average EUT win rate RDU by rationality quartiles rationality quartiles

Panel A: EUT and RDU completeness against RDU 1st 2nd 3rd 4th 1st 2nd 3rd 4th Restrictiveness

EUT 89.3% - - - - - - - - - 21.6%
[88.4%, 90.0%]

RDU 89.2% 60.6% 68.3% 66.5% 53.8% 53.6% 0.6% 0.2% -0.2% -0.2% 19.3%
[88.3%, 89.9%]

Panel B: CRRA Only

EUT CRRA 88.8% - - - - - - - - - 20.9%
[88.0%, 89.6%]

RDU CRRA 88.8% 53.0% 65.4% 59.0% 43.3% 44.3% 0.7% 0.2% -0.4% -0.3% 19.0%
[87.9%, 89.6%]

Panel C: CARA Only

EUT CARA 88.6% - - - - - - - - - 22.5%
[87.8%, 89.4%]

RDU CARA 88.5% 58.3% 65.4% 64.9% 56.3% 46.4% 0.5% 0.2% -0.2% -0.2% 19.7%
[87.7%, 89.3%]

We can see this in greater detail in the four panels of Figure 2 below. We can see

the comparison of completeness between EUT and the most complete ML model in

greater detail in the four panels of Figure 2 below corresponding to the quartiles of

the consistency of the individual-level data with GARP and FOSD. For each subject,

the horizontal axis in each panel shows the completeness of EUT and the vertical

horizontal axis shows the completeness of the best ML model. On each axis, we

provide a histogram that shows the distribution of the completeness scores for each

model. We first note that there are relatively few extreme differences in completeness,

as seen by the absence of observations in the upper left and lower right corners of

15CARA is the more complete specification under EUT and RDU for 30.7% of our subjects whereas
CRRA is the more complete under both for 42.0%. CARA is the more complete specification only
under RDU for 12.3% of our subjects and it is the more complete specification only under EUT for
15.0%.
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each panel, but there are few observations high above the diagonal in the bottom

consistency quartile.16 We note additionally a monotonic shift towards the upper

right corner by consistency quartiles, indicating greater completeness of both models

as individual choices are more consistent. The fraction of observations below the

diagonal (subjects for which EUT is the most complete model) weakly increases by

consistency quartile, and the distribution of completeness is higher for EUT in all

panels. Finally, we note a complementarity between machine learning models - of the

331 subjects for whom the most complete machine learning model is more complete

than EUT, 249 (26.0%) have RDU as the second most complete model, above the

other two classes of machine learning models.

In Appendix Figure A.2, we again present near-identical results with RDU instead

of EUT.

16In Appendix G, we further examine these subjects and identify them primarily as having
systematic deviations from FOSD (and for some, GARP). In Appendix H, we address statistical
uncertainty regarding win rates. Of the 956 subjects in the data set, only 13 have significant
differences in completeness.
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(a) Quartile 1 (b) Quartile 2

(c) Quartile 3 (d) Quartile 4

Figure 2: Scatterplot of completeness of EUT and the most complete machine learning
model by rationality quartile.

As robustness checks, Appendix E replicates the analysis with the data from a

similar budget line experiment with asymmetric probabilities. Appendix F replicates

the analysis with a sample of hypothetical subjects who implement a log-utility with

error.

5 Conclusion

We employ graphical representations of budget sets over bundles of state-contingent

commodities, rather than discrete choices. This allows for the collection of a very rich

individual-level data set. Our analysis begins by applying revealed preference tests

to determine whether the observed choices are consistent with the axioms on which

economic theory is based. We are able to provide a more precise comparison of the
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completeness of the economic model against a variety of ML models because we have

measured the completeness of the different models at the individual level. Our main

result is that the standard EUT model and the RDU model equally outperform all

ML models, and by a wider margin the more consistent individual choices are with an

underlying preference ordering. We consider this a victory for the economic models,

especially for EUT as it is nested in RDU and thus more restrictive.

We view our analysis as a “best-case scenario” baseline, in an ideal environment

to analyze the individual-level effectiveness of economic models relative to machine

learning models. Hence, the experimental and analytical techniques serve as a foun-

dation for comparing the completeness and restrictiveness of different models in

more complex scenarios. We are already studying choices over three-dimensional

budget sets, where different non-EUT models make a specific and quite extreme

set of restrictions on the structure of the utility function, thus yielding a set of

empirically testable restrictions on observed behavior. Another promising direction

is to study choice under ambiguity using the data of Ahn et al. (2014). The goal of

this work is to generate analogous rigorous individual-level tests of the predictions of

models of decision-making under ambiguity.17 We are also studying within-subjects

behavior across different treatments, for example, involving two-dimensional and

three-dimensional budget sets. Clearly, the decision problem with two securities is

a sub-problem of the decision problem with three securities and, if the subject has

stable preferences, then economic models should predict choices across treatments.

Finally, we are interested in investigating whether auxiliary coviarates, such as so-

ciodemographic information, can be of additional use over choice data for demand

analysis.

17To the best of our knowledge, only Peysakhovich and Naecker (2017) study choices under
ambiguity, using standard discrete choices. They find that, unlike under risk, the economic models
of decision-making under ambiguity do not predict individual choices as well as ML models.
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