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4.1 Functional Form of Choice Probabilities in Simple Cases

In some situations, independence from irrelevant alternatives (I1A) holds
for some pairs of alternatives but not all. Logit is inappropriate in these
situations since it assumes there is ITA between each pair of alternatives;
however, a probit approach, even if feasible, might be unduly complex and
expensive since it does not exploit the fact that ITA holds for some pairs of
alternatives. Another qualitative choice model, called GEV for reasons to
be described, is designed to handle situations like these.

A type of GEV model is used when the set of alternatives faced by a
decisionmaker can be partitioned into subsets such that the ratio of prob-
abilities for any two alternatives that are in the same subset is independent
of the existence or characteristics of other alternatives. An example can best
explain how to determine whether a set of alternatives can be so partitioned.
Suppose the set of alternatives available to a worker for his commute to
work consists of driving an auto alone, carpooling, taking the bus, and
taking rail. If any one alternative were removed, the probabilities of the
other alternatives would increase (e.g., if the worker became injured and
could not drive an auto, then the probability of carpooling, bus, and rail
would increase). The relevant question in partitioning these alternatives is,
By what proportion would each probability increase when an alternative is
removed? Suppose the changes in probabilities occur as set forth in table
4.1. Note that

« When the auto alone alternative is removed, the bus and rail probabilities
increase by the same proportion, and consequently the ratio of their prob-
abilities stays constant. That is, the ratio of bus and rail probabilities is
independent of the existence of the auto alone alternative. However, the
carpool probability increases more, proportionately, than either the bus or
rail probability, meaning that the ratio of the carpool probability to either
the bus or rail probability when the auto alone alternative is included differs
from this ratio when it is removed. Therefore, the ratio of the carpool
probability to either the bus or rail alternative is not independent of the
existence of the auto alternative.

« Similarly, the change in probabilities that occurs when the carpool
alternative is removed indicates that the ratio of the bus and rail proba-
bilities is independent of the existence of carpool, but the ratio of the auto
alone probability to either the bus or rail probability is not independent of
the existence of the carpool alternative.
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Table 4.1

Example of ITA holding within subsets of alternatives

Increase in probability Alternative removed

of remaining alternatives,

as % of original probability Auto alone  Carpool Bus Rail
Auto alone —_— 5 7 7
Carpool 40 — 7 7
Bus 10 3 — 50
Rail 10 3 80 —

+ With respect to removal of the bus alternative, the ratio of auto alone and
carpool probabilities is independent, but not the ratio of the rail probability
to either the auto alone or carpool probability.

« Finally, with respect to removal of the rail alternative, the ratio of auto
alone and carpool probabilities is independent, but not the ratio of the rail
probability to either the auto alone or carpool probability.

These facts suggest a partition of the set of alternatives into two subsets,
with auto alone and carpool in one subset and bus and rail in the other
subset. Under this partition, all relations among probabilities can be
described succinctly: The ratio of probabilities of any two alternatives
within the same subset is independent of the existence of other alternatives;
however, the ratio of probabilities of two alternatives from different subsets
is not independent of the existence of other alternatives. That is, IIA holds
within subsets but not across subsets.

A convenient way to picture the choice situation is with a tree diagram. In
such a tree, each branch denotes a subset of alternatives within which I11A
holds, and every leaf on each branch denotes an alternative. For example,
the tree diagram for the worker’s choice of mode described above is given in
figure 4.1. The (upside down) tree consists of two branches, labeled “auto”
and “transit,” for the two subsets of alternatives, and each of the branches
contains two leaves for the two alternatives within the subset. Note that
auto and transit are not themselves alternatives available to the worker, but
rather are simply the names of groups of alternatives, designating the
common feature among the alternatives within the group.

For any situation in which the alternatives can be partitioned in the
manner described, or more graphically, depicted in a tree diagram with ITA
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Auto Transit

Auto Alone Carpool Bus Rail

Figure 4.1
Tree diagram for mode choice.

holding for all leaves on each branch, a GEV model can be used to describe
the choice situation.

Formally, the GEV model is specified as follows. Let the set of alterna-
tives J, be partitioned into K subsets denoted B;, ..., By. The utility that
person n obtains from alternative i in subset Bk is denoted, as usual, as
U, = V;, + e, where V,, is observed by the researcher and ¢;, 1s a random
variable whose value is not observed by the researcher. The GEV model is
obtained by assuming that e;,, for all elements i in J,, are distributed in
accordance with a generalized extreme value (GEV) distribution. That is,
the joint cumulative distribution of the random variables e, for alliinJ,,1s
assumed to be

K A
e — ~€in/Ax .
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This distribution, as its name implies, is a generalization of the distribu-
tion that gives rise to the logit model. For logit, each e;, is independent with
a univariate extreme value distribution. For GEV, the marginal distribu-
tion of each e,, is univariate extreme value, but all e;, within each subset are
correlated with each other. The parameter 4, is a measure of the correlation
of unobserved utility within subset BX. More precisely, (1 — 4,) is a measure
of correlation since A, itself drops as the correlation rises.! For any i and jin
different subsets (that is, i in B¥ and j in B}, where k # h), there is no
correlation between e;, and e;,.
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McFadden (1978) has shown, using a proof that is complex and, since it is
not heuristic, will not be reproduced here, that this distribution for the
unobserved components of utility gives rise to the following choice proba-
bility for alternative i in subset B%:

eVinlk i Vin/Are}Asc—1
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Note that when 4, = 1 for all k (and hence 1 — 4, = 0, indicating no
correlation between the unobserved components of utility for alternatives
within a subset), the choice probabilities become simply logit. Conse-
quently, the GEV model is a generalization of logit that allows for partic-
ular patterns of correlation in unobserved utility.

Expression (4.1) is complex and, aside from the fact that it reduces to logit
when all 4, = 1, is not very illuminating. However, the choice probabilities
can be expressed in an alternative fashion, as follows, that is quite simple
and readily interpretable.

Without loss of generality, the observed component of utility can be
decomposed into two parts: (1) a part that is constant for all alternatives
within a subset, and (2) a part that is not constant within subsets. This can
be denoted

Up,= Wi+ 4 Yt +e,  for iinBf
where

W* is the mean of V,, over all alternatives in subset BY;
Y is the deviation of ¥V, from the mean W}; and
A 1s a normalizing constant whose meaning will become evident.

Note that W}k varies over k (i.c., subsets) but not over i (ic., alternatives
within a subset), while Y% varies over both k and i. Note that this decompo-
sition is completely general, since Y is defined simply as (V;, — W)/ A,.

Let the probability of choosing alternative i in subset B be expressed as
the product of the probability that an alternative within subset BY is chosen
and the probability that alternative i is chosen (given that an alternative in
Bk is chosen). This is denoted as

P, = Pin|B',f'PBﬁ,

where



GEV 69

P.px is the conditional probability of choosing alternative i given that an
alternative in the subset B¥ is chosen, and

Py is the marginal probability of choosing an alternative in Bk (with the
marginality being over all alternatives in By).

Note that this equality is exact since any probability can be written as the
product of a marginal and a conditional probability.

The reason for decomposing P, into a marginal and a conditional
probability is that, with the GEV formula for P,,, the marginal and con-
ditional probabilities take the form of logits. In particular, the marginal
and conditional probabilities can be expressed as?
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Stated in words, the conditional probability of choosing i, given that an
alternative in B* is chosen, is expressed as logit with variables that vary over
alternatives within each subset entering representative utility in the logit
formula. The marginal probability of choosing an alternative in Bk is also
expressed as logit with the variables that vary over subsets of alternatives
(but not over alternatives within each subset) entering representative utility.
In addition, the representative utility in the marginal probability includes a
term (i.e., I,) that is the log of the denominator of the conditional proba-
bility. This term denotes the average utility that the person can expect from
the alternatives within the subset. In recognition of this, the term I, is called
the “inclusive value” or “inclusive utility” of subset k.>

With this specification of the choice probabilities, it is clear that IIA holds
within each subset but not across subsets. Consider two alternatives, i and
m, both of which are in subset By.

Pip - Ppx - Pyt
Pomige Pt Poumi

= exp(Yi)/exp(Ym),

Py/Prn =
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which is independent of alternatives other than m and i. However, for two
alternatives in different subsets, say i in B and r in B?,

Py i - Py
I)in/Prn =“"'—I_“_——_n>
Fouish P

which depends on the characteristics of all alternatives in B* and B”.

Example Because of the feature of the GEV model that I1A hold within
subsets but not across subsets, it is particularly well-suited for describing
situations like that of the worker’s choice of mode, presented earlier. Sup-
pose the only observed factors affecting each worker’s choice are the total
cost, ¢;,, and total time, ¢;,, of traveling on each mode. With linear utility, we
have for worker n,

(Jin = 0Ciy + ﬁtin + €ins

where i denotes the mode. Similar unobserved factors enter the utility for
auto alone and carpool (i.e., avoidance of strangers), making the e;, for these
two alternatives correlated. The e, for bus and rail are also correlated.
However, there is, by assumption, no correlation between the unobserved
utility of either transit mode with that of either auto mode.

An appropriate specification for this situation is a GEV model consisting
of three “submodels™ (1) a marginal probability submodel of the choice
between auto and transit; (2) a conditional probability submodel for the
choice of auto alone or carpool given that an auto mode is chosen; and (3) a
conditional probability submodel for the choice of bus or rail given that a
transit mode is chosen. This specification follows the tree diagram in figure
4.1, with a submodel for each of the three nodes in the tree.

To specify the variables entering each model, calculate the average time
and cost of travel by transit and auto, that is, calculate

ty = (ton + Lew/2;

Ly = (tan + ten/2;
Cp = (Con + C)/2;
Gy = (Can + Ccn)/2;

where subscripts a, ¢, b, and r denote auto alone, carpool, bus, and rail,
respectively, and superscripts a and t denote auto and transit, respectively
(or, more precisely, superscripts a and t denote the subsets of alternative
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labeled auto and transit). The time and cost of each mode is decomposed
into the average for the mode’s subset, just given, and a deviation from this
average (denoted with a tilde over the letter):

tin = —fnk + fuu
Cin = Erf + Ein;

fori = a,c,b,rand k = a or tas appropriate. Then utility for each mode can
be decomposed into a portion that varies over subsets (i.e., over auto versus
transit) but not modes within the subset and another component that
varies over modes within a subset:

Uin = u]nk + A‘I:YILt + €in>
where

Wi = acy + Ptu;

Yzﬁ = (aéin + ﬁ‘iin)/ik'

The three submodels can now be written explicitly. The submodel for the
choice between auto alone and carpool, given that an auto mode is chosen,
is logit with the conditional choice probabilities being

a
eYin

P— _i"eY." + eygn s

infa ™

for i=a,c.

Two explanatory variables enter the representative utility (Y;;) of each
alternative. For the auto mode the variables are the cost of travel by auto
alone expressed as a deviation from the average cost of travel by auto alone
and carpool, and the time of travel by auto alone expressed as a deviation
from the average time of travel by auto alone and carpool. For the carpool
mode, similar variables enter. The coefficients of these two variables are
/), and B/4,, respectively. (An estimate of 4, is obtained from the marginal
submodel of auto versus transit, and so estimates of the coefficients of cost
and time in this conditional submodel provide estimates of « and f§.)

The submodel for the choice of bus or rail, given that a transit mode is
chosen, is also logit with two explanatory variables entering the model: the
deviation of cost and time of each mode from the average cost and time for
both transit modes.*

The submodel for the choice between the auto and transit subsets is also
logit with the marginal choice probabilities taking the form
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eW,’,‘+).,Jk
Pk = for k=aort.
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Three explanatory variables enter the “representative™ utility of the auto
and transit “modes” (quotation marks are used around these terms to
indicate that auto and transit are not actually modes but groups of modes).
For the auto “mode,” the average cost and time of travel by auto enter
(averaged over auto alone and carpool). In addition, the inclusive value of
the auto modes (calculated as I, = log(exp(Y2) + exp(Y2)}) or, more simply,
as the log of the denominator on the conditional submodel for auto versus
carpool) enters as an explanatory variable. The coefficient of the cost and
time variables are o and B, respectively, and the coefficient of the inclusive
value term is 4,. For the transit “mode,” three similar variables enter, with
averages being over the bus and rail modes. The coefficient of the inclusive
value term for transit is 4,.

Remark A final note is required concerning terminology. Since, in GEV
models, the subsets can be considered “nests” of alternatives, and since the
choices of nests and alternatives within nests are described by logit for-
mulas, the GEV model is often called “nested logit.” Other commonly used
terms for the GEV model are structured, or ordered, logit (to emphasize
that the set of alternatives has a particular structure, or order, as repre-
sented by the partitioning) and sequential logit (since GEV probabilities
are a sequence of marginal and conditional probabilities which are logit in
form). Two of these terms, however, should be avoided. The term “ordered
logit” has been used to denote models other than GEV and consequently
can cause confusion. The term “sequential logit” can be misunderstood to
suggest that the decisionmaker makes a sequence of choices, each of which is
described by logit, whereas the GEV model is derived by assuming the
decisionmaker makes one choice, namely, one alternative out of the
available set. The sequence of probabilities in the GEV model is simply a
method for the researcher to represent the lack of IIA among the choice
probabilities.

4.2 More Complex GEV Models

The GEV model just described is calied a two-level GEV model because
there are, in a sense, two levels of modeling: the marginal probabilities and
the conditional probabilities. In the case of the mode choice, the two levels
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are the marginal model of auto versus transit and the conditional model of
type of auto or transit (auto alone or carpool given auto, and bus or rail
given transit).

In some situations, however, three- or higher level GEV models are
appropriate. Three-level GEV models are obtained by partitioning the set of
alternatives into subsets and then partitioning the subsets into subsubsets.
One logit model is used to describe the choice of subset; another logit model
is used to describe the choice of subsubset; and a third describes the choice
of alternative within the subsubset. The first of these models includes an
inclusive value term that represents the average utility that the decision-
maker can expect from the subsubsets with each subset. This is defined as
the log of the denominator of the second model. Similarly, the second model
includes an inclusive value term that represents the average utility that the
decisionmaker can expect from the alternatives within each subsubset. It is
defined as the log of the denominator of the third model.

As an example, a household’s choice of housing unit can perhaps be
described as a three-level GEV model. The household has a choice among
all the available housing units in the household’s area of residence. The
housing units can be grouped according to neighborhood within the city,
and then by the number of bedrooms in the unit. Using San Francisco, a
tree diagram depicting this situation is given in figure 4.2. Following this
tree diagram, the set of housing units are partitioned into subsets on the
basis of neighborhood and into subsubsets on the basis of the number of
bedrooms. A GEV model on this partitioning assumes that (1) the ratio of
probabilities of two housing units in the same neighborhood and with the
same number of bedrooms is independent of other alternatives, (2) the ratio
of probabilities of two housing units in the same neighborhood but with
different numbers of bedrooms is independent of the characteristics of
housing in other neighborhoods but not independent of the characteristics
of housing units in the same neighborhood, and (3) the ratio of probabilities
of two housing units in different neighborhoods is not independent of the
characteristics of any other housing units.

More complex GEV models, with, for example, overlapping “nests,” can
also be constructed (see Ben-Akiva and Lerman, 1985).

4.3 Estimation

The parameters of a GEV model can be estimated by standard maximum
likelihood techniques. Substituting the choice probabilities of expression
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Neighborhood Nob Haight Telegraph Mission .
Hill Ashbury Hill District

Number of 1 2 3+ 1 2 3+ 1 2 3+ 1 2 3+
o /\ /\ /\A /\ /\/\ /\ A /\
Housing Unit

Figure 4.2

Tree diagram for choice of housing unit. (There are numerous housing units in each area
with each number of bedrooms; only two “leaves” are drawn for simplicity.)

(4.1) into the log likelihood function defined in section 2.6 gives the log
likelihood as an explicit function of the parameters of this GEV model. The
value of the parameters that maximizes this function is, under fairly general
conditions, consistent and efficient.

Since the GEV choice probabilities are fairly complex, estimation by this
standard maximum likelihood method is somewhat difficult. Computer
programs are now available for estimating GEV models in this way. How-
ever, they are not widely available, and the procedure tends to be relatively
expensive.

For these reasons, researchers often estimate GEV models in a sequential
fashion, exploiting the fact that the GEV choice probabilities can be decom-
posed into marginal and conditional probabilities that are logit. This
sequential estimation is performed “bottom up,” in that the submodels for
the lower nodes of a tree diagram are estimated first, followed by the
submodels for the higher nodes.

For a simple two-level GEV model, the procedure is the following. First,
the logit models for the conditional probabilities are estimated using stan-
dard logit estimation routines. In the example of mode choice, described in
section 4.1, these are the models of auto alone versus carpool and bus versus
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rail. Next, the inclusive value terms are calculated by taking the log of the
denominator of the models estimated in the first step. Last, the logit model
for the marginal probabilities is estimated with each of the inclusive value
terms included as an explanatory variable. For the choice of mode, this is
the model of auto versus transit with an inclusive value term from the model
of auto alone versus carpool and another one from the model of bus versus
rail included as explanatory variables. The estimated coefficients of the
inclusive value terms are the estimates of the 4,.

This all sounds very straightforward. There are, however two compli-
cations. First, in estimating the marginal submodel, an estimate of each I,
(based on the previously estimated conditional submodels) is entered rather
than the “true” I,. The estimate of I, is consistent (since the conditional
submodel is estimated consistently) and so the parameters of the marginal
submodel are still estimated consistently. However, the standard errors of
these parameters will be biased. In particular, the “true” standard errors
will be larger than those estimated under the incorrect assumption that the
inclusive value terms entering the submodel are without error. With down-
wardly biased standard errors, smaller confidence bounds and larger
t-statistics are estimated for the parameters than are “true,” and the sub-
model will appear to be better than it actually is.

Second, it is often the case that some parameters will be common to both
the conditional and the marginal submodels, In the example of mode choice
in section 4.1, the coefficients of the cost and time of travel (that is, « and B)
appear in the conditional submodels of mode choice given auto or transit
and the marginal submodel of auto versus transit. Estimating the con-
ditional and marginal submodels sequentially results in two separate esti-
mates of these parameters. It is always possible to specify a GEV model in
such a way that different parameters enter each submodel (e.g., by letting
the coefficients vary over alternatives, with the average coefficient estimated
in the marginal submodel and the deviation from average for each alterna-
tive being estimated in the conditional submodel). However, the researcher
might not think that such a specification truly describes the choice process
being modeled.

These two complications are symptoms of a more general circumstance,
namely, that sequential estimation of GEV models, while consistent, is not
as efficient as simultaneous estimation (that is, standard maximum likeli-
hood estimation of the complete GEV model). With simultaneous estima-
tion, all information is utilized in the estimation of each parameter, and
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parameters that are common across submodels are necessarily constrained
to be equal. Consequently, if a computer routine for maximum likelihood
estimation of GEV models can be obtained, the addition expense® is prob-

ably warranted.



