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CHAPTER 3.  GENERALIZED METHOD OF MOMENTS

1.  INTRODUCTION

This chapter outlines the large-sample theory of Generalized Method of Moments (GMM)
estimation and hypothesis testing.  The properties of consistency and asymptotic normality (CAN)
of GMM estimates hold under regularity conditions much like those under which maximum
likelihood estimates are CAN, and these properties are established in essentially the same way.
Further, the trinity of Wald, Lagrange Multiplier, and Likelihood Ratio test statistics from maximum
likelihood estimation extend virtually unchanged to this more general setting.  Our treatment
provides a unified framework that specializes to both classical maximum likelihood methods and
traditional linear models estimated on the basis of orthogonality restrictions.

Suppose data z are generated by a process that is parameterized by a k×1 vector θ.  Let l(z,θ)
denote the log likelihood of z, and let θo denote the true value of θ in the population.  Suppose there
is an m×1 vector of functions of z and θ, denoted g(z,θ), that have zero expectation in the population
if and only if θ equals θo: 

(1) Eg(z,θ) � �g(z,θ)�el(z,θo)dz = 0 iff θ = θo.   

The E g(z,θ) are generalized moments, and the analogy principle suggests that an estimator of θo can
be obtained by solving for θ that makes the sample analogs of the population moments small.
Assume that linear dependancies among the moments are eliminated, so that g(z,θo) has a positive
definite m×m covariance matrix.  We say that the problem is under-identified if m < k, just-identified
if m = k, and over-identified if m > k.  If m > k, there are over-identifying moments that can be used
to improve estimation efficiency and/or test the internal consistency of the model.  

In this setup, there are several alternative interpretations of z.  It may be the case that z is a
complete description of the data and l(z,θ) is the "full information" likelihood.  Alternately, some
components of observations may be margined out, and l(z,θ) may be a marginal "limited
information" likelihood.   Examples are the likelihood for one equation in a simultaneous equations
system, or the likelihood for continuous observations that are classified into discrete categories.
Also, there may be "exogenous" variables (covariates), and the full or limited information likelihood
above may be written conditioned on the values of these covariates.  From the standpoint of
statistical analysis, variables that are conditioned out behave like constants.  Then, it does not matter
for the discussion of estimation and hypothesis testing that follows which interpretation above
applies, except that when regularity conditions are stated it should be understood that they hold
almost surely with respect to the distribution of covariates.  

Suppose an i.i.d.  sample z1,...,zn from the data generation process.  A GMM estimator of θo
is a vector Tn that minimizes the generalized distance of the sample moments from zero, where this
generalized distance is defined by the quadratic form 



2

(2) Qn(θ) = ½gn(θ)�Wn(τn)gn(θ),    with    gn(θ) � ,1
n �

n

t�1
g(zt,θ)

where Wn(θ) is a m×m positive definite symmetric matrix, in general depending on θ, that is
evaluated at some sequence of “preliminary estimates” τn.  The Wn(τn) define a "distance metric".
For brevity, we will let Wn denote Wn(τn).  We will assume that Wn(θ) converges in probability
uniformly in θ to a continuous positive definite limit W(θ) and that Wn converges to a positive
definite limit W.  This will usually be the result of having preliminary estimates τn that converge in
probability to θo, so that the rules for probability limits imply that Wn(τn) converges in probability
to W(θo).  Note that it is unnecessary to know the form of the log likelihood function l(z,θ) in order
to calculate the GMM estimator, and in fact GMM estimation is particularly useful when l(z,θ) is
not completely specified and only the moment condition E g(z,θo) = 0 can be assumed.  However,
some statistical properties of GMM estimators (e.g., asymptotic efficiency) will depend on the
interplay of g(z,θ) and l(z,θ).

For the GMM estimator to have good statistical properties, we will require either that Qn(θ)
have a unique global minimum with probability approaching one as sample size increases, or that
we have some method that with probability approaching one can pick out the “true” global minimum
from among contending candidates.  In the just-identified case m = k, the matrix Wn does not enter
the first-order-conditions for Tn (Verify), and could be chosen by default be the m×m identity matrix.
However, even if the estimation problem is just identified for unconstrained estimation, the distance
metric will matter in hypothesis testing when Qn(θ) is minimized subject to constraint.

In the over-identified case m > k, not all the components of gn(Tn) can be made zero
simultaneously, and the matrix Wn influences the estimator by determining how deviations from zero
are weighted.   Define the m×m covariance matrix of the moments, Ω(θ) � E g(z,θ)g(z,θ)�.  Efficient
weighting of a given set of m moments requires that Wn  converge to Ω(θo)-1 as n � �.  The reason
is essentially the same as the reason underlying generalized least squares: when observations are
correlated or have different variances, it is efficient to give less weight to observations that have high
variances or are highly correlated.  We shall term a GMM estimator that has Wn converging to
Ω(θo)-1 a best GMM estimator.  A good candidate for Wn is Ωn(τn)-1, where

(3) Ωn(θ) = g(zt,θ)g(zt,θ)�, 1
n �

n

t�1

and τn is a consistent preliminary estimate of θo.  One good way to get a consistent preliminary
estimator τn is to minimize a GMM criterion that uses the identity matrix Im for Wn.

Define the m×k Jacobean matrix G(θ) � -E �θg(z,θ), and let 

(4) Gn(θ) = �θg(zt,θ).�1
n �

n

t�1

Then the array Gn(τn) evaluated at a consistent preliminary estimate τn of θo has probability limit
G(θo).  Hereafter, Ωn and Gn will be used as shorthand for Ωn(τn) and Gn(τn), respectively, and Ω and
G will be used as shorthand for Ω(θo) and G(θo).
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Under the regularity conditions given later in Theorem 1, we will show that a GMM
estimator with a distance metric Wn that converges in probability to a positive definite matrix W will
be CAN with an asymptotic covariance matrix (G�WG)-1G�WΩWG(G�WG)-1, and a best GMM
estimator with a distance metric Wn that converges in probability to Ω(θo)-1 will be CAN with an
asymptotic covariance matrix (G�Ω-1G)-1.  The following lemma justifies the sorbeque “best”:

Lemma 3.1. (G�WG)-1G�WΩWG(G�WG)-1 - (G�Ω-1G)-1 is positive semidefinite.

Proof:  Consider the matrix I - Ω-1/2G (G�Ω-1G)-1 G�Ω-1/2.  Multiply this matrix by itself and note that
you get the same matrix back, so it is idempotent, and therefore positive semidefinite.  Postmultiply
this matrix by Ω1/2WG(G�WG)-1 and premultiply it by the transpose of this matrix.  The result, which
is  (G�WG)-1G�WΩWG(G�WG)-1 - (G�Ω-1G)-1, must again be positive semidefinite.  �

Exercise 1.   Prove Lemma 3.1 by constructing a regression model y = Ω-1/2Gβ + ν with m
observations and k parameters that satisfies Gauss-Markov assumptions.  Then the OLS covariance
matrix is smaller than the one for the transformed regression W1/2Ω1/2y = W1/2Gβ + W1/2Ω1/2ν.  

Exercise 2. Show in Lemma 1 that if m = k, so that all the matrices in
(G�WG)-1G�WΩWG(G�WG)-1 are square and non-singular, then one can collect terms and the
expression reduces to (G�)-1Ω(G)-1 = (G�Ω-1G)-1.  This confirms that in the just-identified case W
does not matter.

Several special cases of the general GMM setup occur frequently in applications: First, if
f(z,θ) is a scalar function with the property that E f (z,θo) � E f (z,θ), then one estimation criterion

is to minimize the sample analog fn(θ) = ; this is called an extremum estimator.  A1
n �

n

t�1
f(zt,θ)

leading example of an extremum criterion function is f (z,θ) = - l(z,θ), the negative of a full or
limited information log likelihood function.  Then, full or limited information maximum likelihood
estimators are extremum estimators.  A GMM estimator with moments g(z,θ) = �θ f (z,θ) and any
distance metric has the property that the GMM criterion is minimized at the extremum estimator.
When one can guarantee that the GMM criterion has no roots other than the extremum estimator,
then one can treat the extremum estimator in its equivalent GMM form.  More generally, we can use
the GMM apparatus if we have some method of excluding “bad” roots from the analysis. We show
in Section 3.6 that an asymptotic equivalence continues to hold between an extremem estimator and
a GMM estimator with moments g(z,θ) = �θ f (z,θ) and an appropriate distance metric when
estimation is carried out under the constraints imposed by a null hypothesis.

A second special case is z = (y,x,w) and g(z,θ) = w�(y-xθ), so that the moment conditions
assert orthogonality in the population between instruments w and regression disturbances � = y - xθo.
For this problem, GMM specializes to two-stage least squares (2SLS), or if w = x, to OLS.  We show
in Section 3.6 that these linear regression setups generalize directly to nonlinear regression
orthogonality conditions based on the form g(z,θ) = w�(y-h(x,θ)), where h is a function that is known
up to the parameter θ and by assumption a vector of m exogenous variables w are orthogonal to the
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regression disturbances y - h(x,θo).  This is an important application of GMM, and as an exercise the
reader should translate all general statements about GMM estimators into statements for this model.

In discussing the statistical properties of GMM estimators, we will denote convergence in
probability by �p, and convergence in distribution by �d.  If a sequence of events occur with
probability approaching one, we say that they occur in probability limit.   A sequence of random
variables Yn is stochastically bounded if for each � > 0 there exists a constant M such that for all n,
Prob(|Yn| > M) < �.  We will sometimes use the notation Yn = Yo + op for Yn �p Yo and Yn = Op(1)
for a stochastically bounded sequence.

We will need some definitions for random functions on a subset Θ of a Euclidean space 	k.
Let (S,F,P) denote a probability space.  Define a random function as a mapping Y from Θ×S into 	
with the property that for each θ 
 Θ, Y(θ,�) is measurable with respect to (S,F,P).  Note that Y(θ,�)
is simply a random variable, and that Y(�,s) is simply a function of θ 
 Θ.  Usually, the dependence
of Y on the state of nature is suppressed, and we simply write Y(θ).  A random function is also called
a stochastic process, and Y(�,s) is termed a realization of this process.  A random function Y(θ,�) is
almost surely continuous at θo 
 Θ if for s in a set that occurs with probability one, Y(�,s) is
continuous in θ at θo.  It is useful to state this definition in more detail.  For each � > 0, define

Ak(�,θo) = .  Almost sure continuity states that these setss
S* sup
�θ�θo��1/k

�Y(θ,s)�Y(θo,s)�>�

converge monotonically as k� � to a set Ao(�,θo) that has probability zero.  
The condition of almost sure continuity allows the modulus of continuity to vary with s, so

there is not necessarily a fixed neighborhood of θo independent of s on which the function varies by
less than �.  For example, the function Y(θ,s) = θs for θ 
 [0,1] and s uniform on [0,1] is continuous

at θ = 0 for every s, but Ak(�,0) = [0, ) has positive probability for all k.  The exceptional�log �

log k

sets Ak(�,θ) can vary with θ, and there is no requirement that there be a set of s with probability one,
or for that matter with positive probability, where Y(θ,s) is continuous for all θ.  For example,
assuming θ 
 [0,1] and s uniform on [0,1], and defining Y(θ,s) = 1 if θ � s and Y(θ,s) = 0 otherwise
gives a function that is almost surely continuous everywhere and always has a discontinuity.

Several results on stochastic limits that will be needed for the analysis of GMM estimators;
see  McFadden, “Limit Theorems in Statistics”, 240A lecture notes:

Lemma 3.2. For sequences of random vectors Yn and Zn, (1) for c a constant, Yn �p c if and
only if Yn �d c; (2) if Yn �d Yo and Zn - Yn �p 0, then Zn �d Yo; and (3) if Yn �d Yo and f is a
continuous function on an open set containing the support of Yo, then f(Yn) �d f(Yo).
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Lemma 3.3 (Uniform WLLN).  Assume Yi(θ) are independent identically distributed
random functions with a finite mean ψ(θ) for θ in a closed bounded set Θ 
 	k .  Assume Yi(�) is
almost surely continuous at each θ 
 Θ.  Assume that Yi(�) is dominated; i.e.,  there exists a random
variable Z with a finite mean that satisfies Z � supθ�Θ�Y1(θ)�.  Then ψ(θ) is continuous in θ and

Xn(θ) =  satisfies supθ�Θ�Xn(θ) - ψ(θ)� �p 0. 1
n �

n

i�1
Yi(θ)

Lemma 3.4 (Continuous Mapping).  If Yn(θ) �p Yo(θ) uniformly for θ in Θ 
 	k,  random
vectors τo,τn 
 Θ satisfy τn �p τo, and Yo(θ) is almost surely continuous at τo,  then Yn(τn) �p Yo(τo).
 

The following result gives regularity conditions under which GMM estimators have good
asymptotic properties.

Theorem 3.1.  (Newey and McFadden (1994, Thm. 2.6 and Thm. 3.4)) Consider an i.i.d. sample zt,
for t = 1,...,n; the GMM criterion Qn(θ) = ½gn(θ)�Wngn(θ) given by (2), with Wn = Wn(τn) and τn a
sequence of “preliminary estimates” converging in probability to a limit τo; the arrays Ωn(θ) given
by (3) and Gn(θ) given by (4); and the GMM estimator Tn = argminθ�Θ  Qn(θ).  Assume:

(i) The domain Θ of θ is a compact subset of 	k and θo is in its interior.  
(ii) The log likelihood function l(z,θ) is measurable in z for each θ, and almost surely (with
respect to z) twice continuously differentiable with respect to θ in a neighborhood of θo.  
(iii) The function g is measurable in z for each θ, and almost surely (with respect to z) is
continuous on Θ and on a neighborhood of θo continuously differentiable in θ, with the
derivative Lipschitz; i.e., there is a function α(z) with finite expectation such that for θ,θ� in the
neighborhood of θo, ��θg(z,θ) - �θg(z,θ�)� � α(z)�θ - θ��.  
(iv) Eg(z,θ) = 0 if and only if θ = θo.  
(v) Ω(θo) is a positive definite m×m matrix and G(θo) is an m×k matrix of rank k. 
(vi) W(θ) is a positive definite m×m matrix that is continuous in θ, Wn(θ) �p W(θ) uniformly in
θ, and Wn �p W.
(vii) There exists a function α(z), with finite expectation, that dominates g(z,θ)g(z,θ)� and
�θg(z,θ); i.e., +� > Eα(z), �g(z,θ)g(z,θ)�� � α(z), and ��θg(z,θ)� � α(z).
  

If an estimator Tn* satisfies Qn(Tn*) �p 0, then Tn* �p 0, and if n·Qn(Tn*) is stochastically bounded,
then n1/2·gn(Tn*) and n1/2·(Tn* - θo) are stochastically bounded.  The unconstrained GMM estimator
Tn satisfies these conditions and is consistent and asymptotically normal (CAN), with  

(5) n1/2(Tn - θo) �d N(0,(G�WG)-1G�WΩWG(G�WG)-1).

If in addition either Wn  �p Ω-1, or else just-identification (i.e., m = k) with Wn an arbitrary non-
singular matrix, then Tn is a best GMM estimtor that is CAN with B � G�Ω-1G and 

(6) n1/2(Tn - θo) �d N(0,B-1).
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  Before proving this result, it is useful to comment on the meaning and role of the regularity
conditions (i)-(vii).  Assumption (i) restricts the parameters to a closed and bounded subset of
Euclidean space.  This is not a substantive restriction in applications, as Θ can be very large; e.g.,
the set of real vectors that can be represented as floating point numbers on a computer.  The
condition requires that Θ contain an open neighborhood around θo.  This restricts some applications
where the true parameter is on the boundary of a feasible range, and where CAN breaks down.  For
example, in a regression where a coefficient is restricted to be non-negative and is truely zero, its
asymptotic distribution will be a mixture of a truncated normal and a point probability.  When (i)
holds, the estimator can be characterized in terms of its first-order condition.  Assumptions (ii), (iii),
and (vii) are mathematical regularity conditions that guarantee that the moment functions are
continuous and have finite variances, and that in a neighborhood of θo they can be differentiated.
Condition (vii) is called a dominance condition, and guarantees that one can interchange the order
of taking expectations and differentiating.  These assumptions can be weakened, at the price of
making the proof of CAN much more difficult, and at some point the CAN result will fail.  Most
applications will satisfy (ii), (iii), and (vii); exceptions are problems involving thresholds where
CAN is problematic and special treatment is required.  Assumption (iv) is a key identification
condition that rules out both local identification failures (e.g., an interval of parameter values that
explain the data equally well) and global failures (e.g., multiple roots in the limit).   It is possible in
applications that this assumption fails, and that the GMM procedure could pick out a “wrong”
inconsistent root.  However, if there is some method of sorting out multiple roots of the GMM
criterion and settling on the “right” root with a probability approaching one as sample size increases,
then consistency can be proved with a weaker version of (iv) that holds on some open neighborhood
of θo.  This situation may arise when the wings of the GMM criterion function contain the first-order
condition for optimization of a sample function whose population expectation is optimized at θo,
since then the heigth of the sample function can be used to sort multiple roots and pick the “right”
one closest to a global optimum.  Whether assumption (iv) holds in an application is a substantive
issue that should be resolved by analysis of the economic model.  

Assumptions (v) and (vi) are essential for the CAN result.  One can show using (ii), (iii), and
(vii) that Ω(θ) is positive semidefinite, and positive definite at points in every neighborhood of θo,
and that G(θ) is of rank k at points in every neighborhood of θo.  Then, the definiteness of Ω(θo) and
the full rank of G(θo) are technical strengthenings of these conditions that exclude primarily
pathological cases.  (There are a few testing problems, discussed later, where some derivatives are
identically zero under a null hypothesis and it is necessary to carry out the analysis in terms of
higher-order derivatives.  For example, tests for the presence of mixing will often encounter this
problem.)   If Ωn(θ) is given by (3) and Gn(θ) is given by (4), then (i), (iii), and (vii) satisfy the
hypothesis of Lemma 3, implying that Ωn(θ) �p Ω(θ) and Gn(θ) �p G(θ) uniformly in θ.  Assumption
(vi) holds trivially if Wn = W is a positive definite array of constants, such as Im.  The condition
Wn(θ) �p W(θ) uniformly in θ holds by Lemma 3 if Wn(θ) is an array of almost surely continuous
dominated functions that converges pointwise to a postive definite matrix W(θ).  This will be true
in particular if Wn(θ) = Ωn(θ)-1.  If τn is a sequence converging in probability to τo, then Wn = Wn(τn)
�p W(τo) by Lemma 4.  In most applications, either Wn(θ) does not depend on θ, or Wn(θ) is
evaluated at a sequence of preliminary estimators τn that converge in probability to θo.  Summarizing
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the discussion of (i)-(vii), all the regularity conditions require checking in each application, but the
one that requires the most careful examination is the identification condition (iv).

Proof of Theorem 1.  A preliminary step shows that n1/2 gn(θo) is asymptotically normal, that
Gn(θ), Ωn(θ), and Wn(θ) converge in probability uniformly in θ to G(θ), Ω(θ), and W(θ), respectively,
and that n·Qn(θo) is stochastically bounded.  The first step in the proof shows for Tn* satisfying
Qn(Tn*) �p 0 that Tn* �p θo.  The second step shows for Tn* satisfying n·Qn(Tn*) stochastically
bounded that n1/2·(Tn* - θo) is stochastically bounded. These two steps imply that a preliminary
estimator τn that uses an easily calculated distance metric such as Im is consistent, and hence that
Ωn(τn)�p Ω and Gn(τn) �p G.  They also imply that Tn is consistent and stochastically bounded.  The
third step applies the mean value theorem to the first-order condition for Tn and uses rules for
asymptotic limits to show that n1/2(Tn - θo) is asymptotically normal.

Preliminary Step: The expression gn(θo) is a sample average of i.i.d. random vectors with
mean zero and finite covariance matrix Ω.  Then the Lindeberg-Levy central limit theorem implies

(7)                               Ω-1/2n1/2gn(θo) � Un �d U ~ N(0,Im).

The expressions gn(θ), Gn(θ), and Ωn(θ) are sample averages that converge in probability for each
fixed θ to Eg(θ), G(θ), and Ω(θ), respectively, by Kinchine’s law of large numbers.  Conditions (i),
(iii), and (vii) establish that these functions are dominated and almost surely continuous on the
compact set Θ.  Then the hypotheses of Lemma 3 are satisfied, so the convergence is uniform in θ.
Condition (vi) gives Wn(θ) �p W(θ) uniformly in θ.  This condition plus (7) implies by Lemma 2 that
n·Qn(θo) is stochastically bounded.

Step 1:  Consider any estimator Tn* that satisfies Qn(Tn*) �p 0.  For each fixed θ, the Kinchine
law of large numbers implies that gn(θ) �p Eg(θ).  We have established that the convergence in
probability of gn(θ) to Eg(θ) is uniform in θ.  Combined with the condition Wn �p W from (vi), this
implies Qn(θ)  �p ½(Eg(θ))�W(Eg(θ)) uniformly in θ.  Outside each small neighborhood of θo, the
probability limit of Qn(θ) is uniformly bounded away from zero by (iv).  Therefore, Tn*  is, with
probability approaching one, within each small neighborhood.  This establishes consistency of Tn*.

Step 2:  Consider any estimator Tn* that satisfies n·Qn(Tn*) stochastically bounded.  This
condition implies Qn(Tn*) �p 0, and thus Tn* �p θo by Step 1.  The mean value theorem and (7) give

(8)                            n1/2gn(Tn*) = n1/2gn(θo) - Gn n1/2(Tn*-θo) = Ω1/2Un - Gn n1/2(Tn*-θo),

with Gn evaluated at points between Tn* and θo.  Apply the triangle inequality for the GMM distance
metric to the vector Gn n1/2(Tn*-θo) = Ω1/2Un - n1/2gn(Tn*) to obtain

(9) ½n1/2(Tn*-θo)�Gn�WnGn n1/2(Tn*-θo) � ½Un�Ω1/2Wn Ω1/2Un + n·Qn(Tn*).

The first term on the right-hand-side of (9) converges in distribution by Lemma 2, and hence is
stochastically bounded.  Together with the hypothesis that n·Qn(Tn*) is stochastically bounded, this
implies that n1/2(Tn*-θo)�Gn�WnGn n1/2(Tn*-θo) is stochastically bounded.   The uniform convergence
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of Gn(θ) and Lemma 4 imply Gn�WnGn �p  G�WG positive definite.  Let λ > 0 be the smallest
characteristic root of G�WG.  Then in probability limit

(10) (λ/2)�n1/2 �|Tn*-θo|2 � n1/2(Tn*-θo)�Gn�WnGn n1/2(Tn*-θo) = Op(1),

establishing that n1/2(Tn*-θo) is stochastically bounded.  In (8), this implies that n1/2gn(Tn*) is
stochastically bounded.

Step 3:  Consider the GMM estimator Tn = argminθ�Θ Qn(θ).  Then Qn(Tn) � Qn(θo), and the
condition that n·Qn(θo) is stochastically bounded implies by Steps 1 and 2 that Tn is consistent and
n1/2(Tn-θo) is stochastically bounded.  The first-order condition for Tn is 0 = G(Tn)�Wn n1/2gn(Tn).
Substituting the mean value expansion (7) in this first-order condition gives

(11) 0 = -G(Tn)�WnΩ1/2Un + G(Tn)�WnGn n1/2(Tn-θo). 

We established in Step 2 that in probability limit, G(Tn)�WnGn is non-singular and (G(Tn)�WnGn)-1

�p (G�WG)-1.  Then, n1/2(Tn-θo) = (G(Tn)�WnGn)-1 G(Tn)�WnΩ1/2Un  exists in probability limit.  The
array (G(Tn)�WnGn)-1 converges in probability, and hence in distribution, to (G�WG)-1; the array
G(Tn)�WnΩ1/2 converges in probability, and hence in distibution, to G�WΩ1/2;  and Un converges in
distribution to U.  Then Lemma 2 implies that the continuous function that is the product of these
terms converges in distribution to the product of the limits; i.e., n1/2(Tn-θo) �d (G�WG)-1G�WΩ1/2U,
which is normal with covariance matrix (G�WG)-1G�WΩWG(G�WG)-1.  This establishes (5).  When
W = Ω-1 or m = k, (6) follows.  �

In the GMM criterion (2), Wn(τn)  is treated as an array of constants that does not vary with
θ.  Then the first-order condition for minimization of Qn(θ) is

(12) 0 = n1/2�θQn(Tn) = Gn(Tn)�Wn(τn) n1/2gn(Tn).

Slightly different variants of the GMM estimator are obtained if (1) Gn(Tn) in this formula is replaced
by Gn(τn), where τn is a consistent preliminary estimate of θo, by Gn(θo), or by G(θo); and/or (2) Wn(τn)
is replaced by Wn(Tn), by Wn(θo), or by W(θo).  Additional variants arise if Wn(θ) is treated as a
function of θ, leading to the modified first-order condition

(13) 0 = Gn(Tn)�Wn(Tn) n1/2gn(Tn) + vec [tr{[�Wn(Tn)/�θr] n1/2gn(Tn)gn(Tn)�}],

where �Wn/�θr is the array of derivatives of Wn with respect to component θr of θ, “tr” denotes the
trace of a matrix, and “vec” denotes a vector made from the components r = 1,...,k.  One variant,
commonly used for the iterative computation of GMM estimators, solves 0 = Gn(τn)�Wn(τn) n1/2gn(Tn),
with τn an earlier iterate. We will show that while these variants may differ in finite samples, they
are all asymptotically equivalent. 
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Corollary 3.1.  Suppose conditions (i)-(vii).  Suppose W(θ) is continuously differentiable in
a neighborhood of θo, and that the derivatives of Wn(θ) converge uniformly in probability limit to
the derivatives of W(θ) on a neighborhood of θo.  Then Tn* = argminθ�Θ ½gn(θ)�Wn(θ)gn(θ) with
Wn(θ) treated as a function of θ is asymptotically equivalent to the GMM estimator Tn that satisfies
(12); i.e., n1/2(Tn* - Tn) �p 0, implying Tn* is CAN with the limiting distribution (5).  Also, variants
of GMM estimators that solve (12) or (13), obtained by replacing terms with terms that have the
same probability limit, are also asymptotically equivalent to Tn, and to a limiting GMM estimator
that satisfies

(14) 0 = -G�WΩ1/2Un + G�WG n1/2(Tn-θo).

Proof:  Letting Qn(θ) = ½gn(θ)�Wn(θ)gn(θ) now denote the GMM criterion with the distance metric
treated as a function of θ, the estimator Tn* satisfies n·Qn(Tn*) � n·Qn(θo) = Op(1), implying by
Theorem 1 that Tn* is consistent and n1/2gn(Tn*) and n1/2·(Tn* - θo) are stochastically bounded.  The
final term in the first-order condition (13), vec [tr{[�Wn(Tn*)/�θr] n1/2gn(Tn*)gn(Tn*)�}], contains the
product of an array [�Wn(Tn*)/�θr] that converges in probability to a finite array [�W(θo)/�θr] by
Lemma 4, the stochastically bounded term n1/2gn(Tn*), and the term gn(Tn*) that converges in
probability to zero.  By Lemma 2, the product of these terms converges in probability to zero.
Substituting (8) into (13) then gives

0 = Gn(Tn*)�Wn(Tn*) Ω1/2Un - Gn(Tn*)�Wn(Tn*) Gn n1/2(Tn*-θo) + op.

Using the consistency and stochastic boundedness of Tn* and Lemmas 2 and 4, this expression can
be written

0 =  G�WΩ1/2Un - G�WG n1/2(Tn*-θo) + op,

implying that n1/2(Tn*-Tn) = op.  Further, this argument can be applied with any of the terms in (12)
or (13) replaced by expressions with the same probability limit, establishing that all such variants
are asymptotically equivalent to the Tn that solves (14).  �

The asymptotic covariance matrices (G�WG)-1G�WΩWG(G�WG)-1 or B-1 =  (G�Ω-1G)-1 can
be estimated using Gn(τn) and Ωn(τn), where τn is any consistent (preliminary) estimator of θo, by
Lemmas 3 and 4.  A practical procedure for estimation is to first estimate θo using the GMM criterion
with an arbitrary Wn, such as the m×m identity matrix Im.  This produces an initial CAN estimator
τn.  Then use the formulas above to estimate the asymptotically efficient Wn = Ωn(τn)-1, and use the
GMM criterion with this distance metric to obtain the final estimator Tn.  

Differentiating the identity 0 � �g(z,θ)el(z,θ)dz with respect to θ, and evaluating the result at
θo  yields the condition  

(15) Γ � Eg(z,θo)�θl(z,θo)� � -E�θg(z,θo) � G.   

It will sometimes be convenient to estimate G by 
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(16) Γn = g(zt,τn)�θl(zt,τn)�. 
1
n �

n

t�1

In the maximum likelihood case g = �θl, one has Ω = Γ = E[�θl(zt,θo)]�[�θl(zt,θo)]� and by the
information equality, G = -E �θθl(zt,θo) = E[�θl(zt,θo)]�[�θl(zt,θo)]� = Ω, so that the asymptotic
covariance matrix of the unconstrained estimator simplifies to Ω-1.

Using (16), one has Γn�Ωn
-1 = .  But each row�

n

t�1
�θl(zt,τn)g(zt,τn)� �

n

t�1
g(zt,τn)g(zt,τn)�

�1

of this array can be interpreted as the coefficients obtained from an OLS regression of the
corresponding component of �θl(zt,τn) on g(zt,τn).  Then the right-hand side of the first-order
condition for a best GMM estimator, 0 = Γn�Ωn

-1gn(Tn), can be usefully interpreted as the projection
of �θl(zt,τn) onto the subspace spanned by g(zt,τn).  This is then the linear combination of g(zt,τn) that
most closely approximates �θl(zt,τn).  The GMM estimator Tn sets this approximate score to zero.
One implication of this result is that if g(zt,τn) = �θl(zt,τn), then the projection returns this vector and
Γn�Ωn

-1 is the identity matrix.  Another implication is that if g(zt,τn) contains �θl(zt,τn) plus other
moments, then Γn�Ωn

-1 will be the horizonal concatination of an identity matrix and a matrix of zeros,
so that the GMM first-order condition coincides with the condition for MLE, and the added moments
are given zero weight.  Then, the added moments add no information and cannot improve asymptotic
efficiency. 

2.  THE NULL HYPOTHESIS AND THE CONSTRAINED GMM ESTIMATOR

Suppose there is an r-dimensional null hypothesis on the data generation process, 

(17) Ho:a(θo) = 0, 

where a(�) is a r×1 vector of continuously differentiable functions and the r×k matrix A � �θa(θo) has
rank r.  The null hypothesis may be linear or nonlinear.  A particularly simple case is Ho: θ = θo, or
a(θ) � θ - θo, so the parameter vector θ is completely specified under the null.  Other examples are
a(θo) = θ1o, a linear hypothesis that the first parameter is zero, and a(θo) = (θ10/θ20 - θ30/θ40), a
non-linear hypothesis that two ratios of parameters are equal.  In general there will be k-r parameters
to be estimated when one imposes the null. 

We will consider alternatives to the null of the form 

(18) H1: a(θo) � 0,  

or asymptotically local alternatives of the form 

(19) H1n: a(θo) = δn-1/2 � 0. 
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More precisely, for local alternatives we consider the sequence of problems where l(z,θ) is the log
likelihood of an observation, θno = θo - A(A�A)-1δn-1/2 is the sequence of true parameter values, and
an(θ) = δn-1/2 + A(θ-θo) is the sequence of (locally linear) constraints.  These problems then satisfy
an(θno) = 0 and an(θo) = δn-1/2.  In econometric analysis, interesting alternatives are often sufficiently
“local” in large samples so that asymptotic distributions under local alternatives give good estimates
of power.  

One can define a constrained GMM estimator by optimizing the GMM criterion subject to
the null hypothesis: 

(20) Tan = argminθ�ΘQn(θ)    subject to     a(θ) = 0.  

For local alternatives, the constraints become an(θ) = δn-1/2 + A(θ-θo). The following result establishes
consistency of Tan under the null hypothesis or local alternatives:

Lemma 3.5. Assume conditions (i)-(vii) in Theorem 1.  Assume that under the null hypothesis
the true parameter vector θo satisfies the constraints a(θo) = 0, and that in the sequence of local
alternative problems the true parameter vectors θno = θo - A(A�A)-1δn-1/2 satisfy the sequence of
constraints an(θ) = δn-1/2 + A(θ-θo) = 0.  Then Tan �p θo and n1/2·(Tan - θo) is stochastically bounded.

Proof:  Under the null hypothesis, a(θo) = 0 implies n·Qn(Tan) �  n·Qn(θo).  From the preliminary step
in the proof of Theorem 1,  n·Qn(θo) is stochastically bounded.  Then, Theorem 1 establishes that
Tan is consistent and n1/2·(Tan - θo) is stochastically bounded.  Under the sequence of local alternatives,
an(θno) = 0, implying that 

n·Qn(Tan) �  n·Qn(θno) = [n1/2·gn(θno)]�Wn[n1/2·gn(θno)]
 = [n1/2·gn(θo) + GnA�(AA�)-1δ]�Wn[n1/2·gn(θo) + GnA�(AA�)-1δ],

where Gn is evaluated at points between θno and θo.  Theorem 1 established that n1/2·gn(θo) is
stochastically bounded. The continuity of G(θ) established in the proof of Theorem 1 and the
compactness of Θ imply that GnA�(AA�)-1δ is stochastically bounded.  Together, these results imply
that n·Qn(Tan) is stochastically bounded, and hence by Theorem 1 that Tan - θno �p 0 and n1/2·(Tan - θno)
is stochastically bounded.  Then, n1/2(θno - θo) = -A(A�A)-1δ implies Tan �p θo and n1/2·(Tan - θo)
stochastically bounded.  �

Next consider asymptotic normality of the constrained estimator under the null or local
alternatives.  Define a Lagrangian for Tan: Ln(θ,γ) = Qn(θ) - a(θ)�γ.  In this expression, γ is the r×1
vector of undetermined Lagrangian multipliers; these will be non-zero when the constraints are
binding.  The first-order conditions for solution of the constrained optimization problem are 

(21)  = .  
0
0

n1/2 �θQn(Tan) � �θa(Tan)�n
1/2 γan

�n1/2 a(Tan)
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The Lagrangian multipliers γan are random variables.  Lemma 5, and when applicable the argument
given in the proof of Corollary 1, imply �θQn(Tan) �p -G�WEg(z,θo) = 0.  Further, �θa(Tan) �p A,
implying A�γan = -�θQn(Tan) + op �p 0, and since A is of full rank, γan �p 0.  

We next outline the argument for asymptotic normality, which parallels the argument given
in Theorem 1 for the unconstrained estimator, and relate the asymptotic distributions of Tn, Tan, and
γan.   Noting that Tan satisfies (8), and then approximating Gn by G and Wn by W, one gets

n1/2gn(Tan) = n1/2gn(θo) - Gn n1/2(Tan - θo) = Ω1/2Un - G n1/2(Tan - θo) + op

and n1/2�θQn(Tan) = G�W n1/2gn(Tan) + op.  Under local alternatives (or the null when δ = 0),

n1/2a(Tan) = n1/2a(θo) + A n1/2(Tan - θo) + op � δ + A n1/2(Tan - θo) + op.

Substituting these in the first-order conditions and letting C = G�WG yields

(22)                            =  + op. 
0
0

G´WΩ1/2Un

�δ
�

C A�
A 0

n 1/2(Tan � θo)

n 1/2γan

As a shorthand, write C = G�WG.  From the formulas for partitioned inverses,  

                        = , 
C A�
A 0

�1 C �1
�C �1A�(AC �1A�)�1AC �1 C �1A�(AC �1A´)�1

(AC �1A´)�1AC �1
�(AC �1A´)�1

Applying this to (22) yields 

(23)    
n 1/2(Tan � θo)

n 1/2γan

�

�C �1A�(AC �1A�)�1

(AC �1A�)�1
δ �

C �1
�C �1A�(AC �1A�)�1AC �1

(AC �1A�)�1AC �1
G�WΩ1/2Un�op.

From Corollary 1, n1/2(Tn-θo) = C-1G�WΩ1/2Un + op.  Substitute this in (26) to conclude that 

(24)                  n1/2(Tn-Tan) = C-1A�(AC-1A�)-1AC-1G�WΩ1/2Un + C-1A�(AC-1A�)-1δ + op. 

Note that An1/2(Tn-Tan) = AC-1G�WΩ1/2Un + δ + op, and that n1/2(Tn-Tan) can be represented as the linear
transformation C-1A�(AC-1A�)-1 of An1/2(Tn-Tan). We also have

(25) n1/2a(Tn) = n1/2a(θo) + A n1/2(Tn - θo) + op = AC-1G�WΩ1/2Un + δ + op.

The expansion n1/2gn(Tan) = G�WΩ1/2Un - G�WG n1/2(Tan - θo) + op combined with (23) implies
n1/2gn(Tan) = (Im - GC-1G�W + GC-1A�(AC-1A�)-1AC-1G�W)Ω1/2Un + GC-1A�(AC-1A�)-1δ + op, and
n1/2�θQn(Tan) = G�W n1/2gn(Tan) = A�(AC-1A�)-1AC-1G�WΩ1/2Un + A�(AC-1A�)-1δ + op.  Then,

(26) AC-1n1/2�θQn(Tan) = AC-1G�Wn1/2gn(Tan) + op = AC-1G�WΩ1/2Un + δ + op.
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Table 1 summarizes these results.  The table shows that the r×1 vectors An1/2(Tn-Tan), n1/2a(Tn),
(AC-1A�)n1/2γan, and AC-1n1/2�θQn(Tan) all equal AC-1G�WΩ1/2Un + δ + op.  Consequently, they are
asymptotically equivalent and asymptotically normal with mean δ and non-singular covariance
matrix A(G�WG)-1G�WΩWG(G�WG)-1A�.  This table shows that all the statistics can be expressed
as linear transformations of n1/2(Tn-θo).  This makes it simple to determine the asymptotic
distributions of tests that use these statistics.

The asymptotic covariance matrices for the Table 1 statistics follow from their formulas and
the result that Un  is asymptotically standard normal, and are given in Table 2.  For a best GMM
estimator, with W = Ω-1 implying that H � G�WΩWG = G�Ω-1G = C = B, the asymptotic covariance
matrices simplify considerably.  The asymptotic covariances matrices always satisfy

acov(Tn-Tan) = acov(Tn) + acov(Tan) - acov(Tn ,Tan) - acov(Tan ,Tn),

but for a best GMM estimator one has acov(Tn ,Tan) = acov(Tan), giving the simplification

(27) acov(Tn-Tan) = acov(Tn) - acov(Tan)

or the variance of the difference equals the difference of the variances.  This proposition is familiar
in a maximum likelihood context where the variance in the deviation between an efficient estimator
and any other estimator equals the difference of the variances.  We see here that it also applies to
relatively efficient GMM estimators that use available moments and constraints optimally.  



14

Table 1.  The Statistics and their Relationships

Statistic Formula (with C = G�WG) Transformations of Other Statistics
1 n1/2gn(θo) Ω1/2Un + op ���

2 n1/2(Tn-θo) C-1G�WΩ1/2Un + op C-1G�Wn1/2gn(θo)
3 n1/2(Tan-θo) -C-1A�(AC-1A�)-1δ + [C-1-C-1A�(AC-1A�)-1AC-1]G�WΩ1/2Un + op n1/2(Tn-θo) - C-1A�(AC-1A�)-1 n1/2a(Tn)
4 n1/2(Tn-Tan) C-1A�(AC-1A�)-1δ + C-1A�(AC-1A�)-1AC-1G�WΩ1/2Un + op C-1A�(AC-1A�)-1 n1/2a(Tn)
5 A n1/2(Tn-Tan) δ + AC-1G�WΩ1/2Un + op n1/2a(Tn)
6  n1/2γan (AC-1A�)-1δ + (AC-1A�)-1AC-1G�WΩ1/2Un + op (AC-1A�)-1 n1/2a(Tn)
7 AC-1A�n1/2γan δ + AC-1G�WΩ1/2Un + op n1/2a(Tn)
8  n1/2a(Tn) δ + AC-1G�WΩ1/2Un + op δ + A n1/2(Tn-θo)
9  n1/2

�θQn(Tan) A�(AC-1A�)-1δ + A�(AC-1A�)-1AC-1G�WΩ1/2Un + op A�(AC-1A�)-1 n1/2a(Tn)
10 AC-1n1/2

�θQn(Tan) δ + AC-1G�WΩ1/2Un + op n1/2a(Tn)

Table 2. Asymptotic Covariance Matrices
(Note: B = G�Ω-1G, C = G�WG, H = G�WΩWG)

Statistic Asymptotic Covariance Matrix Asymptotic Covariance Matrix if W = Ω-1

1 n1/2gn(θo) Ω Ω
2 n1/2(Tn-θo) C-1HC-1 B-1

3 n1/2(Tan-θo) [C-1-C-1A�(AC-1A�)-1AC-1]H[C-1-C-1A�(AC-1A�)-1AC-1] B-1 - B-1A�(AB-1A�)-1AB-1

4 n1/2(Tn-Tan) C-1A�(AC-1A�)-1AC-1HC-1A�(AC-1A�)-1AC-1 B-1A�(AB-1A�)-1AB-1

5 A n1/2(Tn-Tan) AC-1HC-1A� AB-1A�

6  n1/2γan (AC-1A�)-1AC-1HC-1A�(AC-1A�)-1 (AB-1A�)-1

7 AC-1A�n1/2γan AC-1HC-1A� AB-1A�

8  n1/2a(Tn) AC-1HC-1A� AB-1A�

9  n1/2
�θQn(Tan) A�(AC-1A�)-1AC-1HC-1A�(AC-1A�)-1A A�(AB-1A�)-1A

10 AC-1n1/2
�θQn(Tan) AC-1HC-1A� AB-1A�
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3.  THE TEST STATISTICS

The test statistics for the null hypothesis fall into three major classes, sometimes called the
trinity.  Wald statistics are based on deviations of the unconstrained estimates from values consistent
with the null.  Lagrange Multiplier (LM) or Score statistics are based on deviations of the
constrained estimates from values solving the unconstrained problem.  Distance metric statistics for
best GMM estimators are based on differences in the GMM criterion between the unconstrained and
constrained estimators.  In the case of maximum likelihood estimation, the distance metric statistic
is asymptotically equivalent to the likelihood ratio statistic.  There are several variants for Wald
statistics in the case of the general non-linear hypothesis; these reduce to the same expression in the
simple case where the parameter vector is completely determined under the null.  The same is true
for LM statistics.  There are often significant computational advantages to using one member or
variant of the trinity rather than another.  On the other hand, the Wald and LM statistics are all
asymptotically equivalent, and for best GMM estimators the distance metric statistic is also
asymptotically equivalent  Thus, at least to first-order asymptotic approximation, there is no
statistical reason to choose between them.  This pattern of first-order asymptotic equivalence for
GMM estimates is exactly the same as for maximum likelihood estimates.  

Table 3 gives the test statistics that can be used for the hypothesis a(θo) = 0.  For best GMM
estimators with W = Ω-1, the full trinity of tests are available.  Some of the test statistics that are
available for best GMM estimators do not have versions that are asymptotically equivalent for
general GMM estimators, and the corresponding cells are omitted from the table.  In Section 6, we
consider important special cases, including maximum likelihood and nonlinear least squares.  In
particular, in these special cases, or when the hypothesis is that a subset of the parameters are
constants, there are some simplifications of the test statistics, and some versions are
indistinguishable.

The central result is that all of the test statistics in each column are asymptotically equivalent
under the null hypothesis or a local alternative to the null.  Under the null, they have a common
limiting chi-square distribution with degrees of freedom r equal to the dimension of the null
hypothesis.  Under a local alternative, they have a common limiting non-central chi-square
distribution with r degrees of freedom and non-centrality parameter  δ�[AC-1HC-1A�]-1 δ  in the
general case and δ�(AB-1A�)-1δ in the best estimator case.  It is useful to relate the expression for the
non-centrality parameter to outputs from econometric estimation packages.  Typically, a package that
does GMM estimation, or one of its specializations such as maximum likelihood or non-linear least
squares, will automatically estimate Ωn

-1 and use it as the distance metric, and will supply an estimate
V of the covariance matrix of the estimates; namely V = (Gn�Ωn

-1Gn)-1/n, where Gn and Ωn are
estimates of G and Ω respectively.  If the alternative to the null is H1: a(θo) = c, then δ = cn1/2, and
the non-centrality parameter written in terms of V and c is δ�(AB-1A�)-1δ = c�(AVA�)-1c.  These result
will be stated formally and proved following some general observations on the various test statistics.
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Table 3.  Test Statistics for GMM Estimators
(Note: B = G�Ω-1G, C = G�WG, H = G�WΩWG)

General Estimators with W � Ω-1 Best Estimators with W = Ω-1

Wald Statistics 

   W1n na(Tn)�[AC-1HC-1A�]-1a(Tn) na(Tn)�[AB-1A�]-1a(Tn)
 W2n, flavor 1 n(Tn-Tan)�acov(Tn - TAn)�(Tn -Tan) n(Tn-Tan)�{acov(Tn) - acov(TAn)}�(Tn -Tan)
W2n, flavor 2       n(Tn-Tan)�A�[AC-1HC-1A�]-1A(Tn-Tan)         n(Tn-Tan)�A�(AB-1A�)-1A(Tn-Tan)

   W3n � � \� n(Tn-Tan)�B(Tn-Tan)

Lagrange Multiplier Statistics
   LM1n nγan�AC-1A�[AC-1HC-1A�]-1AC-1A� γan nγan�AB-1A�γan

   LM2n, flavor 1 n�θQn(Tan)�[A�(AC-1A�)-1AC-1HC-1A�(AC-1A�)-1A]��θQn(Tan) n�θQn(Tan)�{A�(AB-1A�)-1A�}��θQn(Tan)
   LM2n, flavor 2       n�θQn(Tan)�A�[AC-1HC-1A�]-1A�θQn(Tan)  n�θQn(Tan)�B-1A�(AB-1A�)-1AB-1

�θQn(Tan)
   LM3n � � � n�θQn(Tan)�B-1

�θQn(Tan)

Distance Metric Statistic 

 DMn � � � 2n[Qn(Tan) - Qn(Tn)]

Asymptotic Distribution
Under the Null: χ2(r) χ2(r)

Asymptotic Distribution
Under Local Alternatives χ2(r,nc) χ2(r,nc)

Non-centrality Parameter (nc) δ�(AC-1HC-1A�)-1δ δ�(AB-1A�)-1δ
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FIGURE 1.  GMM TESTS

0 

0.5 

1 

1.5 

2 

0.1 0.2 0.3 0.4 0.5 

GMM Criterion Function
Quadratic
Approximation
through Null

Quadratic
Approximation
through Optimum

Optimum Null

a

b

c

d

Figure 1 illustrates the relationship between distance metric (DM), Wald (W), and Score
(LM) tests for a best GMM estimator.  In the case of maximum likelihood estimation, this figure is
inverted, the criterion is log likelihood rather than the distance metric, and the DM test is replaced
by the likelihood ratio test.  The “Optimum” and “Null” points on the θ axis give the unconstrained
(Tn) and constrained (Tan) estimators, respectively.  The GMM criterion function is plotted, along
with quadratic approximations to this function through the respective arguments Tn and Tan.  The
Wald statistic (W) can be interpreted as twice the difference in the height at Tn and Tan of the
quadratic approximation through the optimum; the height d in the figure.  The Lagrange Multiplier
(LM) statistic can be interpreted as twice the difference in the height at Tn and Tan of the quadratic
approximation through the null; the difference a - b in the figure.  The Distance Metric (DM) statistic
is twice the difference in the height at Tn and Tan of the GMM criterion, the height c in the figure.
Note that if the criterion function were exactly quadratic, then the three statistics would be identical.

The Wald statistic W1n asks how close are the unconstrained estimators to satisfying the
constraints; i.e., how close to zero is a(Tn)?  This variety of the test is particularly useful when the
unconstrained estimator is available and the matrix A is easy to compute.  For example, when the
null is that a subvector of parameters equal constants, then A is a selection matrix that picks out the
corresponding rows and columns of acov(Tn) = C-1HC-1 (which reduces to B-1 for a best estimator),
and this test reduces to a quadratic form with the deviations of the estimators from their hypothesized
values in the wings, and the inverse of their asymptotic covariance matrix in the center.  In the
special case Ho: θ = θo, one has A = Ik.

The Wald test W2n is useful if both the unconstrained and constrained estimators are
available.  For best GMM estimation, its first version requires only the readily available asymptotic
covariance matrices of the two estimators, but for r < k requires calculation of a generalized inverse.
Algorithms for this are available, but are often not as numerically stable as classical inversion



18

algorithms because near zero and exact zero characteristic roots are treated very differently.  The
second version of W2n, available for either general or best GMM estimators, involves only ordinary
inverses, and is potentially quite useful for computation in applications.  

The Wald statistic W3n, which is only available for best GMM estimators, treats the
constrained estimators as if they were constants with a zero asymptotic covariance matrix.  This
statistic is particularly simple to compute when the unconstrained and constrained estimators are
available, as no matrix differences or generalized inverses are involved, and the matrix A need not
be computed.  The statistic W2n is at least as large as W3n in finite samples, since the center of the
second quadratic form is acov(Tn)-1 and the center of the first quadratic form is {acov(Tn) -
acov(Tan)}�, while the tails are the same.  Nevertheless, the two statistics are asymptotically
equivalent.

The approach of Lagrange multiplier or score tests is to calculate the constrained estimator
Tan, and then to base a statistic on the discrepancy from zero at this argument of a condition that
would be zero if the constraint were not binding.  The statistic LM1n asks how close the Lagrangian
multipliers γan, measuring the degree to which the hypothesized constraints are binding, are to zero.
This statistic is easy to compute if the constrained estimation problem is actually solved by
Lagrangian methods, and the multipliers are obtained as part of the calculation.  The statistic LM2n
asks how close to zero is the gradient of the distance criterion, evaluated at the constrained estimator.
This statistic is useful when the constrained estimator is available and it is easy to compute the
gradient of the distance criterion, say using the algorithm to seek minimum distance estimates.  The
second version of LM2n  avoids computation of a generalized inverse.  

The statistic LM3n, available for best GMM estimators, bears the same relationship to LM2n
that W3n bears to W2n.  This flavor of the test statistic is particularly convenient to calculate when the
gradient of the likelihood function is available, as it can be obtained by two auxiliary regressions
starting from the constrained estimator Tan:   
  

a.  Regress �θl(zt,Tan)� on g(zt,Tan), and retrieve fitted values �θl*(zt,Tan)�.  

b.  Regress 1 on �θl*(zt,Tan), and retrieve fitted values �t.  Then LM3n = �t
2 .  1

n �
n

t�1

For MLE, g = �θl and the first regression is redundant, so that this procedure reduces to OLS.  
Another form of the auxiliary regression for computing LM3n is available in the case of

non-linear instrumental variable regression.  Consider the model yt = h(xt,θo) + �t with E(�t�wt) = 0
and E(�t

2�wt) = σ2, where wt is a vector of instruments.  Define zt = (yt,xt,wt) and g(zt,θ) =
wt[yt-h(xt,θ)].  Then Eg(z,θo) = 0 and Eg(z,θo)g(z,θo)� = σ2Eww�.  The GMM criterion Qn(θ) for this
model is 

(28) ( wt(yt - h(xt,θ))�( wtwt�)-1( wt(yt-h(xt,θ))/2σ2. 1
n �

n

t�1

1
n �

n

t�1

1
n �

n

t�1

Optimization is not affected by the scalar σ2.  Consider the hypothesis a(θo) = 0, and let Tan be the
constrained GMM estimator.  One can compute LM3n by the following method: 
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a.  Regress �θh(xt,Tan) on wt, and retrieve the fitted values �θ�t.  
b.  Regress the residual ut = yt - h(xt,Tan) on �θ�t, and retrieve the fitted values ût.

Then LM3n = n ût
2� ut

2 � nR2, with R2 the uncentered multiple correlation coefficient.�
n

t�1
�

n

t�1

Note that this is not in general the same as the standard R2 produced by OLS programs, since the
denominator of that definition is the sum of squared deviations of the dependent variable about its
mean.  When the dependent variable has mean zero, the centered and uncentered definitions
coincide.  

The approach of the distance metric test is based on the difference between the values of the
distance metric at the constrained and unconstrained estimates.  It has a limiting chi-square
distribution and is asymptotically equivalent to the other members of the trinity only for best GMM
estimators.  This estimator is particularly convenient when both the unconstrained and constrained
estimators can be computed, and the estimation algorithm returns the goodness-of-fit statistics.  In
the case of linear or non-linear least squares, this is the familiar test statistic based on the sum of
squared residuals from the constrained and unconstrained regressions. 

The statistical properties of the trinity are summarized in the following theorem:
 

Theorem 3.2. Assume the regularity conditions (i)-(vii).  For general GMM estimation with
W � Ω-1, the statistics in the middle column of Table 3 are asymptotically equivalent, and are
asymptotically distributed central chi-square with r degrees of freedom under the null hypothesis,
and non-central chi-square with r degrees of freedom and a non-centrality parameter
δ�(AC-1HC-1A�)-1δ under local alternatives.  For best GMM estimation with W = Ω-1, the statistics
in the last column of Table 3 are asymptotically equivalent, and are asymptotically distributed chi-
square with r degrees of freedom under the null hypothesis, and non-central chi-square with r
degrees of freedom and a non-centrality parameter δ�(AB-1A�)-1δ under local alternatives.

Proof:  Define Vn = (AC-1HC-1A�)-1/2 n1/2a(Tn) = (AC-1HC-1A�)-1/2{δ + AC-1G�WΩ1/2Un} + op.
This vector has mean (AC-1HC-1A�)-1/2δ and covariance matrix Ir.  But the sum of squares of a normal
random vector with an identity covariance matrix is non-central chi-square with degrees of freedom
equal to its dimension and non-centrality parameter equal to the sum of squares of its mean.  This
implies that Vn�Vn = n1/2a(Tn)�(AC-1HC-1A�)-1n1/2a(Tn) has this asymptotic distribution with degrees
of freedom r and non-centrality parameter δ�(AC-1HC-1A�)-1δ.  This establishes the asymptotic
distribution of W1n.  From Table 1, the statistics An1/2(Tn-Tan), (AC-1A�)n1/2γan, and AC-1n1/2�θQn(Tan)
all equal n1/2a(Tn) up to order op.  Hence, quadratic forms in these statistics, with the center
(AC-1HC-1A�)-1, will all be asymptotically equivalent to Vn�Vn. This establishes the asymptotic
equivalence of W1n, W2n, LM1n, and LM2n.  These results for W2n and LM2n establish the Moore-
Penrose generalized inverse formulas acov(Tn - Tan)� = A�[AC-1HC-1A�]-1A for general GMM
estimators and {acov(Tn) - acov(Tan)}� = A�(AB-1A�)-1A for best GMM estimators, and show that the
alternative flavors of W2n and LM2n are asymptotically equivalent.  This equivaence could also have
been established by application of Lemma 4 in the appendix to this chapter.

The asymptotic equivalence of W2n and W3n for best GMM estimators is established from the
formula n1/2(Tn-Tan) = B-1A�(AB-1A�)-1δ + B-1A�(AB-1A�)-1AB-1G�Ω-1/2Un + op.  Premultiplying by
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(AB-1A�)-1/2A gives Vn = (AB-1A�)-1/2{δ + AB-1G�Ω-1/2Un} + op, and W2n = Vn�Vn.  Premultiplying by
B1/2  gives Vn* = B-1/2A�(AB-1A�)-1{δ + AB-1G�Ω-1/2Un} + op  = B-1/2A�(AB-1A�)-1/2 Vn. + op. and W3n
= Vn*�Vn* = Vn�Vn  + op = W2n + op.  This result could also have been obtained using Appendix
Lemma 4 by observing that the asymptotic covariance matrix B-1A�(AB-1A�)-1AB-1 of n1/2(Tn-Tan) is
A�(AB-1A�)-1A, and that B also satisfies the Appendix condition (i) for a generalized inverse.  A
similar argument  establishes the asymptotic equivalence of LM2n and LM3n:  premultiply the
expression n1/2�θQn(Tan) = A�(AB-1A�)-1δ + A�(AB-1A�)-1AB-1G�Ω-1/2Un + op by, respectively,
(AB-1A�)-1/2AB-1 and B-1/2, and observe that the inner products of two vectors that result are to order
op equal to LM2n and LM3n and equal to each other.
   Make a Taylor's expansion of n1/2gn(Tan) about Tn:  n1/2gn(Tan) = n1/2gn(Tn) + Gn n1/2(Tan - Tn) + op. 
Substitute this in the expression for DMn and use the fact that Gn�Wn n1/2gn(Tn) = 0 to obtain 

(29)   DMn = 2n{Qn(Tan) - Qn(Tn)} = n1/2gn(Tn)�Gn�Wn n1/2gn(Tn) 
      + 2 n1/2(Tan - Tn)�Gn�Wn n1/2gn(Tn) + n1/2(Tan - Tn)�Gn�WnGn n1/2(Tan - Tn) +

op  
= n(Tan-Tn)�G�WG(Tan-Tn) + op.

Then, for best GMM estimators, G�WG = B and DMn = W3n + op.  
For general GMM estimators with W � Ω-1, the quadratic form n(Tn-Tan)�acov(Tn)-1(Tn-Tan)

that would define W3n, and the quadratic form n�θQn(Tan)acov(Tn)�θQn(Tan) that would define LM3n
fail to have representations as inner products of asymptotically normal vectors with idempotent
covariance matrices, and hence fail to have limiting chi-square distributions.  From (29), DMn is
asymptotically equivalent to n(Tan-Tn)�C(Tan-Tn), which also fails to have a representation as the inner
product of a vector with an idempotent covariance matrix.  This shows that the statistics W3n, LM3n,
and DMn are not available for general GMM estimators where W � Ω-1.  G 

4. TWO-STAGE GMM ESTIMATION

A common econometric problem is to do estimation when some parameters have already
been estimated from a previous stage, often on the same data.  One common case is where the
problem contains constructed variables whose construction depended on parameters estimated in a
previous round.  In general, the use of consistent estimates from a previous round will not cause a
problem with consistency in later stages, but it will add noise to the problem that appears in the
asymptotic covariance matrix of the later-stage estimators.

There are a few cases, such as feasible GLS with normal disturbances, where no correction
of the asymptotic covariance matrix is needed.  This is due in the GLS case to a block diagonality
in the information matrix between regression coefficients and parameters in the covariance matrix.
There is a simple rule, due to Whitney Newey, for determining whether previous stage estimation
will add something to the asymptotic covariance matrix in the current stage: There will be a
contribution if and only if consistency in the first stage is necessary for consistency in the second
stage.
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When a correction is required, the following generic GMM framework can be used to
establish the form of this correction.  Suppose one observes variables (x,y,z), where x is exogenous,
and (y,z) are variables whose behavior is being modeled.  Let f(y,z�x,α,β) be the joint density of the
observations, conditioned on x, with parameter vectors α and β.  Assume that it can be written

(30) f(y,z�x,α,β) = fc(z�x,y,α)fm(y�x,α,β)
or

(31) f(y,z�x,α,β) = fc(z�x,y,α,β)fm(y�x,α).

This is the standard decomposition of a joint density into a conditional density times a marginal
density, and the only restriction we are imposing is that we can parameterize (or reparameterize) the
problem so that either the conditional density or the marginal density does not depend on the
parameter β.  This corresponds to the usual situation in two-stage methods, where at the first stage
one looks at limited information that involves a subset of the full parameter vector.

One concrete example of this setup is sequential estimation of the parameters in a two-level
nested logit model, in which fc is the likelihood of choice at the lower level, conditioned on choice
of a upper level branch, and fm is the likelihood of choice among the upper level branches.  In this
application, the model can be parameterized so that upper branch parameters do not appear in fc.  A
second concrete example is two-step estimation of the Tobit model, in which y is an indicator for
whether the response is zero or positive, z is the quantitative level of the response, fc is the likelihood
of the quantitative response conditioned on whether it is zero or not, and fm is the likelihood of the
indicator.  In this example, the problem can be parameterized so that parameters that enter the
quantitative response likelihood do not enter the likelihood for the indicator.

Suppose in the first stage one estimates the parameter vector α using moments

(32) 0 = Enh(an;x,y,z),

where En denotes empirical expectation (or sample average).  If there are over-identifying moments,
assume that they are already weighted by the GMM criterion so that the dimension of h is the
dimension of α.  A necessary condition for consistency is Eh(α;x,y,z) = 0 if and only if α = αo.  An
important case is limited information maximum likelihood: h(α;x,y,z) = �αlc(z�x,y,α), where
lc = log fc; or h(α;x,y,z) = �αlm(y�x,α), where lm = log fm.

Suppose in the second stage one estimates a parameter vector β using moments

(33) 0 = Eng(bn,an;x,y,z),

where an is inserted from the previous stage.  Assume that g is defined, by GMM weighting if
necessary, so that its dimension equals the dimension of β.  Again, important cases are maximum
likelihood: g(β,α;x,y,z) = �βlm(y�x,α,β) or g(β,α;x,y,z) = �βlc(y�z,x,α,β), with α treated as if it were
known.  In the first of these cases, the moments g do not depend on z.  Whether or not g depends on
z turns out to make a substantial difference in the final covariance formula.  The case of constructed
variables is handled by writing them as functions of the parameters α that enter their construction.
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The original parameters of the problem may be estimated, perhaps in combination with other
parameters, in both the first and second stages.  The classification into α and β may require
reparameterization.  The following rules may help: If first-stage estimates of original parameters are
used solely as starting values for second-stage estimation of the same parameters, then classify these
as β parameters, as these first-stage estimates are only a computational device and have no influence
on the final solution of the second-stage moments.  If first stage  estimates of original parameters are
used for other purposes, such as construction of estimated variables, and are then reestimated in the
second stage, then they should appear in both α and β as separate parameters.  Of course, original
parameters estimated only at the first stage go into α, and original parameters estimated only at the
second stage go into β.

Make a Taylor's expansion of both the first-stage and the second-stage moment conditions
around the true βo and αo, and suppress the x,y,z arguments to simplify notation:

(34)  =  + op,
0
0

n 1/2
Enh(αo)

Eng(βo,αo)
�

A
B

n 1/2(an�αo) �

0
C

n 1/2(bn�βo)

where A = -plim En�αh(αo), B = -plim En�αg(βo,αo), and C = -plim En�βg(βo,αo).

The term n1/2  is asymptotically normal, by a central limit theorem, with a covariance
Enh(αo)

Eng(βo,αo)

matrix .  Solve the first block of equations and substitute them into the second block to
Ωhh Ωhg

Ωgh Ω»

obtain

(35) 0 = n1/2{Eng(βo,αo) + BA-1Enh(αo)} - Cn1/2(bn - βo) + op.

The term in braces on the right-hand-side of this expression has an asymptotic covariance matrix 

(36) Ωgg - BA-1Ωhg - ΩghA�-1B� + BA-1ΩhhA�-1B�.

Then, solving for n1/2(bn - βo), one obtains the result that its asymptotic covariance matrix is

(37) C-1{Ωgg - BA-1Ωhg - ΩghA�-1B� + BA-1ΩhhA�-1B�}C�-1

All the terms of this covariance matrix could be estimated from sample analogs,  computed at the
consistent estimates.  The following table summarizes consistent estimators for the various
covariance terms; recall that En denotes empirical expectation (sample average):
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Matrix Estimator

 C -En�βg(bn,an)
 B -En�αg(bn,an)
 A -En�αh(an)

 Ωhh Enh(an)h(an)�
 Ωgh Eng(bn,an)h(an)�
 Ωgg Eng(bn,an)g(bn,an)�

The terms Ωgh and Ωhh add to the asymptotic covariance matrix, relative to the case of αo known.  If
B = 0, there is no correction; this is the "block diagonality" case where β can be estimated
consistently even if the estimator of α is not consistent.   If α is estimated from an independent data
set, then Ωgh = 0, but one will still need a correction due to the contribution from Ωhh.  Also, if g does
not depend on z, then Ωgh = Ey�x{g�Ez�x,yh} = 0.  This is true, in particular, in the case that the second
stage estimator is marginal maximum likelihood in which z does not appear and α is treated as given.

The identities 0 � ��h exp(l)dzdy and 0 � ��g exp(l)dzdy can be differentiated to obtain the
conditions 

(38)     A � -E�αh = Eh��αl , B � -E�αg = Eg��αl , C � -E�βg = Eg��βl . 

If g does not depend on z, then Eg��αlc  = Ey�x(g�Ez�y,x�αlc) = 0, implying B = Eg�(�αlm)�.  Sample
averages of these outer products estimate the corresponding matrices consistently.  

Simplification occurs when the first stage is conditional maximum likelihood that does not
depend on β, and the second stage is marginal maximum likelihood that treats the first stage
parameter estimates as fixed.  Then, A = E�αlc�(�αlc)� = Ωhh ,  B = E�βlm�(�αlm)�, C = E�βlm�(�βlm)�
= Ωgg, and Ωhg = E�αlc(�βlm)� = 0, so that the covariance matrix is C-1 + C-1BA-1B�C-1.

Similarly, when the first stage is marginal maximum likelihood that does not depend on β,
and the second stage is conditional maximum likelihood treating α as fixed, one has
A = E�αlm�(�αlm)� = Ωhh , B = E�βlc�(�αlc)�, C = E�βlc�(�βlc)� = Ωgg, and Ωhg = E�αlc(�βlm)� = 0, and
the covariance matrix C-1 + C-1BA-1B�C-1.

The terms in these covariance matrix expressions involve sample averages of squares and
cross-products of scores (gradients) of first and second stage log likelihoods.   These should all be
obtainable as intermediate output from a maximum likelihood program, except for terms involving
the gradient of the second-stage likelihood with respect to α.  The latter would be simple to obtain
in a program like TSP, which does automatic analytic differentiation, or could be obtained by
numerical differentiation. 

Exercise 2: Consider the problem of Heckman two-stage estimation of a Tobit model, y = xθ +
σφ(xθ/σ)/Φ(xθ/σ) + ζ for y > 0, where E(ζ�y > 0 & x) = 0, and where the inverse Mills ratio is
calculated from a first-stage probit on the same data.   Reparameterize α = θ/σ and β = (θ,σ).  In
this case, h in the generic notation is the score of the marginal log likelihood for the probit, which
is influenced only by α, and g is the set of OLS orthogonality conditions, which depend on both
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α and β through the condition y = xθ + σφ(xα)/Φ(xα).  Work out the corrected asymptotic
covariance matrix for θ and σ.

Exercise 3: Consider the two-level nested multinomial logit model, with first stage estimation
applied to the lower level of the choice tree, and used to compute summary variables ("inclusive
values") that are then treated as variables in the second stage estimation.

5.  ONE-STEP THEOREMS 

Under standard regularity conditions, GMM estimators are locally linear, which means that
within a suitable neighborhood of the estimator, the first-order conditions for these estimators are
in large samples approximately linear, with higher-order terms being asymptotically negligible.  This
has an important practical implication: if one can get an initial estimator τn that is within the suitable
neighborhood, then one can get to the full GMM estimator, or at least an asyptotically equivalent
flavor of it, in one linear step.  This has the computational advantage that at this stage no iterative
computation is required, and the step can usually be carried out by a simple least squares regression.
This also has a useful statistical advantage: the asymptotic covariance matrix of the one-step
estimator will be the same as that of the GMM estimator, with its attendant efficiency properties,
rather than the possibly much more complex covariance matrix of the initial estimator.  For example,
the initial estimator might be the result of multiple-stage estimation, as described in the previous
section, with a covariance matrix of the form given in that section.  However, one linear step starting
from that estimator gives a result that is asymptotically equivalent to solving the full joint GMM
problem.  Alternately, one might start from initial GMM estimators, and in one step obtain a result
that is asymptotically equivalent to full maximum likelihood estimation.  Within the context of
hypothesis testing with GMM estimates, it is possible to go in one linear step from any suitable
initially consistent estimator to estimators that are asymptotically equivalent to either the
unconstrained or constrained GMM estimators.  

The first result based on these ideas is estimation of an expectation that depends on estimated
parameters.  Suppose one wishes to estimate Ezm(z,θo), where m is a vector of functions of random
variables z and a parameter vector θ that has true value θo.  If τn is any consistent estimator of θo, the
sample average of m(zt,θ) converges in probability to Ezm(z,θ) uniformly in θ, and Ezm(z,θ) is
continuous in θ, then

(39)    m(zt,τn) 	p Ezm(z,θo).
1
n �

n

t�1

This works because

(40) 
 	 0Prob( | 1
n �

n

t�1
m(zt,τn)�Ezm(z,τn)�>�) 1

n �
n

t�1
Prob(supθ�m(zt,θ)�Ezm(z,θ)�>�)

and Ezm(z,τn) 	 Ezm(z,θo).  Suppose one strengthens the requirement on τn to the condition that it
be n1/2-consistent, meaning that n1/2(τn - θo) is stochastically bounded, or for each � > 0 there exists
M > 0 such that 
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(41) Prob(�n1/2(τn - θo)� > M) < � for all n.

Suppose that m(z,θ) satisfies a Lipschitz condition at θo; i.e., there exists a function L(z) with a finite
expectation such that �m(z,θ) - m(z,θo)� 
 L(z)��θ - θo�.   Then the result holds without requiring
uniform convergence in probability for sample averages of m(z,θ).

The preceding result is useful for calculation of Wald or Lagrange Multiplier test statistics,
which require estimation of G(θo), Ω(θo), and/or A(θo).  The arrays Gn(θ), Ωn(θ), and An(θ) are
uniformly convergent, and the result establishes for any initial consistent estimator τn that Gn(τn) 	p
G(θo), Ωn(τn) 	p Ω(θo), and An(τn) 	p A(θo).  Then, using these estimates preserves the asymptotic
equivalence of the tests under the null and local alternatives.  In particular, one can evaluate terms
entering the definitions of these arrays at Tn, Tan, or any other consistent estimator of θo.  In sample
analogs that converge to these arrays by the law of large numbers, one can freely substitute sample
and population terms that leave the probability limits unchanged.  For example, if zt = (yt,xt) and τn
is any consistent estimator of θo, then Ω can be estimated by (1) an analytic expression for

Eg(z,θ)g(z,θ)�, evaluated at τn, (2) a sample average , or (3) a sample average1
n �

n

t�1
g(zt,τn)g(zt,τn)�

of conditional expectations evaluated at θ = τn.  It should be noted1
n �

n

t�1
Ey|x g(y,xt,θ)g(y,xt,θ)�

however that these first-order equivalences do not hold in finite samples, or even to higher orders
of n1/2.  Thus, there may be clear choices between these when higher orders of approximation are
taken into account.  

The second result, called the one-step theorem, considers the first-order condition associated
with a GMM criterion function, 0 = Gn�Ωn -1

 gn(θ).  Suppose one has an initial n1/2-consistent
estimator τn for θo.  A Taylor's expansion of the first-order condition about τn yields

Gn�Ωn -1 gn(θ) = Gn�Ωn
-1gn(τn) + Gn�Ωn

-1Gn(θ - τn) + O((θ - τn)2).

Then, a one-step approximation to the unconstrained GMM estimator is

(42) Ton = τn - (Gn�Ωn
-1Gn)-1Gn�Ωn

-1gn(τn).

A Taylor's expansion around θo of the GMM first-order condition, evaluated at τn, yields 

n1/2Gn�Ωn
-1gn(τn) = n1/2Gn�Ωn

-1gn(θo) + Gn�Ωn
-1Gn�n1/2(τn - θo) + op.

Combine this with the condition -Gn�Ωn
-1gn(τn) = Gn�Ωn

-1Gnn1/2(Ton - τn) to conclude that

 -n1/2Gn�Ωn
-1gn(θo) = Gn�Ωn

-1Gnn1/2(Ton - θo) + op,

and the condition 
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 -n1/2Gn�Ωn
-1gn(θo) = Gn�Ωn

-1Gnn1/2(Tn - θo) + op

to conclude that

(43) 0 = Gn�Ωn
-1Gnn1/2(Ton - Tn) + op,

so that Ton and Tn are asymptotically equivalent.
The one-step theorem can also be applied to the constrained GMM estimator.   Suppose the

null hypothesis, or a local alternative, a(θo) = δ�n-1/2, is true.   Define one-step constrained estimators
from the Lagrangian first-order conditions: 

(44)  =  -  .
Toan

γoan

τn

0

B A�
A 0

�1 �θQn(τn)

�a(τn)

Note in this definition that γ = 0 is a trivial initially consistent estimator of the Lagrangian multipliers
under the null or local alternatives, and that the arrays B and A can be estimated at τn.  The one-step
theorem again applies, yielding n-1/2(Toan-Tan) 	p 0 and n-1/2(γoan-γan) 	p 0.  Then, these one-step
equivalents can be substituted in any of the test statistics of the trinity without changing their
asymptotic distribution.  

A regression procedure for calculating the one-step expressions is often useful for
computation.  The adjustment from τn yielding the one-step unconstrained estimator is obtained by
a two-stage least squares regression of the constant one on �θl(zt,τn), with g(zt,τn) as instruments; i.e.,
 

a.  Regress each component of �θl(zt,τn) on g(zt,τn) in the sample t = 1,...,n, and retrieve fitted
values �θl*(zt,τn); 
b.  Regress 1 on �θl*(zt,τn); and adjust τn by the amounts of the fitted coefficients.  

Step (a) yields �θl*(zt,τn)� = g(zt,τn)Ωn
-1Γn, and step (b) yields coefficients  

∆ = �θl*(zt,τn)  �
n

t�1
[�θl

�(zt,τn)][�θl
�(zt,τn)]�

�1

�
n

t�1

 = (Γn�ΩnΓn)-1Γn�Ωngn(τn). 

This is the adjustment indicated by the one-step theorem.  
Computation of one-step constrained estimators is conveniently done using the formulas

 
(45) Toan = Ton - B-1A�(AB-1A�)-1a(Ton)  � τn + ∆ - B-1A�(AB-1A�)-1[a(τn) + A∆]  

γoan = -(AB-1A�)-1a(Ton) � -(AB-1A�)-1[a(τn) + A∆] 
 
with A and B evaluated at τn.  To derive these formulas from the first-order conditions for the
Lagrangian problem, replace �θQn(τn) by the expression -(Γn �Ωn

-1 Γn � )(Ton - τn) from the one-step
definition of the unconstrained estimator, replace a(τn) by a(Ton) + A(Ton - τn), and use the formula
for a partitioned inverse.  
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6.  SPECIAL CASES

Extremum Estimators.  Consider data z with a log likelihood function l(z,θo), where θo is the
true value of θ in the population.  Suppose f(z,θ) is a scalar function whose expectation is minimized
at θo; i.e., Ef(z,θ) � Ef(z,θo), with equality if and only if θ = θo.  For a random sample zi, i = 1,...,n,
consider the extremum estimator

(46) Tn = argminθ fn(θ)     where   fn(θ) �  f(zi,θ).1
n �

n

i�1

For the example f(z,θ) = -l(z,θ), the negative of the log likelihood function, the extremum estimator
is the maximum likelihood estimator.  Another example that is common in econometrics is the
non-linear least squares criterion with z = (x,y) and f(z,θ) = (yi - h(xi,θ))2/2, yielding the non-linear
least squares (NLLS) estimator.

Suppose that the function f(z,θ) is three times continuously differentiable in θ on an open
neighborhood of θo, almost surely in z.  Then, the population condition Ef(z,θ) � Ef(z,θo) implies the
moment condition E �θf(z,θo) = 0, and the extremum estimator Tn satisfies the first-order condition

0 = �θfn(Tn).  Differentiating the identity [�θf(z,θ)]�el(z,θ)dz � 0 yields the equality �z

(47) E[�θf(z,θ)][�θl(z,θ)]� + E �θθf(z,θ) � 0, 

called the generalized information equality.  In the maximum likelihood case f(z,θ) = -l(z,θ), this
implies E[�θf(z,θ)][�θf(z,θ)]� � E�θθf(z,θ).  However, the last equality is not true in general for
extremum criteria, only for those that produce estimators that are  asymptotically efficient (i.e.,
asymptotically equivalent to maximum likelihood).  Newey and McFadden (1994, Sect. 5.3) use this
observation to develop a general criterion for asymptotic efficiency of estimators.

The population moment condition can be used to define a GMM criterion,

(48) Qn(θ) = [�θfn(θ)]��Gn(θ)-1�[�θfn(θ)],

where 

(49) Gn(θ) =  �θθf(zi,θ) 	p G(θ) � E�θθf(z.θ).1
n �

n

i�1

The second-order condition for a locally unique extremum estimator is that G(θo) is positive
semi-definite, and definite at points in each neighborhood of θo.  Rule out pathological cases by
making the technical assumption that G(θo) is positive definite.  Then Gn(θ), evaluated at a
preliminary estimator τn that converges in probability to θo, is eventually positive definite, so that it
defines a legal distance metric.  The extremum estimator Tn satisfies Qn(Tn) = 0, so that it is also  a
GMM estimator.  Obviously, this result does not depend on the choice of the distance metric Gn(θ)-1,
or on whether Gn(θ) is treated as a constant array or as a function of θ in the process of optimization.
However, for estimation of θo subject to constraints and the development of test statistics, the GMM
criterion based on a consistent approximation to the distance metric G(θo)-1 is needed.  
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Because the unconstrained extremum estimator can be interpreted as an unconstrained GMM
estimator, its large sample statistical properties can be stated as a corollary of the statistical theory
of unconstrained GMM estimators.  In the following paragraphs, we show how these results extend
to estimators obtained under constraint, and how asymptotically equivalent test statistics can be
developed using the extremum and the GMM criteria.  As a consequence, it is unnecessary for most
problems to develop an asymptotic theory for extremum estimators separate from the asymptotic
theory for GMM estimators.  There are however several practical reasons to introduce and treat
extremum estimators separately from GMM estimators.  First, while an extremum estimator is a
GMM estimator, there may be other roots to the equation E �θf(z,θ) = 0, corresponding to other local
extrema of E f(z,θ).  To make a full equivalence between extremum estimators and GMM estimators,
one needs to either have an extremum criterion for which E �θf(z,θ) = 0 has a unique root, with other
local extrema ruled out, or one needs to augment the GMM criterion with a procedure that picks out
the "correct" root in probability limit.  An example of the first situation is a criterion for which E
f(z,θ) is a globally convex function of θ.   An example of the second situation is a procedure that in
probability limit finds all the roots of Qn(θ), and picks from among them the one that minimizes the
extremal criterion in the sample.  Second, it is usually computationally simpler to maximize a scalar
function than to find roots of a vector of functions, because the heigth of the extremum criterion can
be used to verify movement toward a solution and to test for convergence.

To examine more closely the relationship of extremum estimators and GMM estimators
based on the first-order conditions from the extremum problem, consider the respective estimators
when they are obtained subject to an r×1 vector of constraints a(θ) = 0.  The constrained extremum
problem has a Lagrangian L(θ,γ) = fn(θ) - γ�a(θ), where γ is a vector of Lagrange multipliers, and the
estimator Tan satisfies the  first-order condition 

(55)   = .
0
0

n 1/2
��θfn(Tan) � [�θa(Tan)]�n

1/2γan

n 1/2
�a(Tan)

Correspondingly, the constrained GMM estimator has a Lagrangian L(θ,γ) = Qn(θ) - γ�a(θ), and the
first-order condition

(56)  = .  
0
0

n 1/2
��θQn(Tan) � [�θa(Tan)]�n

1/2γan

n 1/2
�a(Tan)

If the distance metric Gn(θ)-1 is treated as an array of constants when the first-order conditions are
calculated, then

(57) n1/2��θQn(θ) = Gn(θ)�Gn(θ)-1n1/2��θfn(θ) = n1/2��θfn(θ),

so that the first-order condition for the constrained GMM problem coincides with the first-order
condition for the constrained extremum problem, and the constrained extremum estimators (Tan,γan)
are also constrained GMM estimators.  Under the regularity conditions of Theorem 1, Tan is CAN
under the null hypothesis or under local alternatives; see Section 2.  Alternately, suppose Gn(θ)-1 is
treated as a function of θ in forming the first-order conditions, so that one has
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(58)  n1/2��θQn(θ) = n1/2��θfn(θ) + vec{[n1/2��θfn(θ)]� [�θfn(θ)]},
�Gn(θ)�1

�θr

with the last term denoting a vector with elements corresponding to the components θr of θ for r =
1,...,k.  But the contribution of the last term is asymptotically negligible, so that the constrained
extremum estimator and this form of the constrained GMM estimator, while not necessarily
identical, are asymptotically equivalent.  

Maximum Likelihood.  We have noted that maximum likelihood estimation, with l(z,θ) the
log likelihood of an observation, can be treated as GMM estimation with moments equal to the score,
g = �θl.  The statistics in Table 2 remain the same, with the previously derived simplification that

B = Ω  = G = Γ.  The likelihood ratio statistic 2n[Ln(Tn) - Ln(Tan)], where Ln(θ) = l(zt,θ), is1
n �

n

t�1

shown by a Taylor's expansion about Tn to be asymptotically equivalent to the Wald statistic W3n,
and hence to all the statistics in Table 2.  Note that LR and DM occupy comparable places in the
trinity for maximum likelihood and GMM estimation respectively.

Suppose one sets up an estimation problem in terms of a maximum likelihood criterion, but
that one does not in fact have the true likelihood function.  Suppose that in spite of this
misspecification, optimization of the selected criterion yields consistent estimates.  One place this
commonly arises is when panel data observations are serially correlated, but one writes down the
marginal likelihoods of the observations ignoring serial correlation. These are sometimes called
pseudo-likelihood criteria.  The resulting estimators can be interpreted as GMM estimators, so that
hypotheses can be tested using the statistics in Table 2.  Note however that now G � -Ω, so that B
= G�Ω-1G must be estimated in full, and one cannot do tests using a likelihood ratio of the
pseudo-likelihood function.

Least Squares.  Consider the nonlinear regression model y = h(x,θ) + �, and suppose E(y�x)

= h(x,θ) and E((y-h(x,θ))2�x) = σ2. The least squares criterion Qn(θ) = (yt - h(zt,θ))2 is1
2n �

n

t�1

asymptotically equivalent to GMM estimation with g(z,θ) = (y-h(x,θ))�θh(x,θ) and a distance metric

Ωn = [�θh(x,θo)][�θh(x,θo)]�.  For this problem, B = Ω = G.  If h(zt,θ) = zt�θ is linear, oneσ2

2n �
n

t�1

has g(zt,θ) = ut(θ)zt, where ut(θ) = yt - zt�θ is the regression residual, and Ωn = ztzt�. 
1
n �

n

t�1

Instrumental Variables.  Consider the regression model yt = h(zt,θo) + �t where �t  may be
correlated with �θh(zt,θo).  Suppose there are instruments w such that E(�t�wt) = 0.  For this problem,
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one has the moment conditions g(yt,zt,wt,θ) = (yt - h(zt,θ))f(wt) satisfying Eg(yt,zt,wt,θo) = 0 for any
vector of functions f(w) of the instruments, so the GMM criterion becomes 

Qn(θ) = .  1
n �

n

t�1
(yt � h(zt,θ))f(wt)

´
1
n �

n

t�1
f(wt)f(wt)´

�1
1
n �

n

t�1
(yt � h(zt,θ))f(wt)

Suppose that it were feasible to construct the conditional expectation of the gradient of the regression
function conditioned on w, qt = E(�θh(zt,θo)�wt).  This is the optimal vector of functions of the
instruments, in the sense that the GMM estimator based on f(w) = q will yield estimators with an
asymptotic covariance matrix that is smaller in the positive definite sense than any other distinct
vector of functions of w.  A feasible GMM estimator with good efficiency properties may then be
obtained by first obtaining a preliminary consistent estimator τn employing a simple practical
distance metric, second regressing �θh(zt,τn) on a flexible family of functions of wt, such as low-order
polynomials in w, and third using fitted values from this regression as the vector of functions f(wt)
in a final GMM estimation.  Simplifications of this problem result when h(z,θ) = z�θ is linear in θ;
in this case, the feasible procedure above is simply 2SLS, and no iteration is needed.

Simple hypotheses.  An important practical case of the general nonlinear hypothesis a(θo) =
0 is that a subset of the parameters are zero.  (A hypothesis that parameters equal constants other
than zero can be reduced to this case by reparameterization.)  Assume θ� = (α�,β�) where β is of
dimension r and α is of dimension k-r, and Ho: β = 0.  The first-order conditions for solution of this
problem are 0 = �αQn(Tan), 0 = �βQn(Tan) + γan, implying γan = -�βQn(Tan), and A = [0 Ir] is a r×k
matrix whose first k-r columns are zero.   Let C � B-1 be the asymptotic covariance matrix of n1/2(Tn
- θo), and AB-1A� = Cββ the submatrix of C for β.  Taylor's expansions about Tn of the first-order
conditions imply n1/2(T1,n-T1,an) = -BααBαβ n1/2T2,n + op and n1/2γan = [Bββ-BβαBαα

-1Bαβ]n1/2T2,n + op =
β|n�Cββ

-1T2,n + op.  Then the Wald statistics are  

             W1n = nT2,n�Cββ
-1T2,n, W2n = n Cββ

-1 , 
T1,n�T1,an

T2,n

´ Bαβ

Bββ

Bβα Bββ

T1,n�T1,an

T2,n

                                       W3n = n B .
T1,n�T1,an

T2,n

´ T1,n�T1,an

T2,n

You can check the asymptotic equivalence of these statistics by substituting the expression for
n1/2(T1,n-T1,an).  The LM statistic, in any version, becomes LMn = n�βQn(Tan)�Cββ�βQn(Tan).  Recall that
B, hence C, can be evaluated at any consistent estimator of θo.  In particular, the constrained
estimator is consistent under the null or under local alternatives.  The LM testing procedure for this
case is then to (a) compute the constrained estimator T1,an subject to the condition β = 0, (b) calculate
the gradient and hessian of Qn with respect to the full parameter vector, evaluated at T1,an and β = 0,
and (c) form the quadratic form above for LMn from the β part of the gradient and the β submatrix
of the inverse of the hessian.  Note that this does not require any iteration of the GMM criterion with
respect to the full parameter vector.  

It is also possible to carry out the calculation of the LMn test statistic using auxiliary
regressions.  This could be done using the auxiliary regression technique introduced earlier for the
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calculation of LM3n in the case of any nonlinear hypothesis, but a variant is available for this case
that reduces the size of the regressions required.  The steps are as follows: 

a.  Regress �αl(zt,Tan)� and �βl(zt,Tan)� on g(zt,Tan), and retrieve the fitted values �αl*(zt,Tan)� and
�βl*(zt,Tan)�.  
b.  Regress �βl*(zt,Tan) on �αl*(zt,Tan), and retrieve the residual u(zt,Tan).  
c.  Regress the constant 1 on the residual u(zt,Tan), and calculate the sum of squares of the fitted
values of 1.  This quantity is LMn.   

In the case of maximum likelihood estimation, Step (a) is redundant and can be omitted.  

7.  TESTS FOR OVER-IDENTIFYING RESTRICTIONS

Consider the GMM estimator based on moments g(zt,θ), where g is m×1, θ is k×1, and
m > k, so there are over-identifying moments.  The criterion 

Qn(θ) = (1/2)gn(θ)�Ωn
-1gn(θ), 

 
evaluated at its minimizing argument Tn for any Ωn 	p Ω, has the property that 2nQn � 2nQn(Tn) 	d
χ2(m-k) under the null hypothesis that Eg(z,θo) = 0.  This statistic then provides a specification test
for the over-identifying moments in g.  It can also be used as an indicator for convergence in
numerical search for Tn.  

To demonstrate this result, recall that -Ω-1/2 n1/2gn(θo) = Un 	d U ~ N(0,I) and n1/2(Tn - θo) =
B-1G�Ω-1/2Un + op.  Then, a Taylor's expansion yields 

Ω-1/2 n1/2gn(Tn) = -Un + Ω-1/2GB-1G�Ω-1/2Un + op = -RnUn + op, 

where Rn = I - Ω-1/2G(G�Ω-1G)-1G�Ω-1/2 is idempotent of rank m - k.  Then 

2nQn(Tn) = Un�RnUn + op 	d χ2(m-k) .  

Suppose that instead of estimating θ using the full list of moments, one uses a linear combination
Lg(z,θ), where L is r×m with k 
 r < m.  In particular, L may select a subset of the moments.  Let Tan
denote the GMM estimator obtained from these moment combinations, and assume the identification
conditions are satisfied so Tan is n1/2-consistent.  Then the statistic S = ngn(Tan)�Ωn

-1/2RnΩn
-1/2gn(Tan)

	d χ2(m-k) under Ho, and this statistic is asymptotically equivalent to the statistic 2nQn(Tn).   This
result holds for any n1/2-consistent estimator τn of θo, not necessarily the optimal GMM estimator for
the moments Lg(z,θ), or even an initially consistent estimator based on only these moments.  The
distance metric in the center of the quadratic form S does not depend on L, so that the formula for
the statistic is invariant with respect to the choice of the initially consistent estimator.  This implies
in particular that the test statistics S for over-identifying restrictions, starting from different subsets
of the moment conditions, are all asymptotically equivalent.  However, the presence of the
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idempotent matrix Rn in the center of the quadratic form S is critical to its statistical properties.  Only
the GMM distance metric criterion using all moments, evaluated at Tn, is asymptotically equivalent
to S.  Substitution of another consistent estimator τn in place of Tn yields an asymptotically
equivalent version of S, but 2nQn(τn) is not asymptotically chi-square distributed.

The test for overidentifying restrictions can be recast as a LM test by artificially embedding
the original model in a richer model.  Partition the moments  

g(z,θ) = ,  
g 1(z,θ)

g 2(z,θ)

where g1 is kx1 with G1 = E�θg1(z,θo) of rank k, and g2 is (m-k)x1 with G2 = E�θg2(z,θo).  Embed this
in the model 

g*(z,θ,ψ) =  

g 1(z,θ)

g 2(z,θ)�ψ

where ψ is a (m-k) vector of additional parameters.  The first-order-condition for GMM estimation
of this expanded model is 

 =  

0
0

G1n G2n

0 Im�k

Ωn 0

0 Im�k

gn(Tan)

gn(Tan) � ψn

The second block of conditions are satisfied by ψn = gn(Tan), no matter what Tan, so Tan is determined
by O = GnΩngn(Tan).  This is simply the estimator obtained from the first block of moments, and
coincides with the earlier definition of Tan.  Thus, unconstrained estimation of the expanded model
coincides with restricted estimation of the original model.  Next consider GMM estimation of the
expanded model subject to Ho:ψ = O.  This constrained estimation obviously coincides with GMM
estimation using all moments in the original model, and yields Tn.  Thus, constrained estimation of
the expanded model coincides with unrestricted estimation of the original model.  

The Distance Metric test statistic for the constraint ψ = 0 in the expanded model is DMn =
2n[Qn(Tn,0) - Qn(Tn,ψn)] � 2nQn(Tn), where Qn denotes the criterion as a function of the expanded
parameter list.  One has Qn(Tn,0) � Qn(Tn) from the coincidence of the constrained expanded model
estimator and the unrestricted original model estimator, and one has Qn(Tan,ψn) = 0 since the number
of moments equals the number of parameters.  Then, the test statistic 2nQn(Tn) for overidentifying
restrictions is identical to a distance metric test in the expanded model, and hence asymptotically
equivalent to any of the trinity of tests for Ho: ψ = O in the expanded model.  

We give four examples of econometric problems that can be formulated as tests for
over-identifying restrictions: 

Example 1.  If y = xβ+� with E(�|x) = 0, E(�2|x) = σ2, then the moments

g1(z,β) =  
x(y�xβ)

(y�xβ)2
� σ2



     1 Paul Ruud contributed substantially to this section.
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can be used to estimate β and σ2.  If � is normal, then GMM estimators based on g1 are MLE. 
Normality can be tested via the additional moments that give skewness and kurtosis,

g2(x,β) = .  
(y�xβ)3/σ3

(y�xβ)4/σ4
� 3

GMM estimators based on all the moments g are again MLE

Example 2.  In the linear model y = xb+� with E(�|x) = 0 and E(�t�s|x) = 0 for t�s, but with
possible heteroskedasticity of unknown form, one gets the OLS estimates b of β and V(b) = s2(X�X)-1

under the null hypothesis of homoskedasticity.  A test for homoskedasticity can be based on the
population moments 0 = E vecu[x�x(�2- σ2)], where "vecu" means the vector formed from the upper
triangle of the array.  The sample value of this moment vector is 

vecu ,1
n�

n

t�1
xt�xt (yt�xtβ)2

� s 2

the difference between the White robust estimator and the standard OLS estimator of vecu[X�ΩX].

Example 3.  If l(z,θ) is the log likelihood of an observation, and Tn is the MLE, then an
additional moment condition that should hold if the model is specified correctly is the information
matrix equality 

0 = E �θθl(z,θo) + E�θl(z,θo)�θl(z,θo)�. 
  

The sample analog is White's information matrix test, which then can be interpreted as a GMM test
for over-identifying restrictions.
  

Example 4.  In the nonlinear model y = h(x,θ) + � with E(�|x) = 0, and Tn a GMM estimator
based on moments w(x)(y-h(x,θ)), where w(x) is some vector of functions of x, suppose one is
interested in testing the stronger assumption that � is independent of x.  A necessary and sufficient
condition for independence is E[w(x) - Ew(x)]f(y- h(x,θo)) = 0 for every function f and vector of
functions w for which the moments exist.  A specification test can be based on a selection of such
moments.   

8. SPECIFICATION TESTS IN LINEAR MODELS1

GMM tests for over-identifying restrictions have particularly convenient forms in linear
models.  Three standard specification tests will be shown to have this interpretation.  We will use
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projections and a few of their properties in the following discussion; a more detailed discussion of
projections is given in the Appendix to this chapter.  Let PX = X(X�X)�X denote the projection
matrix from 
n onto the linear subspace X spanned by a n×p array X; note that it is idempotent.  (We
use a Moore-Penrose generalized inverse in the definition of PX to handle the possibility that X is
less than full rank; see the Appendix.)  Let QX = I - PX denote the projection matrix onto the linear
subspace orthogonal to X.  If X is a subspace generated by an array X and W is a subspace generated
by an array W = [X Z] that contains X, then PXPW = PWPX = PX and QXPW = PW - PX.

Omitted Variables Test: Consider the regression model y = Xβ + �, where y is n×1, X is n×k,
E(��X) = 0, and E(����X) = σ2I.  Suppose one has the hypothesis Ho: β1 = 0, where β1 is a p×1
subvector of β, and let X* denote the n×(k-p) array of variables whose coefficients are not
constrained under the null hypothesis.  Define u = y - Xb to be the residual associated with an
estimator b of β.  The GMM criterion is then 2nQ = u�X(X�X)-1X�u/σ2.  The projection matrix PX
� X(X�X)-1X� that appears in the center of this criterion can obviously be decomposed as PX � PX*
+ (PX - PX*).  Under Ho, u = y - X2b2 and X�u can be interpreted as k = p + q over-identifying
moments for the q parameters β2.  Then, the GMM test statistic for over-identifying restrictions is

the minimum value 2nQn* in b2 of u�PXu/σ2.  But PXu = PX* u + (PX - PX*)y and u� PX*u = 0minb2

(at the OLS estimator under Ho that makes u orthogonal to X2).  Then 2nQn = y�(PX - PX*)y/σ2.  The
unknown variance σ2 in this formula can be replaced by any consistent estimator s2, in particular, the
estimated variance of the disturbance from either the restricted or the unrestricted regression, without
altering the asymptotic distribution, which is χ2(q) under the null hypothesis.

The statistic 2nQn has three alternative interpretations.  First, 

2nQn = y�PXy/σ2 - y�PX* y/σ2 = ,
SSRX2

� SSRX

σ2

which is the difference of the sum of squared residuals from the restricted regression under Ho and
from the unrestricted regression, normalized by σ2.  This is a large-sample version of the usual
finite-sample F-test for Ho.  Second, note that the fitted value of the dependent variable from the
restricted regression is �o = PX* y, and from the unrestricted regression is �u = PXy, so that

2nQn = (�o��o - �u��u)/σ2 = (�o - �u)�(�o - �u)/σ2 = ��o -�u�
2/σ2. 

Then, the statistic is calculated from the distance between the fitted values of the dependent variable
with and without Ho imposed.  Note that it can be computed from fitted values without any
covariance matrix calculation.  Third, let bo denote the GMM estimator restricted by Ho and bu
denote the unrestricted GMM estimator.  Then, bo consists of the OLS estimator for β2 and the
hypothesized value 0 for β1, while bu is the OLS estimator for the full parameter vector.  Note that
�o = Xbo and �u = Xbu, so that �o - �u = X(bo - bu).  Then

  2nQn = (bo - bu)�(X�X/σ2)(bo - bu) = (bo - bu)�V(bu)-1(bo - bu). 
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This is the Wald statistic W3n.  From the equivalent form W2n of the Wald statistic, this can also be
written as a quadratic form 2nQn = b1,u�V(b1,u)-1b1,u, where b1,u is the subvector of unrestricted
estimates for the parameters that are zero under the null hypothesis. 
 

Two other important cases of specification tests in linear models are discussed in the
following chapters.  Endogeneity tests are discussed in the chapter on instrumental variables, and
tests for over-identifying restrictions are discussed in the chapter on simultaneous equations.

APPENDIX

Projections:  Consider a Euclidean space 
n of dimension n, and suppose X is a n×p array
with columns that are vectors in this space.  Let X denote the linear subspace of 
n that is spanned
or generated by X.; and i.e., the space formed by all linear combinations of the vectors in X.  Every
linear subspace can be identified with an array such as X.  The dimension of the subspace is the rank
of X.  (The array X need not be of full rank, although if it is not, then a subarray of linearly
independent  columns also generates X.)  A given X determines a unique subspace, so that X
characterizes the subspace.  However, any set of vectors contained in the subspace that form an array
with the rank of the subspace, in particular any array XA with rank equal to the dimension of X, also
generates X.  Then, X is not a unique characterization of the subspace it generates.

The projection of a vector y in 
n into the subspace X is defined as the point v in X that is
the minimum Euclidean distance from y.  Since each vector v in X can be represented as a linear
combination Xα of an array X that generates X, the projection is characterized by the value of α that
minimizes (y-Xα)�(y-Xα).  The solution to this problem is the OLS estimator � = (X�X)�X�y and
v = X� = X(X�X)�X�y.  In these formulas, we use (X�X)� rather than (X�X)-1; the former denotes
the Moore-Penrose generalized inverse, and is defined even if X is not of full rank (see below).   The
array PX = X(X�X)�X� is termed the projection matrix for the subspace X; it is the linear
transformation in 
n that maps any vector in the space into its projection v in X.  The matrix PX is
idempotent (i.e., PXPX = PX and PX = PX�), and every idempotent matrix can be interpreted as a
projection matrix.  These observations have two important implications: First, the projection matrix
is uniquely determined by X, so that starting from a different array that generates X, say an array S
= XA, implies PX = PS.  (One could use the notation PX rather than PX to emphasize that the
projection matrix depends only on the subspace, and not on any particular set of vectors that generate
X.)  Second, if a vector y is contained in X, then the projection into X leaves it unchanged, PXy =
y.

Define QX = I - PX = I - X(X�X)-1X�; it is the projection to the subspace orthogonal to that
spanned by X.  Every vector y in 
n is uniquely decomposed into the sum of its projection PXy onto
X and its projection QXy onto the subspace orthogonal to X.  Note that PXQX = 0, a property that
holds in general for two projections onto orthogonal subspaces.

If X is a subspace generated by an array X and W is a subspace generated by an array W =
[X Z] that contains X, then X � W.  This implies that PXPW = PWPX = PX; i.e., a projection onto a
subspace is left invariant by a further projection onto a larger subspace, and a two-stage projection
onto a large subspace followed by a projection onto a smaller one is the same as projecting directly
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onto the smaller  one.  The subspace of W that is orthogonal to X is generated by QXW; i.e., it is the
set of linear combinations of the residuals, orthogonal to X, obtained by regressing W on X.  Note
that any y in 
n has a unique decomposition PXy + QXPWy + QWy into the sum of projections onto
three mutually orthogonal subspaces, X, the subspace of W orthogonal to X, and the subspace
orthogonal to W.  The projection QXPW can be rewritten QXPW = PW - PX = PWQX = QXPWQX, or

since QXW = QX[X  Z] = [0  QXZ], QXPW =  =  = QXZ(Z�QXZ)�Z�QX.  ThisPQXW PQXZ

establishes that PW and QX commute.  This condition is necessary and sufficient for the product of
two projections to be a projection; equivalently, it implies that QXPW is idempotent since
(QXPW)(QXPW) = QX(PWQX)PW = QX(QXPW)PW = QXPW.

Generalized Inverses:  Some test statistics are conveniently defined using generalized
inverses.  This section gives a constructive definition of a generalized inverse, and lists some of its
properties.  A k×m matrix A� is a Moore-Penrose generalized inverse of a m×k matrix A if it has
three properties: 

     (i) AA�A = A, 
     (ii) A�AA� = A� 
     (iii) AA� and A�A are symmetric 

There are other generalized inverse definitions that have some, but not all, of these properties; in
particular A+ will denote any matrix that satisfies (i), or AA+A = A. 

First, a method for constructing the generalized inverse is described, and then some of the
implications of the definition are developed.  The construction is called the singular value
decomposition (SVD) of a matrix, and is of independent interest as a tool for finding the eigenvalues
and eigenvectors of a symmetric matrix, and for calculation of inverses of moment matrices of data
with high multicollinearity; see Press et al (1986) for computational algorithms and programs.

Lemma 1.  Every real m×k matrix A of rank r can be decomposed into a product A = UDV� 

where D is a r×r diagonal matrix with positive non-increasing elements down the diagonal, and U
and V are column-orthonormal matrices of respective dimension m×r and k×r; i.e., U�U = Ir = V�V.

  Proof: The m×m matrix AA� is symmetric and positive semidefinite.  Then, there exists a m×m
orthonormal matrix W, partitioned W = [W1 W2] with W1 of dimension m×r, such that W1�(AA�)W1
= G is diagonal with positive, non-increasing diagonal elements, and W2�(AA�)W2 = 0, implying
A�W2 = 0.  Define D from G by replacing the diagonal elements of G by their positive square roots.
Note that W�W = I = WW� � W1 W1� + W2W2�.   Define U = W1 and V� = D-1U�A.  Then, U�U =
Ir and V�V = D-1U�AA�UD-1 = D-1GD-1 = Ir.   Further, A = (Im-W2W2�)A = UU�A = UDV�.  This
establishes the decomposition.  G

Note that if A is symmetric, then U is the array of eigenvectors of A corresponding to the
non-zero roots, so that A�U = UD1, with D1 the r×r diagonal matrix with the non-zero eigenvalues
in descending magnitude down the diagonal.  In this case, V = A�UD-1 = UD1D-1.  Since the elements
of D1 and D are identical except possibly for sign, the columns of U and V are either equal (for
positive roots) or reversed in sign (for negative roots).  Thus, if A is positive semidefinite, it has a
SVD decomposition A = UDU� with U column-orthonormal and D positive diagonal. 
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Lemma 2.  The Moore-Penrose generalized inverse of a m×k matrix A (which has a SVD A

= UDV�) is the matrix A� = VD-1U, where V is k×r, D is r×r, and U is r×m.  Let A+ denote any
matrix, including A�, that satisfies AA+A = A.   These matrices satisfy:

(1) A+ = A-1 if A is square and non-singular.  
(2) The system of equations Ax = y has a solution if and only if y = AA+y, and the linear
subspace of all solutions is the set of vectors x = A+y + [I - A+A]z for all z � 
k.  
(3) AA+ and A+A are idempotent.  
(4) If A is idempotent, then A = A� .  
(5) If A = BCD with B and D nonsingular, then A� = D-1 C� B-1, and any matrix A+ = D-1C+B-1

satisfies AA+A = A.  
(6) (A�)� = (A�)� 
(7) (A�A)� = A�(A�)� 
(8) (A�)� = A = AA�(A�)� = (A�)�A�A.  

(9) If A = Ai with Ai�Aj = 0 and AiAj� = 0 for i � j, then A� =  Ai
�.  �

i
�

i

Lemma 3.  If A is m×m, symmetric, and positive semidefinite of rank r, then 
(1) There exist Q positive definite and R idempotent of rank r such that A = QRQ  and
A� = Q-1RQ-1.
(2) There exists an m×r column-orthonormal matrix U such that U�AU = D is positive
diagonal, A = UDU�, A� = UD-1U� = U(U�AU)-1U�, and any matrix A+ satisfying
condition (i) for a generalized inverse, AA+A = A, has U�A+U = D-1.  
(3) A has a symmetric square root B = A1/2, and A� = B�B�.  

  Proof: Let U be an m×r column-orthonormal matrix of eigenvectors of A corresponding to the
positive characteristic roots, and W be a m×(m-r) column-orthonormal matrix of eigenvectors
corresponding to the zero characteristic roots.  Then [U W] is an orthonormal matrix diagonalizing

A, with = and D positive diagonal.  Define Q = ,
U �

W �

A U W
D 0
0 0

U W
D 1/2 0

0 Im�r

U �

W �

and R = UU�.  The diagonalizing transformation implies U�AU = D and AW = 0.  One has U�U =
Ir, W�W = Im-r, and UU� + WW� = Im.  Since AW = 0, A = A[UU� + WW�] = AUU�.  Then D =
U�AU = U�AA+AU = UAUU�A+UU�AU = DU�A+UD, implying U�A+U = D-1.  Define B = UD1/2U�.
G

Lemma 4.  Suppose y ~ N(Cµ,CC�), with C a m×r matrix of rank r.  Let A = CC� and λ = Cµ.
Then for any matrix  A+ satisfying condition (i) for a generalized inverse, AA+A = A, one has  y�A+y
= y�A�y distributed noncentral chi-square with r degrees of freedom and noncentrality parameter
λ�A�λ. 
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Proof: Use the orthonormal matrix [U W] from the proof of Lemma 3, so that U�CC�U = D, a
positive diagonal r×r matrix, and C�W = 0.  Then, the nonsingular transformation 

z =  
D �1/2 0

0 I

U�

W�
y

has mean  and covariance matrix , so that z1 = D-1/2U�y is distributed
D �1/2U �Cµ

0

Ir 0

0 0

N(D-1/2U�Cµ,Ir) and z2 = W�y = 0.  It is standard that z�z has a non-central chi-square distribution
with r degrees of freedom and non-centrality parameter µ�C�UD-1U�Cµ = λ�A�λ.  From result (2) of
Lemma 3, U�A+U = D-1.  Then 

y�A+y = y�[UU� + WW�]A+[UU� + WW�]y = y�UD-1U�y =  y�A�y
and

y�A�y = y�UD-1U�y = y�UD-1/2D-1/2U�y = z1�z1.  G


