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Abstract

This paper provides bounds on the errors in coverage probabilities of maximum
likelihood-based, percentile-t, parametric bootstrap confidence intervals for Markov
time series processes. These bounds show that the parametric bootstrap for Markov
time series provides higher-order improvements (over confidence intervals based on
first order asymptotics) that are comparable to those obtained by the parametric and
nonparametric bootstrap for iid data and are better than those obtained by the block
bootstrap for time series. Similar results are given for Wald-based confidence regions.

The paper also shows that k-step parametric bootstrap confidence intervals achieve
the same higher-order improvements as the standard parametric bootstrap for Markov
processes. The k-step bootstrap confidence intervals are computationally attractive.
They circumvent the need to compute a nonlinear optimization for each simulated
bootstrap sample. The latter is necessary to implement the standard parametric
bootstrap when the maximum likelihood estimator solves a nonlinear optimization
problem.

Keywords: Asymptotics, Edgeworth expansion, Gauss-Newton, k-step
bootstrap, maximum likelihood estimator, Newton-Raphson, parametric
bootstrap, ¢ statistic.
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1 Introduction

This paper analyzes the higher-order properties of the parametric bootstrap for
maximum-likelihood- (ML) based confidence intervals (CIs) for x-th order Markov
processes possibly with exogenous variables. It is shown that the parametric boot-
strap obtains essentially the same higher-order improvements in coverage probabilities
relative to standard delta method Cls in the time series context as do the parametric
and non-parametric bootstraps for independent and identically distributed (iid) ob-
servations. This contrasts with the (nonparametric) block bootstrap for time series,
which does not obtain as large improvements, e.g., see Zvingelis (2000), Inoue and
Shintani (2000), and Andrews (2001).

In particular, the paper shows that symmetric percentile ¢t Cls constructed using
the parametric bootstrap have errors in coverage probability of order O(N~2), where
N is the sample size. Symmetric percentile ¢ Cls constructed using the delta method,
which utilizes the asymptotic normal distribution, have coverage probability errors
of magnitude O(N~1). Hence, the use of the parametric bootstrap reduces the errors
in coverage probability by O(N~!). Analogous results are obtained for Wald-based
confidence regions based on the parametric bootstrap. For equal-tailed percentile
t Cls, the use of the parametric bootstrap yields errors in coverage probabilities of
order O(N~11n N), whereas those of the delta method are O(N~1/2In N). (The In N
factors are a product of the method of proof and would not appear in the best possible
results.) In contrast, the improvements established in Andrews (2001) for the block
bootstrap are only of magnitude O(N~/4) (due to the influence of the independence
across blocks, which does not mimic the dependence in the time series of interest).

This paper also analyzes the higher-order properties of a computationally attrac-
tive k-step parametric bootstrap procedure for ML estimators. The method was first
considered by Davidson and MacKinnon (1999a). For the case of the (nonparametric)
block bootstrap, its properties are analyzed in Andrews (2001). The k-step bootstrap
is closely related to the one-step and k-step estimators considered by many authors,
including Fisher (1925), LeCam (1956), Pfanzagl (1974), Janssen, Jureckova, and Ve-
raverbeke (1985), and Robinson (1988), among others. Let B denote the number of
bootstrap repetitions. The standard bootstrap for an ML estimator requires that one
solve B nonlinear optimization problems to obtain B bootstrap estimators. These
estimators are then used to construct bootstrap Cls, test statistics, etc. In contrast,
the k-step bootstrap requires calculation of a closed-form expression for each of the
B bootstrap repetitions. Given a bootstrap sample, the k-step bootstrap estimator
is obtained by taking k-steps of a Newton-Raphson (NR), default NR, line-search
NR, or Gauss-Newton (GN) iterative scheme starting from the estimate based on the
original sample.

We show that the distribution function of a k-step bootstrap statistic differs from
that of a standard bootstrap statistic by at most N~ with probability 1 —o(N~%) for
any a > 0, provided k is taken large enough and sufficient smoothness and moment
conditions hold. For example, it is often sufficient to take k > 2 for a =1 and k > 3
for a = 2 for the NR, default NR, and line-search NR k-step bootstraps and k& > 3
for a =1 and k > 5 for a = 2 for the GN k-step bootstrap. These results are used to



show that k-step parametric bootstrap Cls yield the same higher-order improvements
over delta method Cls as does the standard parametric bootstrap.

The method of proof of the results for the standard parametric bootstrap is as
follows. First, we establish an Edgeworth expansion for the ML estimator and the ¢
statistic based on the ML estimator that holds uniformly over a compact set in the
parameter space. The method of doing so is similar to that of Bhattacharya and
Ghosh (1978). This method is also used by Hall and Horowitz (1996) and Andrews
(2001) among others. We utilize an Edgeworth expansion for the normalized sum
of strong mixing random variables due to Lahiri (1993), which is an extension of a
result of Gotze and Hipp (1983), whereas Bhattacharya and Ghosh (1978) consider
iid random variables and use a standard Edgeworth expansion for iid random vari-
ables. Second, we convert these Edgeworth expansions into Edgeworth expansions
for the bootstrap ML estimator and bootstrap ¢ statistic using the fact that the ML
estimator lies in a neighborhood of the true value with probability that goes to one
at a sufficiently fast rate. Third, we use the argument of Hall (1988) to obtain the
error in coverage probability of symmetric percentile ¢ confidence intervals given the
Edgeworth expansions for the ML and bootstrap ML t statistics.

To prove the results for the k-step parametric bootstrap, we use the method in
Andrews (2001). This method is similar to that used in the numerical analysis liter-
ature to establish the quadratic convergence of the Newton-Raphson algorithm. It is
also similar to that used in the statistics and econometrics literature to determine the
distributional and stochastic differences between statistics, e.g., see Pfanzagl (1974)
and Robinson (1988).

This paper provides some Monte Carlo results to illustrate performance of the
parametric bootstrap compared to the delta method in the second-order autoregres-
sive (AR(2)) model with Gaussian errors. This model is convenient for Monte Carlo
experiments because the ML estimator is the LS estimator, which is available in closed
form and, hence, computation is quick. We consider Cls for a nonlinear function of
the AR parameters, viz., the cumulative impulse response (CIR), as well as for the
AR parameters themselves. We consider sample sizes of 50 and 100 and a variety
of different parameter combinations. To see how robust the (Gaussian) parametric
bootstrap is to non-normal errors, we also consider errors with ¢ distribution with
five degrees of freedom, which exhibits fat tails, and x? distribution with one degree
of freedom, which exhibits skewness.

The performances of the delta method and the parametric bootstrap Cls are found
to depend on how close the sum of the AR coefficients is from one. When the sum is
close to one, both types of Cls perform much more poorly than otherwise. In virtually
all parameter combinations, the parametric bootstrap outperforms the delta method
in terms of coverage probability. The difference is most pronounced when the sum of
AR coefficients is near one. For example, when the AR parameters are .90 and 0.0,
the sample size is 100, the errors are normal, and the nominal coverage probabilities
of the ClIs are .95, the actual coverage probabilities of the delta method, symmetric
parametric bootstrap, and equal-tailed parametric bootstrap Cls for the CIR are
714, .876, and .847 respectively. As a second example, when the AR parameters



are .50 and 0.0 and everything else is the same as above, the analogous coverage
probabilities are .880, .929, and .915. The results change very little when ¢-5 or x2-1
errors are used. Overall, the simulation results indicate that in one Markov model of
interest the parametric bootstrap outperforms the delta method.

An alternative bootstrap procedure that can be used in the AR(2) model is the
residual-based (RB) bootstrap. We compare the (Gaussian) parametric bootstrap to
the RB bootstrap when the errors are normal, -5, and x2-1. For normal and ¢-5 er-
rors, there is very little difference in the coverage probabilities of the parametric and
RB bootstraps. For y2-1 errors, the differences are larger. The coverage probabili-
ties of the parametric bootstrap Cls are almost always higher than those of the RB
bootstrap Cls. For about half of the parameter combinations considered, the para-
metric bootstrap coverage probabilities are closer to the nominal value .95 than the
RB bootstrap coverage probabilities and vice versa. Hence, the overall performance
of the parametric and RB bootstraps are quite similar in the AR(2) model.

No other papers in the literature that we are aware of consider higher-order im-
provements of the parametric bootstrap for time series processes. In fact, there are
few papers that consider higher-order improvements of the parametric bootstrap even
for iid observations. One paper that does is Davidson and MacKinnon (1999b). On
the other hand, numerous papers in the literature consider different types of bootstrap
procedures for time series observations. Horowitz (2001) considers a nonparametric
bootstrap for Markov processes that utilizes a nonparametric estimator of the tran-
sition densities of the process. Bose (1988) and Inoue and Kilian (1999) consider a
residual-based bootstrap for AR processes that relies on transforming the data to
obtain approximately iid residuals. Biithlmann (1998), Park (1999), and Chang and
Park (1999) consider sieve bootstraps for linear time series processes. Many other
papers consider the block bootstrap. These include Carlstein (1986), Kiinsch (1989),
Lahiri (1992, 1993, 1996), Hall and Horowitz (1996), Gotze and Kiinsch (1996), Zvin-
gelis (2000), Gongalves and White (2000), Inoue and Shintani (2000), and Andrews
(2001).

The remainder of the paper is organized as follows: Section 2 introduces the
parametric Markov model that is considered in the paper and defines the ML esti-
mator and ¢t and Wald statistics. Section 3 defines the parametric bootstrap Cls and
CRs. Section 4 states the assumptions. Section 5 provides bounds on the coverage
probability errors of the parametric bootstrap Cls and CRs. Section 6 introduces
k-step parametric bootstrap Cls and CRs and shows that the same bounds on the
coverage probability errors apply as for the standard parametric bootstrap, provided
k is taken large enough. Section 7 presents some Monte Carlo simulation results for
the parametric bootstrap for an AR(2) model. An Appendix contains proofs of the
results.

2 Markov Model and Maximum Likelihood Estimator

In this section, we provide results for likelihood-based methods using the para-
metric bootstrap. The parametric bootstrap utilizes the ML estimator to generate



bootstrap samples. It can be used for both bootstrap confidence intervals and tests.

We obtain higher-order improvements of the parametric bootstrap that are the
same whether or not the data are dependent.

We consider a correctly specified parametric model for a time series
{W; :i=1,..,n}, where W; € Rlv. Let W; = (Y/, X]), where Y; is a vector of
dependent (or response) variables and X; is a vector of “regressor” variables. The
dependent random variables {Y; : i = 1,...,n} form a x-th order Markov process.
The regressor variables {X; : ¢ = 1,...,n} are strictly exogenous and, hence, are
taken to be fixed (i.e., non-random). All probabilities are based on the randomness
in {Y;:i=1,...,n} alone.

Assumption 1. (a) The parametric model specifies the density of Y; given
(X5, Wi—1, Wi_a, ..., W7) (with respect to some o-finite measure p) to be d(-|X;, Wi_1,
Wi—o, .o, Wi_i; 0) for i = k + 1,...,n, for some integer x > 0, where 6 is a parameter
in the parameter space © C RL¢. (b) For any §p € ©, when {Y; : i > 1} is distributed
with true parameter 6y, then {Y; : i > 1} is a strong mixing sequence of random vari-
ables with strong mixing numbers {a(fp,m) : m > 1} that satisfy supg cg (0o, m)
< C1 exp(—Cym) for some constants 0 < Cp,Coy < 0.

Let Ep, and Py, denote expectation and probability, respectively, when the dis-
tribution of the observations is given by the parametric model with true parameter
0o.

It is convenient notationally to define overlapping observations W; = (W, ..., W}, )/
for i = 1,..., N, where N = n — k. The sample in terms of the overlapping variables
is denoted by x :

xy={Wi:i=1,..,N} (2.1)

The normalized negative of the log likelihood function is

N
p(6) = N713" p(;,0), where
=1

p(AW_/Z? 0) = - log d(}/;:+l$‘Xi+H7 M/i-‘rﬁi—l7 M/i-‘rﬁi—27 eeey M/Z? 9)2 (22>
By definition, the ML estimator, §N, solves

min pyy (6). (2.3)

The ML estimator also satisfies the first-order conditions

N
N1 Zg(VVi,@N) = 0, where
i=1

g(Wi,0) = (9/00)p(W;,0). (2.4)

The asymptotic covariance matrix, (6p), of the extremum estimator 5]\/ when
the true parameter is 6 is

2(00) = D(@o)_l‘/(@o)D(eo)_l, where

4



N
V() = lim N1 Eag(W;,0)g(W;,0) and

N—o0
i=1
RN
D(O) = Jim N7V Eyorg(Wi,0). (2.5)
1=1

A consistent variance matrix estimator X for §N can be defined in several ways
because D(6y) and V(6y) are square matrices and the information matrix equality
implies that D(0p) and V (6y) are equal. In particular, one can use

ZN == ZN(/H\N) for
Yn(0) = DG (O)VN(0) DN (0), Sn(0) = D (O), or En(0) = V' (6), where

N
Vv(0) = NN (Wi, 0)g(W;,0), and
=1

N
Dn(0) = N’lzwg(Wi,Q). (2.6)

Let 0., 0o,, and EN,T denote the r—th elements of 8, 6y, and 5N respectively.
Let (Xn)rr denote the (r,r)-th element of ¥y. The t statistic for testing the null
hypothesis Hy : 0, = 0o, is

Tn(0o,) = NY2(On, — 00.) ) (Sn)H2. (2.7)

rr

Suppose 3 € RE8 is a sub-vector of 0, say, 0 = (3,6'). The Wald statistic for
testing Hy : B8 = (B, versus Hj : 8 # 3 is

Wi (Bo) = HN@N,ﬁo)/HN@N,ﬂO), where
Hy (0, 8y) = ([T, 01Sn(0)[T1,:01) "2 N2(3 = By). (2.8)

3 Parametric Bootstrap

The parametric bootstrap sample {W;* : i = 1,...,n} is defined as follows. The
bootstrap regressors are the same fixed regressors as in the original sample and the
bootstrap dependent variables are generated recursively for ¢ = 1,...,n using the
parametric density evaluated at the unrestricted ML estimator gN. That is, one
takes Wi = (Y}, X})’, where Y;* has density d(-|X;, W, W/ ,, ..., W _;0N) for

i = 1,...,n, where k; = min{k,i + 1}. The bootstrap observations WJZ* are defined

to be /V\V/Z* = (W, .., Wp,) fori = 1,..,N. Under Assumption 1, the conditional
distribution of the bootstrap sample given EN is the same as the distribution of the
original sample except that the true parameter is EN rather than 6.

The bootstrap estimator 67 is defined exactly as the original estimator Oy is
defined, but with the original sample {W@ :i=1,..., N} replaced by the bootstrap



sample {/I/IV/Z* :1=1,...,N}. That is, 03 solves

N
R .
min piy (6), where piy(6) = N 21 p(Wi,0). (3.1)

The bootstrap covariance matrix estimator, ¥}, is defined to be X3, (6%) where
¥} (0) has the same definition as Xy (6) (see (2. 6)) but with the bootstrap sample
in place of the original sample. (For example, V3 (0) equals Vi (0) with Wi replaced
by ﬁ//l*)

The bootstrap t and Wald statistics need to be defined such that their distribu-
tions mimic the null non-bootstrap distribution even when the sample is generated
by a parameter in the alternative hypothesis. This is done by centering the statis-
tics at 0 N, and ﬂ N, respectively, rather than at the values specified under the null
hypotheses. We define

T (Ony) = NW((e* )r — On)/(S8)H? and

WN(ﬁN) Hy (0N ﬂN) HN(QN,BN) where
1/2

10, By) = ([ILE 012N<9>[IL;01') NY2(3 - By), (3.2)

(0% ), denotes the r-th element of 03, and (X%). denotes the (r,r)-th element of
N

Let 2ip o> 274, and zjy, , denote the 1 — a quantiles of T%On,)|, T (On,), and
W}{,(EN) respectively. (To be precise, we define 270 = inf{z € R: P*(\T]*\‘](/H\N’,«ﬂ <
z) > 1—a} etc.)

The symmetric two-sided bootstrap CI for the r-th element of 0y, 0, of confi-
dence level 100(1 — )% is

Cloyar = [Onr — 2y o (SN)HZ/NY2, Onp + 2 o(Sn)H2 /N, (3.3)
The equal-tailed two-sided bootstrap CI for g, of confidence level 100(1 — «)% is
Cler = [ONr = 25,02 (ENHZ N2, 0Ny + 2012 (BN)H2 /N, (34)
The upper one-sided bootstrap CI for 6, of confidence level 100(1 — )% is
Clyp = [Ony — 75 o(SN)H2 /N2, ). (3.5)

The bootstrap confidence region for (3, of confidence level 100(1 — )% is

CR={8€R" : N(By — B) (I, 01=n[I1,:0) " By — B) < Zya}.  (3.6)

Correspondingly, the symmetric two-sided bootstrap ¢ test of Hy : 6, = 6,
versus Hy : 0, # 0o, of significance level a rejects Hy if |Tn(0or)| > Z‘T‘ . The
equal-tailed two-sided bootstrap t test of significance level a for the same hypotheses



rejects Hy if Tn(0o,) < Z},lfa/2 or Tn(0or) > 2}704/2. The one-sided bootstrap ¢
test of Hy : 60, < 0p, versus Hy : 0, > 0y, of significance level a rejects Hy if
TN(QO,T) > Z’;a‘

To carry out tests of the above sort, an alternative parametric bootstrap procedure
can be used that employs the restricted ML estimator of #. Results of Davidson
and MacKinnon (1999b) indicate that the error in test rejection probability may be
smaller using such a procedure than using a bootstrap based on the unrestricted ML
estimator. For this reason, the results of this paper are most useful for Cls and CRs
rather than for tests.

4 Assumptions

In this section, we state assumptions that are used in conjunction with Assump-
tion 1 to obtain the results of the paper.

Let a be a non-negative constant such that 2a is an integer. The following as-
sumptions depend on a—the larger is a, the stronger are the assumptions. To obtain
higher-order improvements of the parametric bootstrap Cls, we require the assump-
tions to hold with a equal 1, 3/2, or 2 depending upon the CI.

Let f(Wi,Q) € RY denote the vector containing the unique components of
g(Wi, 0) and g(/V[v/i, Q)g(ﬁ/;, )" and their partial derivatives with respect to 6 through
order d = max{2a+2, 3}. Let (&’ /89j)g(/l/l7i, 6) denote the vector of partial derivatives
with respect to € of order j of g(Wi, 0). Let Apin(A) denote the smallest eigenvalue
of a matrix A. Let d(6, B) denote the usual distance between a point § and a set B
(i.e., d(6,B) = inf{||0 — 04]| : 01 € B}).

We establish asymptotic refinements that hold uniformly for the true parameter
lying in a subset ©g of ©. For some § > 0, let ©1 = {# € © : d(0,0¢) < §/2}
be a slightly larger set than ©g. To obtain the asymptotic refinements, we need to
establish Edgeworth expansions that hold uniformly for the true parameter lying in
©1. The reason is that the parametric bootstrap uses 6y as the true parameter and
©; contains 5N with probability that goes to one (at a sufficiently fast rate) when the
true parameter is in ©g. In turn, to establish the Edgeworth expansions for all true
parameters g in ©1, we need some assumptions to hold uniformly over the slightly
larger set @y = {0 € © : d(0,0q) < 6}.

We use the following assumptions.

Assumption 2. (a) © is compact and ©; is an open set. (b) 6y minimizes
N-ISN p(Wi,0) over 0 € ©. (c) p(0,00) = limy oo N2V By, p(Wi, 0) exists
and satisfies iy — oo SUPgee gyco, [N SN, Egop(Wi, 0) — p(6,600)| = 0. (d) For all
0o € O1, p(0,6p) is uniquely minimized over § € O by 6 = 6. Furthermore, given
any € > 0, these exists > 0 such that ||§ — 0y|| > € implies that p(6,00) — p(0o, o)
> n for all § € © and 0y € O1. (e) supy,ce, i>1 Fo, SUPgco lg(W;,0)[|® < oo and
SUPg,co, i>1 E90|p(W7;, 0)]%° < oo for all § € © for go = max{2a + 1,2}.

Assumption 3. (a) g(w,0) is d = max{2a + 2,3} times partially differentiable
with respect to  on ©, for all w in the support of W for all 7 > 1.



(b) supgyco, i>1 EgOHf(Wi, 00)||9* < oo for some ¢1 > 2a+2. (¢) V(0p) and D(6p) sat-
isfy infgoegl )\mm( (00)) > 0, infgoegl )\mm( ((90)) > 0,limy 00 SUPg,cO, |E90VN((90)
—V(0p)| = 0 and limy_,o SUpPg,co, |E90DN(00) (90)\ = 0. (d) There is a func-
tion Cp( Z) such that Hf(l%,@) f(VVZ,QO)H < Cy( Z)HH — 6p]| for all # € O and
0o € ©1 such that || — 6p|| < 6 and all # > 1 and supy,ce, i>1 EgOCgl(Wi) < oo for
some q1 > 2a + 2.

Assumption 2 imposes some fairly standard conditions used to establish consis-
tency of the ML estimator, as well as some moment conditions. Assumption 3 imposes
smoothness and moment conditions on the parametric densities and their derivatives,
as well as full rank conditions on the information matrix.

The next assumption comes from Lahiri (1993), which extends results of Gotze
and Hipp (1983). The assumption guarantees that an Edgeworth expansion holds
for N~1/25° N (f(W@,Ho) Egof(Wi,Qo)) with remainder o(N~%) uniformly over
0o € ©1, given the moment condition in Assumption 3(b). The assumption is rather
complicated and is not easy to verify in general. Nevertheless, Gotze and Hipp (1983,
1994) provide a number of examples in which this condition is verified. For a fixed
value 0y, the assumption is weaker than the corresponding assumptions employed in
Hall and Horowitz (1996) and Andrews (1999), which are based on sufficient condi-
tions for the assumption given below.

The following assumption can be replaced d by any set of sufficient conditions for
an Edgeworth expansion for N~1/2 Z n (Wi, 00) — Ey, f(W;,00)) when the true
parameter is 6y whose remainder is o(N @) uniformly over 0y € ©;. For example,
there are several Edgeworth expansions in the literature designed specifically for
Markov processes. These include Malinovskii (1987, Thm. 1) and Jensen (1989,
Thm. 2).4

Let (£2,.A, Py,) for 6y € O be the probability space on which the random vectors
{W; :i > 1} are defined. Let Dy, D41, D1a, ... be a sequence of sub-o-fields of A. Let
D} denote the o-field generated by D; for p < j < gq.

Assumption 4. (a) There exists a constant d; > 0 such that for all
m,i = 1,2,... with m > d;* there exists D ™-measurable random vectors Z; ,,,(6)
for which Eg,||f(Wi,00) — Zim(00)|| < di'exp(—dim) for all 6y € ©;. (b) There
exists a constant dp > 0 such that for all m,i =1,2,..., A € D", and B € D,
| Py, (AN B) — Py, (A) Py (B)| < dy'exp(—dm) for all §y € O;. (c) There exists a
constant dg > 0 such that for all m,i = 1,2, ... with dgl <m < iandallte RN
with |[t]] > d, Eg,| By, (exp(v/=1¢' (557, f(W;,00)))ID; = j # i) < exp(—ds) for
all g € O1. (d) There exists a constant d4 > 0 such that for all m,i,p = 1,2, ... and
A€ DI, Egy|Poy(AID; : j # i) — Po(A|D; : 0 < |i — j| < i+ p)| < dy" exp(—dam)
for all 6y € O1. (e) There exists matrices Q(y) € R/ *Ls for §y € ©p such that
limy 00 SUPg, co, |[Varg, (N~1/2 5N f(/VIV/i,Qo)) —Q(6p)|| = 0 and Q(fp) has small-
est eigenvalue bounded away from 0 over 0y € O1. (f) There exists a constant ds > 0
such that for all i > dy* and m > dg ' inf{t'Varg, (3717 FOW5,00)t : |[t]] = 1,00 €
@1} > dsm.



Assumption 4 is a conditional Cramér condition. In the case of an iid sequence
of random variables, Assumption 4 reduces to the standard Cramér condition.

5 Higher-order Improvements
One of the main results of this paper is the following Theorem.

Theorem 1 Suppose Assumptions 1-4 hold with a in Assumptions 2 and 8 as
specified below. Then,

(a) supg,ce, |Poo (6o € Clsyn) — (1 —a)l = O(N?) fora =2,

(b) supg,co, |Pao(00 € Clr) — (1 - a)| = o( N1 In(N)) for a =1,

(¢) supg,co, |Po, (0o € Clyp) — (1 — a)| = o(N"*In(N)) for a =1, and

() supgycoy |Poo(fo € CR) — (1 - a)| = o N-#21n(N)) for a = 3/2.

Comments. 1. The errors in coverage probability of standard delta method Cls
and CRs based on asymptotic normal and chi-square approximations are O(N 1),
O(N—1/2), O(N~12), and O(N~1) for symmetric ¢ CIs, equal-tailed ¢ CIs, one-sided
t Cls, and elliptical CRs respectively. Hence, the Theorem shows that parametric
bootstrap ClIs and CRs reduce the coverage errors of standard CIs and CRs by the
multiplicative factors O(N~1), o(N~21In(N)), o(N~/21In(N)), and o(N~/21In(N))
respectively. These improvements are almost the same as the improvements that
have been established for parametric and non-parametric bootstrap CIs or CRs for
a population mean (based on the sample mean) in 4id scenarios, which are O(N 1),
O(N~Y2), O(N~1/2), and O(N~1/2), respectively, e.g., see Hall (1988, 1992). Hence,
in contrast to the block bootstrap (e.g., see the higher-order improvement results
in Andrews (1999)), the parametric bootstrap for time series observations performs
essentially as well asymptotically as for independent observations.

2. The result of Theorem 1(a) is sharp and the results of Theorem 1(b) and
(c) are very nearly sharp. (Based on results available for population means in iid
scenarios, sharp results would be errors of magnitude O(N~1) in parts (b) and (c).)
But, the result of part (d) for the CR probably is not sharp or nearly sharp. One
may be able to obtain an error in part (d) of O(N~2) via an argument somewhat
similar to that of Hall (1988) for symmetric ¢ CIs. This has not been done in the
literature, however, even for the case of a CR for a vector of population means in an
iid scenario.

3. The conditions on d, qp, and ¢; in Assumptions 2 and 3 are as follows. For
a = 1, the Assumptions require d > 4, ¢o > 3, and ¢; > 4. For a = 3/2, the
Assumptions require d > 5, go > 5, and ¢; > 6. For a = 2, the Assumptions require
d>6,qo>5,and q; > 6.

6 k-Step Parametric Bootstrap

In this section, we define the k-step bootstrap estimator, ¢ statistic, and Wald
statistic and corresponding Cls and CRs. Then, we establish bounds on the coverage



probability errors of these CIs and CRs. Provided k is taken large enough, the bounds
are of the same magnitude as those obtained for the standard parametric bootstrap.
The k-step bootstrap estimator is denoted 0}‘\77 x- The starting value for the k-step

estimator is §N, the estimator based on the original sample. We define recursively

N

ONn;=0N;-1— (Q}k\f,j—l)_lN_l ZQ(Wi*aH}kv,j—l) for 1 <j <k, (6.1)
i—1

where 0 o = .

The Lg x Lg random matrix @} ;_; depends on 0N j_1- It determines whether
the k-step bootstrap estimator is a NR, default NR, line-search NR, GN, or some
other k-step bootstrap estimator. The NR, default NR, and line-search NR choices of
Q?v, i1 yield k-step bootstrap estimators that have the same higher-order asymptotic
behavior. The results below show that they require fewer steps, k, to approximate the
extremum bootstrap estimator 6% to a specified accuracy than does the GN k-step
estimator. The NR choice of QY ;_; is

*NR __
QN ;-1 = Dn(Oy;_1), where

N
* — 6 T17%
Dy(0) =N 12@9(”@ ,0). (6.2)
i=1

The default NR. choice of Q}‘V,jfl, denoted Q}k\}?fl, equals Q}k\}{;{i if Qf\’ﬁi leads
to an estimator 07 ; via (6.1) for which py (0 ;) < px (0N ;—1), but equals some
other matrix otherwise. In practice, one wants this other matrix to be such that
Pan(On,;) < py(0n ;1) (but the theoretical results do not require this). For example,
one might use the matrix (1/¢)1r, for some small € > 0. (See Ortega and Rheinboldt
(1970, Theorem 8.2.1) for a result that indicates that such a choice will decrease the
criterion function.)

The line-search NR choice of Q}‘\L j—1, denoted QT\}{:ﬁp uses a scaled version of the

NR matrix Qf\}]}fi that optimizes the step length. Specifically, let A be a finite subset

*,Q

of (0, 1] of step lengths that includes 1. One computes 0} ; = Oy, via (6.1) for QN1

= (1/a)Q7\}f}[i for each @ € A. One takes Q?VL]“: to be the matrix (1/01)@7\’,{;.@1 for
the value of a that minimizes pj (0";) over all a € A. (If the minimizing of value of
a is not unique, one takes the largest minimizing value of « in A.)

The GN choice of Q}‘\L j—1, denoted Q}ﬁﬂ, uses a matrix that differs from, but is

a close approximation to, the NR matrix Qj‘\}zgf'l. In particular,
,GN
QN j-1 = Dij-1, (6.3)

where D} ;_; is determined by some function A(,-) as follows:

N
Dyj1=N"Y AW}, 0y, 1) € R and
=1

Ej A(WF,00) = E;O%g(’vi*,eo) for all i > 1 and all 6 € ©. (6.4)
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The latter condition is responsible for DTV, -1 being a close approximation to
,NR
DTV(Q}(V‘] 1) Q?V] 1
An example of a GN matrix Q 1 is the sample outer-product estimator of the
bootstrap information matrix. By the information matrix equality,

E;O%g(ﬁj,eo) = B}, g(W},00)g(W;,80) for alli > 1 and all §y € ©1.  (6.5)

In this case, the NR matrix Q?\’,];Rl is the sample analogue of the expectation on the

left-hand side of (6.5): Q}‘VZXRl = N~ 12;21(8/60’)9(/1/12*,07\77]-,1). The GN matrix

?\,G]]fl is the sample analogue of the expectation on the right-hand side of (6.5).

Thus, Q") is as in (6.3) and (6.4) with
AW;,0) = g(W7,0)g(W, 0 (6.6)

The GN matrix does not require calculation of the second derivative of the log like-
lihood function.

Alternatively, one can use a GN matrix Q*N’ j—1 based on the ezpected bootstrap
information matrix:

N

*,G — * 0 1%

o= NT! ZEGWg(M/i ,0) : (6.7)
i=1

0=0N -1

In this case, the function A(Wi*,ﬁ) of (6.4) is E;(@/@H’)g(wi*ﬂ), which is non-
random. The expected information matrix is often used in the statistical literature
on one-step and k-step estimators, e.g., see Pfanzagl (1974).

The bootstrap covariance matrix estimator Z}‘V,k is defined as Xy is defined in
(2.6), but with the bootstrap sample in place of the original sample and 07, in place
of /éN.

The k-step bootstrap ¢t and Wald statistics, Tka(@N,T) and Wj{lk(BN), are
defined as in (3.2), but with 0% and X}, replaced by Ony and X3, respectively.

Let 277 ko> 2Tk 80d 23y 5 o, denote the 1 — o quantiles of |Tj\}7k(5N7r)|, T]”\‘Lk@]\/m),

and Wy (B ) respectively.

The k-step bootstrap Cls and confidence regions, denoted Clsyar i, CIgT ks
Clypyg, and C Ry, are defined as in (3.3)—(3.6), but with z‘*T"a, 27 o and z3, , replaced
by Z|*T\,k,a= z}’k’a, and Z;Vvkvoz respectively.

The matrices {Q%;_; : j = 1,...,k} are assumed to satisfy the following assump-
tion.

Assumption 5. The matrices {Q}‘Vj_l :j=1,...,k} satisfy: For some sequence
of non-negative constants {¢)y : N > 1} with limy_., %5 = 0 and for all £ > 0,

sup P, (1@t — D Ohyll > ) = o(N ) for j = 1,....k,

0pcO1
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where P;‘O denotes the probability when the bootstrap sample is generated using the
parameter 6y rather than EN and the initial estimator 0}‘\]70 is O rather than /H\N.

We now give sufficient conditions for Assumption 5 for the NR, default NR, line-
search NR, and GN choices of Q?V, o1

Lemma 1 Suppose Assumptions 1-4 hold for some a > 0 with 2a an integer. Then,
Assumption 5 holds with ¥ = 0 for all N for the NR, default NR, and line-
search NR choices of Q}‘W_l for j = 1,.. k. In addition, Assumption 5 holds with
Yy = N-Y2In(N) for the GN choice of QN j—1 for j = 1,...k provided Assump-
tions 1 and 4 hold with the elements of A(ﬁ//@-, 0) (defined in (6.4)) added to f(WZ,H)
and the function A(-,-) satisfies: () EgO(A(Wi,HO) —(8/89')9(?@,0@) = 0 for

all i > 1 and all 09 € Oy, (it) A(W;,0) is continuously differentiable with re-

spect to 0 on Og, (iii) supg,ceo, i>1 Lo ||A(Wi, 00) — (8/80')g(%,00)||2“+3 < 00, and
(i) $uPgocor 11 Foy Subpe s e) 10/00,)(A(W;,0) — (9/00)g(Wi, )% < oo for
allu=1,..., Ly, for some e > 0, and for g = max{2a+1, 2}, where B(0y,c) denotes
an open ball at 0y of radius €.

Comment. Conditions (ii)—(iv) of the Lemma hold for the outer-product GN matrix
of (6.6) by Assumption 3.

The higher-order asymptotic equivalence of the k-step and standard bootstrap
statistics is established in parts (a) and (b) of the following Theorem. Part (b) gives
conditions under which the Kolmogorov distances (i.e., the sup norms of the differ-
ences between the distribution functions) between N/ (0, k—EN) and N'1/2 (H*jv—gN),
Tj\}k(aNm) and T§(5N7r), and Wj{,k(BN) and WE(BN), respectively, are o(N~?) for
some a > 0. 7

In part (a) of the Theorem, the difference between the k-step bootstrap estimator
and the standard ML bootstrap estimator is shown to be of greater magnitude than
v With bootstrap probability o(N~™%) except on a set with probability o(N~%),
where

_J N —2 2% () for NR, default NR, and line search NR matrices
Nk N=G+D/21nP L (N) - for GN matrices.

(6.8)
Thus, for the NR procedures, the difference decreases very quickly as k increases
and for the GN procedure the difference decreases more slowly as k increases. More
generally, for ¢, as in Assumption 5, iy, is defined by

g = max N-277 2 (Nl (6.9)

sy

The key condition in part (b) of the following Theorem is

p = o(N~1H/2)), (6.10)
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where 2a is a non-negative integer. Given this condition, the Kolmogorov distances
between the k-step and bootstrap statistics are o(N~%) except on a set with proba-
bility o(N~%).

If Assumption 5 holds with ¢ = 0, as it does for the NR, default NR, and
line-search NR procedures, then (6.10) holds if

28 > 24 + 2, (6.11)

where 2a is an integer. Thus, for k = 1, we have a = 0; for k = 2, we have a = 1; for
k = 3, we have a = 3; for k = 4, we have a = 7; etc.

If Assumption 5 holds with ¢y = N —1/2 In(N), as it does for the GN procedure
under the conditions in Lemma 1, then (6.10) holds if

k> 2a+1, (6.12)

where 2a is an integer. Thus, for £ = 1, we have a = 0; for k = 2, we have a = 1/2;
for k = 3, we have a = 1; for k = 4, we have a = 3/2; etc.
The aforementioned Theorem is as follows:

Theorem 2 Suppose Assumptions 1-5 hold for some a > 0 with 2a an integer in
parts (a) and (b).
(a) Then, for all e >0,

sup By (Py (10 — NIl > v i) > N7%) = o(N7°),

00€0o
sup Py, (P (IT5Onr) — TR On)| > N2ppp) > N7) = o(N™), and
0€090
Sup Py(P; (Wix(Bn) = WR(BN)I > N2y i) > N7%) = o(N 7).
0€090

(b) Suppose jup ) = o(N—(@+1/2)) " Then, for all e > 0,

sup Py, < sup PgN (N1/2(97V,k —On) < 2)

00€Op z€RLe

—P (NY2(03 —On) < z)‘ > N—%) = o(N™),

sup Pi(sup | Py (T (Onr) < 2) = Py, (Tic(B,) < 2)| > N7%) = o(N ™),
60€O9 zZER N N

and
sup Py, (sup [P3 (Wici(By) < 2) = Py (Wi(Byy) < 2)| > N7%) = o(N 7).

00€O©g 2€R

We use the results of Theorem 2 to show that the errors in coverage probability of
the k-step bootstrap Cls are the same as those of the standard bootstrap Cls given
in Theorem 1. In consequence, one can obtain higher-order improvements using
the bootstrap without doing the nonlinear optimization necessary to compute the
standard bootstrap ML estimator.
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Theorem 3 (a) Suppose Assumptions 1-5 hold with a = 2 and pyj = o(N—5/2),
Then, supg,ce, |Po, (00 € Clsymr) — (1 —a)] = O(N~2).

(b) Suppose Assumptions 1-5 hold with a = 1 and pyjy = o(N=3/2).  Then,
SUPg,co, | P, (0o € Clpri)—(1—a)| = o(N~1In(N)) and SUpg,co, | Fo, (Po € Clypk)
—(1 —a)| = o(N~tIn(N)).

(c) Suppose Assumptions 1-5 hold with a = 3/2 and puyy = o(N~2). Then,
SUPg,co, |Poy (0o € CRy) — (1 — a)| = o(N_3/2 In(N)).

Comments. 1. For the NR, default NR, and line-search NR procedures, the condi-
tion = o(N~/2) in part (a) is satisfied if k > 3; the condition BNg = o(N—3/2)
in part (b) is satisfied if & > 2; and the condition sy = o(N—5/2) in part (c) is
satisfied if & > 3. For the GN procedure, the condition py j = o(N =5/2 in part (a) is
satisfied if £ > 5; the condition uy j = o(N—3/2) in part (b) is satisfied if & > 3; and
the condition iy, = o(N —5/2) in part (c) is satisfied if k > 4. Hence, the k-step NR
bootstrap procedures require fewer steps than the k-step GN bootstrap procedure to
achieve the same higher-order improvements as obtained by the standard parametric
bootstrap. But, with NR or GN k-step bootstrap procedures, the number of steps
does not need to be very large.

7 Monte Carlo Simulations

In this section, we compare the performance of standard delta method Cls, sym-
metric percentile ¢ Cls, and equal-tailed percentile ¢t Cls using Monte Carlo simu-
lation. We consider a stationary Gaussian AR(2) model because it is a well-known
model, the standard delta method is known to perform poorly when the sum of the
AR coefficients is near one, and the parameter estimates are available in closed form,
which greatly speeds computation.

7.1 Experimental Design

The model we consider is given by
Yi = p+ plyi—l + IOZ}/;—Q + UUi for i = 37 ooy Ty
1 1/2
Yi = < ) Ui,
1—p} — p3 —203py/(1 — p3)

1— 2 1— 2 1/2

}/2 — P1 }/1_’_< 5 51/( ) p2) ) UQ, and
1—py 1= pi = p3 = 2pipa/(1 = p2)

U; = iid N(0,1) for i =1,...,n. (7.1)

As defined, this model is a stationary Gaussian AR(2) model. The model can also
be defined in augmented Dickey-Fuller form as

Yi = p+aY;_1 — pyAY;_1 + oU; for i = 3,...,n, where

a = P + P2,
AY; 1 =Y 1Yo, (7.2)
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and (Y1, Y2, U;) are as in (7.1).
__ In terms of the notation of Section 3, k =2, N=n -2, W; =Y; fori=1,...,n,
Wi = (Yis2,Yir1,Y;) fori =1,..., N, and 0 = (u, py, py, 02)". The normalized negative

log-likelihood of {W; : 1 <i < N} (conditional on Y7 and Y3) is

N
1 1 1
p(0) = 5 log(2m) + S log(0®) + 5 Y (Yigz — = prYip1 — paYi)*. (7.3)
i=1
The parameter space for § is R? x RT. In consequence, the ML estimators of y, py,
and py, denoted i, p;, and py, are the least squares estimators from the regression
of Yiio on 1,Y;1, and Y] for ¢ = 1,..., N. The ML estimator, @, of a is p; + py. The
ML estimator of o2 is
N
5% =(1/N)> (Yita — i — 1 Yip1 — poYi)% (7.4)
i=1

Researchers are often interested in the persistence of a time series. This can be
measured by the impulse response function (IRF). The IRF traces out the effect of
an increase in the innovation oU; by a unit quantity on the values Y;,p, denoted
IRF(h), for h = 0,1,... and ¢ > 3. The cumulative impulse response (CIR), defined
by CIR = Y ;°,IRF(h), provides a convenient scalar summary measure of the
persistence of the time series. In the model of (7.1), the CIR equals 1/(1 — «). The
ML estimator of CIR is CIR = 1 /(1—a). (See Andrews and Chen (1994) for further
discussion of CIR.)

In the simulation experiment, we consider Cls for the CIR, as well as for the
parameters «, p;, and py. Note that the C'IR only depends on the parameter o, so
a also is a useful measure of persistence. (The spectrum of {Y; : i > 1} at zero
equals 02 /(1 — a)? and, hence, is another measure of persistence that depends on the
regression coefficients only through «.)

The standard delta method CI for C'I R with nominal coverage probability 100(1—
7)% is given by

_——~  OCIR#1-7/2 ——— OCIRZl—r
Cloip = |CIR — UCLJ%/Q CIR+ UCLJ%/Q . where
Gorr = 0a/(1—a)*, (7.5)

and 62 equals 2 times the (2,2) element of the inverse of N~' SN (1,Y; 1, AY; 1)
x(1,Y;—1,AY;_1)". The delta method ClIs for a, p;, and py, denoted Cl,, CI, , and
Cl,,, respectively, are defined analogously with dorr replaced by 74, 7p,, and o,
where 3?,1 and 822 equal 52 times the (2,2) and (3,3) elements, respectively, of the
inverse of N1 Zﬁil(l, Yio1,Yi2)(1,Yio1,Yio2).

The symmetric and equal-tailed parametric bootstrap Cls for CIR, «, p;, and p,
are as defined in (3.3) and (3.4) of Section 3.5

Because the ML estimators of CIR, «, p;, and p, are available in closed form, we
do not consider k-step bootstrap Cls.
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An alternative to the parametric bootstrap that can be applied in the AR(2)
model above is the residual-based (RB) bootstrap. The RB bootstrap is the same
as the parametric bootstrap except that the distribution of the bootstrap errors is
given by the empirical distribution of the residuals from the original sample, rather
than by the normal distribution. Symmetric and equal-tailed RB bootstrap Cls for
CIR, «, p;, and p, are as defined just as with the parametric bootstrap but with
the bootstrap errors being iid with distribution given by the empirical distribution of
the residuals. We compute RB bootstrap CIs and compare them to the parametric
bootstrap Cls.

We report coverage probabilities for 95% Cls for each of the three types of CI,
i.e., delta method, symmetric bootstrap, and equal-tailed bootstrap, for each of the
four parameters, i.e., CIR, «, py, and py. In addition, for the CIs for CIR, we report
the probabilities that the CIs miss the true value to the left and to the right and the
average length of the CIs. We report results for sample size N = 100, as well as some
results for N = 50.

We consider nine different parameter combinations for p; and p,, which corre-
spond to four different values of «, viz., .9, .5, —.5, and —.9, see Table I. These
parameter combinations have been chosen because they cover a broad spectrum of
different performances of the CIs considered. All results reported are invariant to the
values of 1 and o2, so we set = 0 and 02 = 1 without loss of generality.

To assess the robustness of the parametric bootstrap Cls to the distribution of the
innovation U;, we also consider the case where U; has a t distribution with five degrees
of freedom, which has fat tails, and when it has a chi-squared distribution with one
degree of freedom (shifted to have mean zero), which has considerable skewness. The
errors in the coverage probabilities of the (Gaussian) parametric bootstrap Cls are
of the same order of magnitude as for the delta method CIs when the errors are
non-Gaussian. But, one would hope that they outperform the delta method in finite
samples.

All results are based on R = 10,000 Monte Carlo repetitions and B = 5199
bootstrap repetitions. With this number of Monte Carlo repetitions, the standard
deviation of the reported coverage probabilities is .0022.

7.2 Simulation Results

Table I reports results for CIs for CIR for all nine (p;, py) parameter combinations
and N = 100. Several features of the results are immediately apparent. First, all three
types of Cls perform most poorly when a = .9. They perform better when o = .5
and best when o = —.5 or —1.5.

Second, the error that the CIs make in almost all cases is under-coverage, not
over-coverage.

Third, both bootstrap Cls perform better than the delta method Cls in terms of
coverage probability whenever a = .9, .5, or —.5 and are comparable when o« = —1.5.
This is consistent with the asymptotic results of Section 5, which show that the error
in coverage probability of the bootstrap Cls converges to zero at a faster rate than for
the delta method Cls. When o = .9 or .5, the bootstrap Cls perform substantially
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better than the delta method Cls. For example, when (p;, py) = (.9, 0), the coverage
probabilities of nominal 95% delta, symmetric bootstrap, and equal-tailed bootstrap
ClIs are .71, .88, and .85, respectively. In this case and others in which the delta
method performs quite poorly, the bootstrap Cls perform much better. But, they do
not eliminate under-coverage.

Fourth, the symmetric bootstrap Cls perform better in terms of coverage proba-
bility than the equal-tailed bootstrap Cls in almost all cases. Especially when o = .9,
the difference is noticeable. This also is consistent with the asymptotic results of Sec-
tion 5, which show that the error in coverage probability of the symmetric bootstrap
ClIs converges to zero at a faster rate than for the equal-tailed bootstrap Cls.

Fifth, the center of the delta method and symmetric bootstrap Cls is significantly
smaller than the true value in all cases. This is reflected in the fact that the proba-
bilities that these CIs miss to the right is essentially zero in all cases. On the other
hand, the equal-tailed bootstrap Cls are fairly well centered around the true para-
meter values. The probabilities that these CIs miss to the left is roughly the same as
the probabilities that they miss to the right, in most cases.

Sixth, the average length of the Cls mirrors their coverage probabilities. The delta
method Cls are shorter than the bootstrap Cls in all cases except when oo = —1.5. In
these cases, they are too short, which causes their coverage probabilities to be too low.
Similarly, the equal-tailed bootstrap ClIs are shorter than the symmetric bootstrap
CIs in those cases in which the former exhibit under-coverage, which occurs in all
cases except when o = —1.5.

Overall, it is clear that both bootstrap Cls out perform the delta method CI. The
comparison between the two bootstrap Cls is not as clear cut. The symmetric boot-
strap Cls outperform the equal-tailed bootstrap Cls in terms of coverage probability.
But, the equal-tailed bootstrap Cls are much better centered. Depending upon how
one weights these two characteristics of the Cls, one might prefer one bootstrap CI
or the other.

Table II reports coverage probabilities for Cls for «, p;, and p, for the same cases
as in Table I. The results for a are quite similar to those for CIR in a qualitative
sense. In particular, the delta method Cls under-cover by more than the bootstrap
ClIs and the equal-tailed bootstrap Cls under-cover by more than the symmetric
bootstrap CIs. The main difference is that all three types of CIs perform much better
in terms of the amount of under-coverage. For example, the coverage probabilities
for (py, p2) = (.9,0) are .91, .93, and .92 for the delta, symmetric bootstrap, and
equal-tailed bootstrap Cls, respectively. These probabilities are much closer to .95
than the probabilities listed above for the CIR Cls.

Note that one could construct a CI for CIR by transforming the CI for «, because
CIR is a monotone transform of «.. (That is, the lower endpoint of such a CI for CIR
is given by 1/(1 — LE,), where LE, is the lower endpoint of the CI for «, and the
upper endpoint is defined analogously.) The resulting CI for CIR has the same
coverage probability as the CI for a.

The results of Table II for p; and p, are better than those for « for all three types
of CIs. That is, the magnitudes of under-coverage are smaller. In fact, in a few cases
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there is a small amount of over-coverage. In the cases where the delta method Cls
under-cover, the bootstrap ClIs under-cover by a smaller amount or by none at all.
Hence, the bootstrap Cls for p; and p, provide an improvement over those of the
delta method.

Tables I and IT do not report results for RB bootstrap ClIs because they differ
very little from the parametric bootstrap results. In most cases, the differences in
coverage probabilities are .001 or less. In a few cases, the differences are .002.

Tables IIT and IV report coverage probability results for the cases of ¢-5 errors and
x2-1 errors respectively. These results show that the Gaussian parametric bootstrap
CIs still outperform the delta method Cls even when the errors are not Gaussian. In
fact, the most salient feature of the results in Tables III and IV is how similar they
are to the results when the errors are Gaussian.

Table III does not report results for RB bootstrap Cls because, as in the normal
error case, the results are quite similar to those for the parametric bootstrap. The
differences between the two for ¢-5 errors are slightly larger than for N(0, 1) errors, but
are still small in most cases. There are a few cases where the differences are as large as
.004, but in most cases the differences are .002 or less. The coverage probabilities of
the parametric bootstrap Cls are almost always the same as, or closer to, the nominal
value .95 than those of the RB bootstrap Cls. This holds because it is almost always
the case that the parametric bootstrap Cls have coverage probabilities that are as
high or higher than those of the RB bootstrap Cls and both bootstrap Cls usually
exhibit under-coverage. These results indicate that the parametric bootstrap Cls are
fairly robust to the existence of fat-tailed ¢-5 errors.

Table IV lists the coverage probabilities of the RB bootstrap Cls for the case of
x2-1 errors, which are skewed. The differences in coverage probabilities between the
parametric and RB bootstrap Cls are noticeably larger than in the N(0, 1) and -5
error cases. The differences are as large as .021, but usually are smaller. In almost
all cases, the coverage probabilities of the parametric bootstrap Cls exceed those of
the RB bootstrap ClIs. Thus, the parametric bootstrap Cls are more conservative.
In roughly half the cases, the parametric bootstrap coverage probabilities are closer
to .95 than the RB bootstrap coverage probabilities. Hence, in an overall sense, the
parametric bootstrap performs at least as well as the RB bootstrap in the case of
(skewed) x2-1 errors (at least for sample size 100).

Table V presents results for the case of sample size N = 50 and N(0, 1) errors.
Comparing the results to those of Tables I and II for N = 100, the results are
what one would expect. The magnitudes of under-coverage of the Cls are larger and
the average lengths of the Cls are larger when N = 50 than when N = 100. The
comparative performances of the delta, symmetric parametric bootstrap, and equal-
tailed parametric bootstrap Cls are quite similar for N = 50 to those for N = 100.
The symmetric parametric bootstrap Cls outperform the delta method Cls in terms
of coverage probabilities in all cases. The equal-tailed parametric bootstrap Cls
outperform the delta method Cls in terms of coverage probabilities in most cases.
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8 Appendix of Proofs

In the first subsection of this Appendix, we state Lemmas 2-9 that are used in the
proofs of Theorems 1-3 and Lemma 1. In the second subsection, we prove Theorems
1-3. In the third subsection, we prove Lemmas 1-9.

Throughout the Appendix, a denotes a constant that satisfies a > 0 and 2a is an
integer, C denotes a generic constant that may change from one equality or inequality
to another, and B(6,¢) denotes an open ball of radius € > 0 centered at 6.

8.1 Lemmas

Lemma 2 Suppose supy,ce, Fo, (/H\N ¢ B(00,6/2)) = o(N~%) (for 6 as in the def-
initions of ©1 and ©2 given in Section 4) and {A\n(0) : N > 1} is a sequence of
(non-random) real functions on ©1 that satisfies supgeg, |[AN(0)] = o(N~*). Then,
for all e > 0, R

sup Py, (|AN(ON)| > N7%) = o(N™9).

00€069
Comments. 1. This is a simple, but key, result that is used to obtain bootstrap
results from results that hold for statistics based on the original sample uniformly
over 0 € ©g. For example, suppose we take Ay (6) = Py (||V3(0y) —V(0)|| > ¢) and
we show that supy,co, P, ([|[VN(On) — V(00)|| > €) = O(N*‘i) and supg,ce, Fo, (On
¢ B(00,6/2)) = 1 — o(N—). Note that A\n(0) = Py(||[VN(On) — V(0)]| > ¢) be-
cause the bootstrap distribution of V3 (6%) when the true parameter is 6 is the
same as the original sample distribution of Vy(fy) when the true parameter is 6.
Hence, we know that supycg, [An(0)| = o(N~?) and, by Lemma 2, we conclude that
supgyco, Lo (5 (VA (ON) = V(ON)[| > €) > N7%) = o(N~%).

2. The condition of Lemma 2 on §N is an implication Lemma 5 below.

Lemma 3 Suppose Assumption 1 holds. -
(a) Let m(-,00) be a matriz-valued function that satisfies Eg,m(W;,00) = 0 for all
i > 1 and all Oy € O1 and supy,ce, i>1 E(;OHm(/VIV/i,Ho)Hp < 0o forp>2a and p > 2.
Then, for all € > 0,

N

sup Py ([IN7' D" m(W;,60)]| > &) = o(N™%).
00€01 i—1

(b) Let m(-,00) be a matriv-valued function that satisfies supg,co,.i>1

E90||m(ﬁ//7;,c90)||p < o0 for p > 2a and p > 2. Then, there exists K < oo such
that

N
sup Py, ([[N71Y “m(W;, 00)l| > K) = o(N™?).
00€Oq i—

(c) Suppose Assumptions 3(b) and 4 also hold. Then, for all € > 0,

N
sup (1N 32 ) — B, (i )| > In(N)2) = o(N ™)
0€01 i=1
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Lemma 4 Suppose Assumptz’ons_lf?» hold. Let Oy denote an estimator that satis-
fies: For all € > 0, supg,co, Po,(||0n — bo|| > €) = o(N~?). Then, for all € > 0 and
some K < oo,

sup Py, (|[Viv(On) = V(00)l| > €) = o(N™7),

906@1
sup Py, (||Dn(On) — D(0o)|| > €) = o(N™7),
906@1
3 —
sup P90(H 3pN(0N)H>K) :O(N_a)a and
NSSH 80

N
sup Py ([[N71Y " g(Wi, 0n)| > €) = o(N™%).
B0€01 i=1

Lemma 5 Suppose Assumptions 1-4 hold. Then, for all € > 0,

sup Py, <N1/2\ On — 00| > ln(N)s) — o(N79).
0p€O1

Lemma 6 Suppose Assumption 1 holds. Let {An(6p) : N > 1} be a sequence of
La x 1 random wvectors with Edgeworth expansions for each 0y € ©1 with coeffi-
cients of order O(1) and remainders of order o(N~%) both uniformly over 0y € O.
(That is, there exist polynomials {mni(z,60) : i = 1,...,2a} in z whose coefficients
are O(1) uniformly over 0y € ©1 such that supy,ce, SUPpep;, , | Py, (An(60) € B)
— Jp(1+ S22 NN i(2,00))0q(2)dz| = o( N~%), where ¢pq(2) is the density func-
tion of a N(0,Q) random variable, 2 is nonsingular, and By, denotes the class of
all convex sets in R¥A.) Let {€5(0) : N > 1} be a sequence of random vectors with
supg,co, Fo, (||En(00)|] > In) = o(NT%) for some constants In = o(N~%), where
En(00) € REA. Then,

sup sup |Py,(An(0o) +En(60) € B) — Py, (An(6) € B)| = o(N 7).
AES BGBLA

Let Sn(0) = N~' 0L, f(Wi,0) and Sx(0) = N~L L, f(W7,6).

Lemma 7 Suppose Assumptions 1-4 hold. Let An(fp) denote N1/2(§N — ),
Tn(8o), or Hn(On, By), where 6y = (34, 8;) . Let L denote the dimension of An(6p).
For each definition of An(0o), there is an infinitely differentiable function G(-) that
does not depend on 0y that satisfies G(Eg,Sn(00)) = 0 for all N large and all 6y € ©;
and

sup sup | Py, (An(60) € B) — Pa, (NY2G(Sn(8p)) € B)| = o(N~%).
60€®, BEBY,
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We now define the components of the Edgeworth expansions of Tn(fp,) and
W (Bg), as well as their bootstrap analogues Tj{,(@NW) and W]*Q,(BN) Let Un(6p)
= NY2(Sn(00) — Eg,Sn(00)). Let Wy ;(0p) denote the j-th element of Wy (6p). Let
vN,a(fo) denote a vector of moments of the form N a(m)Ego HZLZI Un,j, (o), where
2 <m < 2a+2, alm) = 0 if m is even, and a(m) = 1/2 if m is odd. Let
7m1i(0,VNa(00)) be a polynomial in § = 0/0z whose coefficients are continuous func-
tions of v 4(0p) and for which 774(6, vn,4(00))®P(2) is an even function of z when ¢ is
odd and is an odd function of z when ¢ is even for ¢ = 1, ..., 2a. The Edgeworth expan-
sion of Ty (6o,r) depends on 77;(8, N 4 (6o)). In contrast, the Edgeworth expansion of
Wn(Bg) depends on mw;(y, vn,q(6o)), where mwi(y, vn,q(60)) denotes a polynomial
function of y whose coefficients are continuous functions of vy 4(0) for i =1, ..., [a].
The Edgeworth expansions of Tx, (/H\N,T) and W}{,(B ~) depend on 7p; (6, v N7a(§N)) and
™wi(Y, YW Nq (5N) ) respectively.

Let ®(-) denote the distribution function of a standard normal random variable.
Let Xi denote a chi-square random variable with A degrees of freedom. Let 6,
denote the r-th element of 6.

Lemma 8 Suppose Assumptions 1-4 hold. Then, for all € > 0,

sup Ppy(NY?||lvn.a(0n) — vna(60)|| > In(N)e) = o(N~9).
0O

Lemma 9 Suppose Assumptions 1-4 hold.
(a) Then,

sup sup [Py, (Tn(6o,r) < 2)
00€O1 2zER

-1+ iNi/QWTi((S, UN,a(00))]®(2)] = o(N™?) and

sup sup | Py, (Wn(8y) < 2)
00€O1 zER

2 [a]
- / A1+ N mpi(y, v a(00))| P2, < 9)] = o(N~2).

- i=1

(b) Then, for all e > 0,

sup Py, <sup\P§* (Tx(Ony) < 2)
906@1 zZ€ER N

-1+ iN"/27TTi(5= VN@(EN))]@(Z)‘ > Na€> — o(N"") and

sup P, <sup P (Wi (By) < 2)
00€O, z€ER N

5 [a]
- / A1+ N mwi(y, vna@n))POG, < 9)l > N-% | = o(N~%).

- i=1
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Comments. 1. The terms in the Edgeworth expansions for the Wald statistic only
involve integer powers of N~1, not powers N~%/2 N =3/2_ ete. as in the Edgeworth
expansions for the ¢ statistic, due to a symmetry property of the expansions.

2. The conditions on ¢; and d in Assumption 3 are not needed in all of the
Lemmas above. In particular, Lemmas 4 and 5 only use ¢; > max{2a + 1, 2} and
d=3.

8.2 Proofs of Theorems
8.2.1 Proof of Theorem 1

We establish part (c) first. Note that Py, (6o, € ClIyp) = Py, (ITn(6o,r) < z}a)
We show that the latter equals 1 — a + o(N~2) uniformly over 6y € ©y. By Lemma
9(b), Lemma 8, and Lemma 9(a), respectively, each with a = 1, we have: for all
e >0,

sup 1, (sup |75, (T5Br) < 2
[ESH) 2€R N

2
—[1+ ZN_i/QWTi(CS, VN,I(/H\N))](D(Z)‘ > N_1> =o(N71),
i=1

sup Py, <sup [[m7:i (6, vn (5N))
SN zZER

—m7i(8, N1 (60))]®(2)| > N~L/2 ln(N)s) =o(N 1) fori=1,2, and

2
sup sup [Py, (Tiv(f0,) < 2) = [1+ Y N~ 2mpi(8,vn5,1(00))]®(2)] = o(N 7). (8.1)
80€60 2ER Py

The results of (8.1) combine to give
sup PGO(SU‘E \PgN (TJ”{,(/H\NJ) < 2) — Py, (T (00,) < 2)] > N 1In(N)e) = o(N7H).
€

00€09 z
(8.2)
Let Frp(-) denote the distribution function of Tn(6p,) when 6y is the true para-
meter. Taking z = 27, in (8.2) yields

sup Py (|1 — o= Pr(z5,,)| > N 'In(N)e) = o(N71). (8.3)
906@0

Using (8.3), we have: for all ¢ > 0,
SUPg,ec0, P'90 (TN(HU,T) < Z;“,a)
supgycop Py (Pr(Ti(bo,)) < Pr(ra). |L—a— Fr(zn,)| < N7 In(N)e)
+suppyce, oo (Fr(Tv(80,)) < Fr(zo), [1—a— Fr(z;,,)| > N In(V)e)

SUPg,co, Foo (FT(TN(007T)) <l—-a+ N1 ln(N)s) +o(N~h
l—a+N"1n(N)e+o(N71,

IN

(8.4)
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where the last inequality holds because Fip(Tn (0o ,)) has a uniform (0, 1) distribution.
(If T (6o,) is not absolutely continuous, then the Edgeworth expansion for T (o)
in (8.1) is used to obtain the last inequality.) Equation (8.4) also holds with supycg,
replaced by infycg, throughout, with the three inequalities (outside the probabilities)
reversed, and with “+ N~ In(N)e” replaced by “~N~!In(N)e.” This establishes that
Py (TN (o) < 27,) =1 —a+ o(N~tIn(N)) uniformly over 6y € Oy, and so, part
(a) of the Theorem holds.

The proof of part (b) is analogous to that for part (c). The proof for part (d) is also
analogous to that of part (c), but using the Wald statistic results of Lemmas 8 and
9, rather than the ¢ statistic results, and with these Lemmas applied with a = 3/2
rather than a = 1. In part (d) the coverage probability error is o(N~3/2In(N)),
rather than o(N~!In(N)) (which is the error in part (c)), because the first terms in
the Edgeworth expansions for the Wald statistic in Lemma 9 are O(N '), whereas
those for the t statistic are O(N~1/2).

Next, we prove part (a). Note that Py, (00 € Clsynr) = Po, ([T (Oo,r)| < 27 ,)-
We show that the latter is o( N ! In(N)) uniformly over 6y € Op.

By Lemma 7 with a = 2, it suffices to establish the result with Tn(fp,) and
Tj{,(@NW) replaced by N'/2G(Sy(6p)) and N1/2G(S}"V(5N)) respectively. Part (a)
now can be established using methods developed for “smooth functions of sample
averages,” as in Hall (1988, 1992). Define 2|, by Py, (|N2G(Sn(00))| < 2Gl,a) =
I —aandlet A =24 — Z\*T|,a' The idea of the proof is to show that

Py (NY2G(Sn(00)) + A < zig10) = 1= /2 + N7y (2161.0)8(2610) + O(N72)
and

Py (NY2G(SN(00)) — A < —z@pa) = a/2 — N2 r1(—26).0)0(—2/c)a) + O(N72),
(8.5)

uniformly over 0y € Og, where ri(x) is a constant times x and ¢(-) denotes the
standard normal density function, as in of Hall (1988). Then,

Poy(ITn (B0.)| < 2110) = Poy (IN'?G(Sn(00))] < 2p1.0) + O(N?)
= 1—a+N"*%1(20..)90(2c)a)
+N T2y (= 2610)8(~ 2Gla) + O(NT2)
=1-a+O0O(N?, (8.6)

uniformly over 6y € O, using the fact that 1 (z) is an odd function and ¢(-) is an even
function. The results of (8.5) are established by the same argument as used to prove
(3.2) of Hall (1988), where his T corresponds to our N'/2G(Sx(p)). (More details
of this argument can be found in Hall (1992, Pf. of Thm. 5.3), which considers one-
sided confidence intervals, but can be extended to symmetric two-sided confidence
intervals.) This argument relies on Edgeworth expansions of N'/2G(Sx (o)) and

N'2G(Sy(On)):
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sup sup | Py, (|N'/2G(Sn (o)) < 2)

00€Og zER
—[1+ N7 ma(6, v 2(00)) + N7 ma(8, v 2(00))(8(2) — (~2))]
= o(N2%) and
sup Py, (sup P* (INY2G(S%(On))| < 2) — [L+ N o (6, VN,Q(gN))
[ZSSH zER
TN 2148, vnp(On)))(@(2) — B(—2))| > N72)
= 0(]\]'72)7 (87)

which hold by Lemma 9 with @ = 2 and with Tn(6y,) and T’ 1”\}(5NT) replaced by
N'2G(Sy(0o)) and NY2G(S% (On)), respectively. The former replacements are valid
by the proof of Lemma 9. [J

8.2.2 Proof of Theorem 2

Define O, Qnj—1, T i(00,), and Wy (o) just as ON ks QNJ 1 TNk(HNr)
and WNk(ﬂN) are defined but with the bootstrap sample {W* tio= N}

replaced by the original sample {W i=1,2,..,N} and with the mltlal estimator
[ ~,0 used to generate [ N,k given by the true parameter 0o. To establish part (a) of
the Theorem, we apply Lemma 2 three times with

AN (00) = By, (10N — Ol > 1) = Poo (086 = ONI| > v i)
An(00) = P (ITx 1 (B0,r) — TR (Bo,r)| > N2 puy 1)

)
= P9o(‘TNk(‘90 T) TN(00 T)| > Nl/Ql'LNk)a and
AN (0o) = Pgo(‘WNk(ﬁO) Wi (Bo)l > N1/2MNk)
= Po, (IWn1(8o) — WN(Bo)| > Nl/ZMNk) (8.8)

The condition of Lemma 2 on /H\N is established in Lemma 5. In consequence, to
establish part (a) of the Theorem, it suffices to show that

sup Foq (|10n, = Onll > piye) = o(N7%),

AESH
Sup Poo(|Tn e (00,r) — T (00,)] > N2y ) = o(N™%), and
€D
S Py (IWw(Bo) = Wi (Bo)| > NY2pp ) = o(N79). (8.9)
€01

We establish the first result of (8.9) first. A Taylor expansion about /H\Mk,l gives

9 -
0= %PN(HN)
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0 ~ 0?2 ~ —~ ~
= 5gPN(Onk-1) + WPN(QN,kfl)(QN —ONjk-1) + Bng

9  ~ . . U
= %pN(HN,k—l) +Ong—10nk — Ong—1) + QNp—1(ON — On i)

0?2 ~
(8080"0N( Nji—1) — QN k- 1)(9N —ONjg—1) + Ry
N 92 N PO

= QN,kq(@N —Ong) + (WPN(QNJCA) —Qnk-1)ON —ONk—1)+ RN,

where

3 ~
ON k1) ON = ONp—1)/2 (8.10)

J— n 7/\ /7
Rng = |(On —Ong-1) 8«9u808«9’pN( 1, : L

[{u] denotes an Ly vector whose u-th element is ., 0 N k1, les between EN and
5N7k,1, the first equality holds except with supremum Py -probability over 6y € ©
equal to o(N~%) by Lemma 5, and the fourth equality holds because (0/90)px (5N,k,1)
+ QN k-1 (§Nk — /0\N7k_1) = 0 by the definition of §N,k. Rearranging (8.10) yields

10 — O]
1 0? =
<N @nx—1) Byl + | (@ng—1)" (6080”0N( Nh—1) — QN k1) Onp_1 — On)]|

< (n(l10ng fﬁNH?wNH?Nk 1 — Ol]), where
63
CN = JH%aX {H QNJ 1 ZH@Q 8080/pN( N,j—1,u /2H
~ 2 o~
+H1(Q@nj—1) | '@Z}NHWPN(QN,JA) —Qnj-1l| + 1}, (8.11)

@7} N = w;,l if ¥y > 0 and @7} ~ = 0 if ¢y = 0. Repeated substitution into the right-
hand side of the inequality gives an upper bound that is a finite sum of terms with
dominant terms of the form:

CC%H/H\N,O */H\NH2k7j@ZJgV for j =0,..,k, (8.12)

where ¢ is a positive integer and 5N70 = Ay when the true parameter is 8y. To see
this, consider the solution in terms of x( of the equation x; = x%_l + Azrp_1. Collect
all terms in powers of A that are multiplied by the smallest number of zy terms.

An upper bound on the right-hand side of the inequality in (8.11) is

OC max, (yy)*NTE I (N, where iy = N[0 — || In ! (N).

- R (8.13)
For all € > 0, supy,co, Po,(Yny > €) = o(N~?) by Lemma 5 because o = 6p. In
addition, by Lemma 4 and Assumptions 3(a) and 5, there exists a finite constant
K such that supy,ce, Po,((ny > K) = o(N~?). Assumption 5 applies here because

Py (11Qx -1 — D Ox ;- DIl > ¥n) = Po(lQn,j—1 — (82/0000 ) o (O 5-1)|| > ¥y).
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Combining these results with (8.11) and (8.13) gives:

sup P90 ||§N,k */éNH > max N_2k7j71 1n2k7j (N)wgv
00€01 7=0,....k

IN

sup PgO(Cg}Q,)\N >1)
00€01

= sup Pp,(CK% > 1)+ 0o(N79)
00€01

= 0(]\]'7a)7 (814)

where the last equality holds for € > 0 sufficiently small. Hence, the first result of
part (a) of the Theorem holds.

Next, we establish the second result of part (a) of the Theorem. Let ¥, denote
(XN)rr. Let Xi, denote X, with EN replaced by 5N7k in all parts of its definition in
(2.6). We use the following:

T (B0.) — T (Bo,)| < NY2|[Oni — Ovll/%}
+NY2|[0y — 6o]| - |21/2—z¢/2\/(2k,r2T)1/2. (8.15)

By (8.13), the second result of part (a) is implied by the first result plus the following:
There exists a K < oo and a § > 0 such that

sup Py, (182 = S12) > pyy) = o(N79), (8.16)
LSS
sup PQO(HHN Ool| > K) = o(N79), (8.17)
0ocO1
sup Py (Xg, <6) = o(N™%), and (8.18)
906@1
sup Py, (X, < 6) = o(N™9). (8.19)
0o€O1

Equation (8.17) holds by Lemma 5. Equations (8.18) and (8.19) hold by Lemma 5,
the first result (8.9), and the first and/or second results of Lemma 4.
Equation (8.16) is implied by (8.18), (8.19), and

6)sup Poo (X5 — Xr| > Bng) =o(N™%) (8.20)
€O

by a mean value expansion. Equation (8.20) is implied by
sup Py, (||Dn(On k) — Dn(ON)I| > p11) = o(N ™) and/or
00O
Sup Poo([IVN(Onk) — VN(ON)|| > ttn ) = o(N7%). (8.21)
€01

These results hold by mean value expansions, Lemma 3(b) with m(/V[v/@, o) = supyeo,
1(92/00,00")g(W,0)|| and m(W;,00) = supgee, ||(9/004)(g(Wi, 0)g(Wi,0))|| for
u=1,..., Ly, Lemma 5, the first result of (8.9), and Assumption 3.
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We now prove the third result of part (a). Let Hy = HN(EN) and Hy
= Hn (0N k). We have

Wi k(By) — Wn(Bo)| = |(Hnx — Hn) Hy i + Hy(Hy g — Hy)|

= |
< HHnp — Hnl[([Hn gl + [[Hn]])- (8.22)
Hence, it suffices to show that
sup Py, (|[Hyx — Hy|| > N2y ) = o(N~?) and
00€01
sup Py, (||Hn|| > M) = o(N~%) for some M < oo. (8.23)
00€01
The second result of (8.23) holds by Lemma 9(a) because ||Hy||> = Wn(3;). The
first result of (8.23) is implied by the matrix version of (8.20) and the first result of
(8.9).
To establish part (b) of the Theorem, we apply Lemma 2 three times with

An(fo) = sup
2€RYe

Pi, (N2 (0301, — 00) < 2) = B (NY/2(0% — 00) < 2)

= sup
2€RLo

Poo (N2 (@5 = 00) < 2) = Py (N*2(0 — 00) < 2)|, (8:24)

etc. In consequence, it suffices to show that

sup sup

Poo(NY2 (B~ 00) < 2) = Po(NY2(By — 00) < 2)| = o(N™%),
00€O1 zeRLo

sup sup | Py, (T k(0o,r) < 2) — Poo(Tn(0o,r) < 2)| = o(N™%), and
00€O1 2zER

sup sup |y, (Wi k(0o) < 2) — Fay (W (6) < 2)| = o(N™%). (8.25)
00€O1 zER
We apply Lemma 6 three times with Jy = Nl/zquk and with (An(60o),&n(60))
equal to (NV2(0x — 00), N'V2(On, — On)), (Tn(00,r), Tvk(0o,) — Tiv(fo,)), and
(Hn (/H\N), Hy (gNk) —Hy (§N)) In the third application, we consider the convex sets
B, = {LL‘ € Rls gl < Z} and use the fact that Wk = HN(/H\N,k)/HN(/éN,k)- By the
assumption that puy , = o(IN —(a+1/2)) e have 9 = o(N~%), as required by Lemma
6. The condition of Lemma 6 on {x(6p) holds by (8.9). As required by Lemma 6,
the random vector T (fp,) has an Edgeworth expansion with remainder o(N~%) by
Lemma 9(a). The same is true for X~ /2N ~1/2 (5]\/ —0p) and HN(EN) by an argument
analogous to that used to prove Lemma 9(a). [

8.2.3 Proof of Theorem 3

The proof of Theorem 3 is the same as that of Theorem 1 except that the results of
Theorem 2(b) allow one to replace Tx (On,), 27, and 270 DY T w(ONy), 254 and
Z|*T\ k.o throughout. In particular, the results of Theorem 2(b) allow one to replace

T j\}(@Nr) by T ]”\}k(aNr) in the first line of (8.1) and the replacements elsewhere all
follow.
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8.3 Proofs of Lemmas
8.3.1 Proof of Lemma 1

The NR result of the Lemma holds by definition of QNR *

To prove the other results of the Lemma, let Qn ;j—1, QN,Jfl fors=NR,D, LS,
and GN, and 5N7j for j = 1,...,k be defined as Q}‘V,jfl, Q*]\’,fj_l, and Qj‘w are defined,
respectively, but with the bootstrap sample {WZ* : 1 =1,..,N} and estimator 0%

replaced by the original sample {W@ :i=1,..,N} and estimator 5N and with the
initial value 0y replaced by the true parameter value y. Then,

P (1Q%j—1 — Di(Ox -l > ¥) = Poy (|Qn5-1 = Dn(Ong-1)ll > ). (8.26)

Hence, it suffices to show that the following holds for Qn,j—1 = @} ;_; for s = D, LS,
and GN:

sup Poo(||Qnj—1 — Dn(On,-1)|] > ¥n) = o(N79). (8.27)
0p€O1

We now establish (8.27) for the default NR matrix. Let EN,J' denote the NR j-step
estimator for j =1, ..., k. Equation (8.27) holds with Qn ;1 = QF ;_; if

sup Py, (o (On,5) — pn(Onj—1) > 0) = o(N79) (8.28)
NECH
for all j = 1,..., k, because this implies that supy,ce, PgO(Q Nj-17 QNE Nj-1 for some
j=1,..,k) = 0( ~®) and, by definition, QN] 1= DN(HN] 1). When HNJ + HNJ 1,
a Taylor expansion of pN(H N,;j) about ) N,j—1 gives

o~

pn(On) — pn(On 1)

0 0?
= aele(eNJ 1)<N]¢NJ +3 CN,) 8069/pN( N,j— 1)<NJ¢N] + FN,J¢N]
1, P

- CNJ 3980/01\7( Nj— I)CNJQbNJ +FNJ¢NJ, where

/ o°
In;j = 6 ZCN,j,uCN,jmpN(QJJ\FI,j—l)CN,ja
u=1 w

Cnyj = (Ong —Onj-1)/lI0n; — Onj-1lls Oonj = 10N — Onj-1l], (8.29)

(n,j,u denotes the u-th element of (y ;, and va,j_l lies between 5N7j and 5N,j_1. The

second equality holds by the definition of EN,J-. Using (8.29), the left-hand side of
(8.28) is less than or equal to

0? ~
s iy (Moo Ggon g )24 g >0) . (530)
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The expression in (8.30) is o(N~%), because

2 o~
sup Py, (Amm< g <0N,j1>><xmm<D<eo>>/2) — oV,

foc, 2606 "N

sup Py, (|I'n;| > K) = o(N™%) for some K < oo, and

00€01

sup Py, (¢n,; >¢€) =o(N"?) for all € > 0, (8.31)
00€01 ’

where the first result holds by the second result of Lemma 4 with Oy = /H\Nd-,l and
Assumption 3(c), the second holds by the third result of Lemma 4, and the third holds
by two applications of the first result of (8.9) in the proof of part (a) of Theorem 2
for the NR estimator—one with £ = j — 1 and one with & = j. This completes the
proof. R

We now establish (8.27) for the line-search NR matrix. Let 6 ; be the NR j-step
estimator:

Onj = ONj-1— @N,;-17N,j-1, Where

40 ~ 4 0 ~
PNj—1 = I[( %5’4) I%PN(ON,J‘H)H and Ty ;-1 = (Q%g’q) 1%Pz\/(QN,jfl)/SDN,j—l-

(8.32)
Let

o - I _
On; =0nj1—a(@N7F ) 1%pN(‘9N7J‘*1) =0n;+(1-)pn,;17Nj-1- (8.33)

It suffices to show that

sup P ( inf 0% ) — pn(On ) <0) = o(N@ 8.34
up Oo(aeA’a#le( Nj) — Pn(On ) <0) =o(N™%) (8.34)

for all j = 1,..., k, because this implies that supy co, P, (Q%,qul #* Q%,}}Ll for some
j=1,..,k)=0o(N"%).
A Taylor expansion of pN@jﬁ,’j) about 0y ; gives

SN0 SN ! 8 N
pN(HN,j) - PN(QN,j) =(1- a)@N,jfle,jfl%pN(eN,j)
1 2 92 !/ 62 o~
+§(1 —a) @N,j—lWN,j—lWPN(QN,J‘)WNJ—l
1 3 3 < ' ok +
+g(1 — Q)N -1 ;WN,J'1,u7TN,j1WPN(9N,j)7TN,j1, (8.35)

where 0}, j lies between 5}1\; ; and /H\NJ- and 7y j—1,, denotes the u-th element of 7w ;1.

Element by element Taylor expansions of (0/00) pN(gN,j) about /éN,j—l give

o o 82 PO
%pN(HNJ) = %pN(‘gN,jfl) + WPN(HNJ*I)(HNJ —On,j-1)
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1~ ~ 03 ~ ~
+5[0n; — QNJ_l)/mpN(e?\—f:;—l,u)(QN,j = Onj-1)lL,
1 o —
=0+ QSONJ 1[7TN,] 1mpN(9 N,j— 1,u)7TN,j—1]L97 (8.36)

where H}J; 1. lies between 9 ~,; and ) N,j—1, [Au]L, denotes the Lg-vector whose u-th

element is A, and the second equality holds using the definition of 5N7 ;e
The following properties hold: for all € > 0,

2 ~
(On,j-1)) < Amin(D(00))/2) = o(N™7),

9316131 Py, ()‘mln(aeae/PN
o3
sup Py, (|| =z on (085l > K) = o(N~%) for some K < oo, and
0o€0O1 00 d=
sup Pyy(pn ; > €) = o(N™) for some £ > 0 (8.37)
0o€O1

for j =1, ..., k, where the first result of (8.37) holds by the second result of Lemma 4
with Oy = 9 N,j—1, Assumption 3(c), and the first result of (8.9) of the proof of part
(a) of Theorem 2 (which ensures that supg cg, P, ( H/H\N] 1— HOH >e) =o(N™%),
the second holds by the third result of Lemma 4 with Oy = 9 1, and the third

holds by (i) the second result of Lemma 4 with Oy = 9N7]_1 and Assumption 3(c)
(which ensure that (Q%?)_l is well-behaved) and (ii) the fourth result of Lemma 4

with Oy = 5N,j_1. The second result of (8.37) also holds with 9}?;71 replaced by
0N 1-

Substituting (8.36) into the right-hand side of (8.35), dividing (8.35) by go?v,jfl
(when ¢y ;4 > 0), and applying (8.37) yields the resultant first and third terms on
the right-hand side of (8.35) to have norm greater than € > 0 with probability o(/N ™)
and the second term to be strictly positive with probability 1 — o(N~%) (uniformly
over € A with « # 1), which gives (8.34). This completes the proof.

Lastly, we establish (8.27) for the GN matrix. It suffices to show that

(Wi, Oxj-1))]] > N"V2In(N)) = o(N ™).

~ 0
sup Py, (|[N™ 12 Wi,QN,j—l)—wg

906@1 i=1

(8.38)
By mean value expansions about 6y and the triangle inequality,

0 =

0 ~
1
=[N Z (Wi, 80) = 29(Wi, 60|
1 5?2 . R
+N~ sup —AW 0) — ———g(W;,0)|| - |01 — Ool].
;96300,”@9‘ ( ) - 00,00’ ( M - 110n,5-1 — 0ol

(8.39)
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In addition, ||fx ;-1 — 0o|| < [[0n,j-1 — On|| + [[@x — bo]|. Hence, it suffices to show
that

N
() sup Py, (HN P (AT b0) — g 00)) | > N-1/21n<N>) — o(N"9),

00€01 =1
N 82
ii) sup P -1 sup —A Wi, 0 Wi, 0)|| > K
() sup eo( > sl g ATd) = g (W)
=o(N™9),
(i) sup Py, (HeN] L —On|l > N™ V?m(zv)) = o(N9), and
[ZSCH
(iv) sup Py, (||9N — O] > N~Y2 ln(N)) = o(N™9) (8.40)
0O

for all j = 1,...,k and some K < oo. Condition (i) holds by Lemma 3(c), (ii) holds
by Lemma 3(b) with p = min{qi, ¢z}, (iv) holds by Lemma 5, (iii) holds for j = 1
because O = Oy, and (iii) holds for j = 2,...,k by recursively applying the first
result of (8.9) in the proof of part (a) of Theorem 2 with & = j — 1, which holds
without assuming Assumption 5 by the present proof that the result of Assumption
5 holds for Qn; for © < j — 1 under the assumptions. [J

8.3.2 Proof of Lemma 2

We have
sup Py, (|An(0n)| > N %)
00€6g
< sup P90(|)\N(‘9N)| > Nﬁae,(gN S B(00,5/2)) + sup PQO(HN ¢ B(@o,é/?))
00€6g 00€Og
< sup Py,(sup [An(6)] > N™%) +o(N~?)
ASSH) 0c€O1
= 1(o(N™%) > N"%) 4+ 0o(N™?)
= o(N79), (8.41)

where the second mequahty uses the fact that when Oy € B (0p,6/2) and 0y € ©g
one has Oy € ©;. O

8.3.3 Proof of Lemma 3

A strong mixing moment inequality of Yokoyama (1980) and Doukhan (1995, The-
orem 2 and Remark 2, pp. 25-30) gives supy,ce, Fo, | N m(Wi,Ho)Hp < ONP/?
provided p > 2. Application of Markov’s inequality and the Yokoyama—Doukhan in-
equality yields the left-hand side in part (a) of the Lemma to be less than or equal
to

e PN7P sup E90||Zm (Wi, 00)||P < e PCN P/ = o(N~%). (8.42)
00€01 i=1

31



Part (b) follows from part (a) applied to m(/V[v/Z, 0o) — Egom(/l/lv/i, o) and the triangle
inequality.

To establish part (c), we use the Edgeworth expansion given in Theorem 2.3 of
Lahiri (1993) (also see Corollary 2.9 of Gotze and Hipp (1983)) with their s = 2a+2.
Conditions 1 and 3-6 of Lahiri (1993) hold uniformly over 6y € ©; by Assumption
4. Their condition 2 holds uniformly over 6y € ©; by Assumption 3(b). Because the
result of the Lemma can be proved element by element, we consider an arbitrary ele-
ment fy(+,0p) of f(-,6p). Let ®(-) denote the standard normal distribution function.
By the Edgeworth expansion, for each 6y € ©1 there are homogeneous polynomials
7i(6,00) in 6 = 0/0z for i = 1, ..., 2a such that

N
s%g%JN*”Ejuuwa%>—E%ﬁ@%ﬁ@)s@
2€ i=1

2a
—(14+ 30 N2(5,00))0(2)
i=1
= O(Nfa)_ (843)

The error o(N~%) holds uniformly over 6y € ©1 because Assumptions 3(b) and 4 hold
uniformly over 6y € ©1. Equation (8.43) implies that for any constant zx

N
Py, (IN~/? Z(fv(wia 00) — g, fo(Wi,00))| > 2n)
=1

2a
= 1= (14> N m(6,00))(B(2n) — &(—2n)) + 0o(N %)
i=1

2a
= 2B(—zy) — (Z N77274(6,00))(®(2n5) — D(—2n)) +o(N™%),  (8.44)

where the error holds uniformly over 0y € O;. Let zy = eln(N). Using ®(—2)
< Cexp(—22/2) for z > 1, we have

®(—zy) < Cexp(—e2In?(N)/2) < Cexp(—(a+ 1) In(N)) = CN~(@F) = o(N~9),
(8.45)
where the second inequality holds for any given a > 0 and ¢ > 0 for N sufficiently
large. The expression m;(6,00)®(zy) is a finite sum of terms of the form b(0y) 2 ¢ (zn)
for some integer j and some function b(fy) that satisfies supy,cg, [6(6o)| < 0o (which
holds by the uniform moment bound over 6y € ©1 given in Assumption 3(b)), where
¢(-) denotes the standard normal density. By an analogous calculation to that in
(8.45), 2h¢(2n) = 7 In? (N)(27) "1/ 2 exp(—£2In®(N)/2) = o(N~?). This completes
the proof. [J
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8.3.4 Proof of Lemma 4

The first result of the Lemma follows from

sup PgO(HVN(@N) —Vn(0o)|| >¢) = o(N79), (8.46)
0p€O1
esug Py, ([|lVNn(60) — Eg, VN (00)|| > €) = o(N™?), and (8.47)
€01
sup |Eg,Vn(6o) — V(0o)| = o(1). (8.48)
0O

To establish (8.46), we take mean value expansions about 0y, apply Lemma 3(b)
with m(Wi, 00) = supgee, ||9(Wi, 0)]| - [|(8/06")g(Wi,0)|| and p = g1, where the sup
is over 6§ € Oz because supy,ce, Py, (In ¢ ©2) = o(N~?), and use the assumption
on Oy. To establish (8.47), we use Lemma 3(a) with m(WZ, o) = g(/V[v/i, Qo)g(Wi, 6o)
—Egog(Wi, 00)g(Wi, 0o)" and p = ¢1. Equation (8.48) holds by Assumption 3(c).

The remaining results of the Lemma hold by mean value expansions about 6,
multiple applications of Lemma 3(b) with m(/VIV/i,Qo) = (8j/80j)g(/ﬂ7i,00) for j =
0, ..., 3, multiple applications of Lemma 3(a) with m(W;,6o) = (87/067) g(W;, 6o)
—Ego(aj/ﬁﬁj) g(%, 6p) for j = 0,1 and p = q1, the assumption on A, and Assump-
tion 3(c). O

8.3.5 Proof of Lemma 5

First, we show that for all € > 0,

N
up Py (sup NS (I 0) — Egyp(W0)] > ) = o(N~2). (849
00€01 0cO i—

By Assumption 2(a), © is compact. Hence, for any n > 0, there exist points {§; €
© :2 < j < J} such that UjZQB(Hj,n) contains © (where B(6;,¢) denotes the open
ball centered at 6; with radius ¢). The left-hand side of (8.49) is less than or equal to

N
sup Py, | max sup Nt 0 Wi,e — FEy,p MN/i,e
BocO, (2SJSJeeB(0j,n) <‘ ;[ ( ) ol )

N
—(p(Wi, 0;) = Egop(Wi, 0:))]| + N1 >~ p(W;, 0;) — Egyp(Ws, 9j)|> > 6)

i=1

N
< sup Py, [ max sup N' sup [|(9/00)p(W;, )|
+Ej, sup ||(5/39)P(Wi75)|\> 16— 0511 > 8/2>
0cO
N
-1 N' N N' )
+0ilelg1 Fo, <2I£J‘.?2<J [N ;p(WZ, 05) — Eoop(Wi,05)| > 5/2>
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6o€01 i—1 \0e€O 0co

N
< sup Py, (le <sup\| 0/00)p 0)|| + Eq, sup[|(0/90)p H) n > 5/2)

+Z sup Py, (|N 12,0 Wi, 0;) — Egop(/l/lv/i,ej)\ > 8/2)

j= —200€01 i=1
— o(N79), (8.50)

where the first inequality uses mean value expansions and the equality holds using
Assumption 2(e) by Lemma 3(b) with p = ¢¢ by taking n sufficiently small and by
Lemma 3(a) with p = qp. ~

Next, we prove that supg ce, Py, ([N — Oo|| > €) = o(N™*). By Assumption
2(d), given € > 0, there exists a § > 0 such that ||§ — 6p|| > ¢ implies that p(6, o)
—p(0o,00) > 6 > 0. Thus,

sup Py, (|[0n — Ool| > &) < sup Py, (p(On,00) — px(On) + pi(Ox) — p(00, 00) > 6)
00€01 00€O1

< sup Py (p(On,00) — px (On) + pi(80) — p(8o,80) > 6)
€01

< sup Py (25up [pn(6) — Eoopv (0)
NECH oc

+2 sup |E90pN(0) — p(0,00)| > 6)
= o(N~%) (8.51)

using (8.49) and Assumption 2(c).

The result of (8.51) and the assumption that all 8y € ©; are in the interior of
© imply that infg,co, P, (5]\/ is in the interior of ©) = 1 — o(N~%) and infy,ce,
P@O(((?/(?H)pN(gN) = 0) = 1—0o(N"%). Hence, element by element mean value
expansions of (0/00) pN(gN) about 6y and rearrangement give

~ P o .

where 9} lies between 5]\/ and 0y and may differ across rows. In consequence, the
result of the Lemma follows from the second result of Lemma 4 with 05 = 9;(, and

SUDg,co, Py, (|| N—1/2 Zfil g(ﬁ//@-,@o)H > In(N)e) = o(N~%), which holds by Lemma
3(c) with m(W;, 00) = g(W;,0p) using the assumption that ¢; > 2a + 3. O
8.3.6 Proof of Lemma 6

For any convex set B C R4 and any 7 > 0, let Bf = {x € RF4 : |jz —y|| < 7
for some y € B}. We have

sup  (Pay(An(0o) +En(00) € B) — Pyo(An(bo) € B))
906@1,B€BLA
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= sup  (Pgo(An(0o) +En(00) € B,|[En(00)|] < IN) — Py, (An(00) € B)
906@1,B€BLA

+P5,(An(00) + En(00) € B, [[En(00)l] > In))

< s (Pa(An(00) € Bj,) — Pay(An(00) € B))
00€01,BEBL ,

+ sup Py, ([[En(00)[| > In). (8.53)
0o€O1

The second term on the right-hand side is o( N ~%) by assumption. Under the assump-
tion that Anx(fp) has an Edgeworth expansion with remainder o(/N %) uniformly over
0o € O1, the first term on the right-hand side of (8.53) is less than or equal to

[24]
sup (/Q+ZNWMM%W@W
906@1,B€BLA B:;N i=1

[24]

- /B (1+ZNi/27rN,i(z,90))q§(z)dz) +0o(N™%). (8.54)
=1

The expression in (8.54) is O(¥y) = o(N~%) because ¢(z) and its derivatives of all
orders are bounded over z € R4 and the polynomials {7y (2,00) : i = 1,...,2a}
have coefficients that are O(1) uniformly over 6y € ©;. Hence, the left-hand side of
(8.53) is less than or equal to o(N~%).

Let B ={z € B:|jlx—y|| > 7 for all y € B¢}, where B¢ denotes the complement
of B. We have

Boo(An(00) + En(00) € B, [[En(00)l] < In) = Py (An € By, ). (8.55)
Using this, an analogous argument to that of (8.53) and (8.54) shows that

sup — (Pyo(An(00) € B) — Fpy (An(6o) +En(60) € B)) <o(N7%),  (8.56)
60€01,B€BL ,

which completes the proof. [

8.3.7 Proof of Lemma 7

Suppose An(6y) = N1/2(§N —0p). By Lemma 5 and Assumption 2(a), we have
infg,co, P, (5]\/ is in the interior of ©) = 1—o(N~%) and infy,co, Pgo(a/ae)pN@N) =
0) = 1—o(N~%). Element by element Taylor expansions of (6/89),0]\,(5]\/) about 6y
of order d — 1 give

o - . 0 10 ~ -
0= %PN(ON) = %pN(QO) +y ﬁD]%pN(OO)(ON — 6o, ...,0n — 00) + (v (6o),

where

1 .0 0 ~ ~
Cn(bo) = ﬁ(Dd I%PN(HE) — D 1%91\7(90))(91\7 — 0o, ...,0n — 09), (8.57)
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07 lies between Oy and o, and Dj(a/(?@)pN(Ho)(aN — 00, ....0n — 0o) denotes
DJ (0/00)pn(0o) as a j-linear map, whose coefficients are partial derivatives of
(0/00)pn(00) of order j, applied to the j-tuple (QN 00, ..., On — o). Let Ry (6p) de-
note the column vector whose elements are the unique components of (0/90)pn(6o),
DY(8/00)pn(00), ..., DYD/00)pn (o). Each element of Ry (fg) is an element of
Sn(6o). Let en(fo) = (Cn(00)’,0,...,0)" be conformable to Ry (fp). The first equa-
tion in (8.57) can be written as v(Rn(0p) + en(0p),0n — 0g) = 0, where v(-,-)
is an infinitely differentiable function, v(Eg,Rn(00),0) = 0 for all N > 1, and
(8/02)v(Egy RN (00), ¥)|z=0 = NN | Epg (W@,Qo) (W@-,eo)/ is positive definite
for N large by Assumption 3(c). Hence, the implicit function theorem can be applied
to v(-,-) at the point (Eg,Rn(60),0) to obtain

91gf PgO(HN 0o = A(Rn(00) +en(0p))) =1 —0o(N™9), (8.58)
0 1
where A is a function that does not depend on N or 6y, is infinitely differentiable in
a neighborhood of Eg Ry (6p) for all N large and satisfies A(Ep,Rn(6p)) = 0.

We apply Lemma 6 with Ay (6g) = N'/2A(Rn(6o)) and &5 (60) = N'/2(A(Rn (o)
+en(60)) — A(Rn(0p))) to obtain

sup | Py, (NY2A(Ry(00)+en (o)) € B)—Pay (NV2A(RN(00)) € B)| = o(N ™).
006@1,B€BL9

(8.59)
Lemma 6 applies because (i) Py, (||€x(00)|| > 9n) < Py, (CNY2||en(60)|| > In) by a
mean value expansion, (ii) [len(0o)l] = [[Cn(00)ll, (i) C(n(00) satisfies

infg,co, P@O(HCN(HO)H < C’||9N —6o||4) =1 — o(N~%), (iv) U, which is defined to
equal N12=421n4(N), is o(N~%) because d > 2a + 2 by _Assumption 3(a),
(v) supgyco, Poo(N2|len(60)|| > In) < supg,ce, Poo(CNY2|[0n — 604 > In)
+o(N~) = o(N~%) by Lemma 5, (vi) A(Rn(6p)) can be written as G(Sn(6o)),
where G(-) is infinitely differentiable and G(Eg,Sn(0p)) = 0 for all N large and
(vii) An(fo) = NY2A(Rn(00)) = NY/2G(Sn(6p)) has an Edgeworth expansion (with
remainder o(N~%) uniformly over 6y € ©1) by the proof of Lemma 9 below.

Equations (8.58) and (8.59) and A(Rn(6o)) = G(Sn(0p)) yield the result of the
Lemma. R

Each of the remaining forms of An(60y) (viz., Tn(0o,) and Hy(On, () is a
function of 5N. We take a Taylor expansion of Ay (6g)/N 1/2 about 5]\/ = @y to order
d — 1 to obtain

An(00) = NY2(A**(Sn(00), O — o) + (i (o)), (8.60)

where A** is an infinitely differentiable function that does not depend on 6y,
AN*(Eg,Sn(60),0) = 0 for N large, (3 (fo) is the remainder term in the Taylor
expansion, and ||(¥(6o)|] = O(H@N — 00||%). Combining (8.58) with (8.60) gives
An(0o) = NY2(A**(Sn (o), A(RNn(00) + en(00))) +Ci(00)). We apply Lemma 6
again, using the result above for ||(3(6o)|], to obtain an analogue of (8.59) with
AN(HQ) == N1/2A**(SN(90),A(RN(90)>) We can write G(SN(HQ)) = A**(SN(HQ),
A(Rn(6p))), where G(-) is infinitely differentiable and G(Eg,Sn(6o)) = A**(Ep,Sn (o),
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A(Eg,Rn(00))) = A**(Eg,Sn(00),0) = 0 for all N large. Combining this, the ana-
logue of (8.59), and (8.60) gives the result of the Lemma for Ay (6g) equal to T (0o.r)
and HN(HN, ﬂo) O

8.3.8 Proof of Lemma 8

We show below that for all 0y € ©1 and all § € O4 such that ||0 —6y|| < 6 (where
6 is as in the definition of 01),

|Ne™) B, H Uy, — N By, H Un,j,| < Bn|0 — 0ol (8.61)
p=1 p=1

where limsupy_,., By < 0o. Let n > 0 satisfy n < 5/(L,1,/2 limsupy_, ., Bn), where
L, denotes the dimension of vy 4(6p). Then,

sup Py, (NY?||vn.a(0n) — vn.a(60)]] > In(N)e)
=S

< Sup Poo(NY?[[uw o (0n) — vva(80)]] > In(N)e, NY2|[@y — o] < In(N)n)
€01

+ sup Py, (N2|[6x — o] > In(N)n)
0o€O1

< Sup Pyy(LY/2BNNY2|[0) — bo]| > In(N)e, NV2|[0y — 6o]] < In(N)n) + o(N~%)
0€01

= o(N™9), (8.62)

where the second inequality uses (8.61) Lemma 5.
Under the assumptions, (8.61) holds provided: for all 5 € ©1 and all § € ©3 such
that [|0 — 0o|| < 6,

|Eg H ij(Wi, ) — Ey, H fju(f/‘v/u o)| < Bi,n||0 — 0o, (8.63)
p=1 p=1

for all m < 2a + 2, all @ > 1, and all j, < Ly, where fjH(Wi,H) denotes the j,—th
element of f(W;,0) and limsupy_, ., Bi,ny < co. The triangle inequality, a mean-value
expansion, and some calculations show that (8.63) holds if

sup B, ||CH(Wi) 244377 (W3, 00)|| < oo for all j =0, ..., 2a + 2 (8.64)
00€Oq,1>1 ”

and for all elements j,, of f (/VIV/Z, o). This holds if ¢1 > 2a + 3, as is assumed. [

8.3.9 Proof of Lemma 9

We establish the first result of part (a) first. By Lemma 7, it suffices to show
that the random variable N'/2G(Sx(6p)) of Lemma 7(a) possesses an Edgeworth
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expansion with remainder o(N~%) uniformly over §y € ©;. We obtain an Edge-
worth expansion for N'/2(Sy(6p) — Fg,Sn(6o)) for each 6y € ©1 via Theorem 2.1
of Lahiri (1993) (also see Corollary 2.9 of Gotze and Hipp (1983)), as in the proof
of Lemma 3(c). The remainder is uniform in 6y € ©; because the conditions in As-
sumptions 3(b), 3(c), and 4 hold uniformly over 6y € ©1. Edgeworth expansions for
N'Y2G(Sn(6p)) are now obtained from those of NY/2(Sx(6y) — Ep,Sn(6o)) by the
argument in Bhattacharya (1985, Pf. of Thm. 1) or Bhattacharya and Ghosh (1978,
Pf. of Thm. 2) using the smoothness of G(-), G(Ep,Sn(6p)) = 0 for all N > 1 and
all 8y € ©1, and Assumption 3(c).

To establish the second result of part (a), we consider the convex sets B, = {z €
REs : o'z < 2} for z € R. By Lemma 7(a) with Ax(6g) = Hy (0, By), we have

o(N~) = sup sup|Ps,(Hn(On, By) € B.) — Ps,(NY2G(Sn(6)) € By)|
00€O1 zER

= jSup zlellg\Peo(WN(ﬁo) < 2) = Py, (NG(Sn(60))'G(Sn (60)) < 2)|-

(8.65)

Hence, it suffices to show that the second result of part (a) holds with Wn(5)
replaced by NG(Sn(60))G(Sn(0p)). By the same argument as in the previous para-
graph, N'/2G(Sy(60)) has a multivariate Edgeworth expansion with remainder o(N %)
uniform in 6y € Oy, when N'/2G(Sn(6p)) corresponds to Hy(On, 3y). This Edge-
worth expansion, coupled with Theorem 1 and Remark 2.2 of Chandra and Ghosh
(1979), yields an Edgeworth expansion for NG (Sn(6o))'G(Sn(00)) equal to that given
for Wn(B) in the Lemma.
The first result of part (b) follows from Lemma 2 with

2a
An (o) = sup | By, (Ty(Bo,r) < 2) = [L+ > N Pari(8,vn,a(60))]2(2)]
2€ i=1

2a
= Sug ‘Pgl (TN(QO,r) S Z) - [1 + Z Nﬁi/27TTi((5, VN7a(00))]¢(Z)‘.
€ i=1

(8.66)

The first condition of Lemma 2 holds by Lemma 5 and the second condition of Lemma
2 holds by part (a) of the present Lemma. The proof of the second result of part (b)
is analogous. [
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Footnotes

1 The author thanks Carol Copeland for proofreading the manuscript. The author
gratefully acknowledges the research support of the National Science Foundation via
grant number SBR-9730277.

2 This specification of the log likelihood does not utilize the first x observations
except as conditioning variables.

% The r-th element of ¢ is denoted (0} ),, rather than 0} ,., to distinguish it from
the k-step bootstrap estimator, 07, defined in Section 6.

4 The latter results only require strong mixing coefficients that decline polynomi-
ally fast. In this case, it is useful to weaken the conditions on the mixing numbers
in Assumption 1(b) to 3200, (m + 1)»?271a#/A+9) (1m) < oo for some A > max{2a, 2}
and some ¢ > 0, where a(m) = supy,ce, a(m,0y). This weakening is possible be-
cause one can establish the results of Lemma 3(a) and (b) in the Appendix using the
given condition and results of Yokoyama (1980) and Doukhan (1995, Theorem 2 and
Remark 2, pp. 25-30).

® Stationarity of an AR(2) process with AR parameters (py, py) requires that (i)
—1 < py <1, (ii) p; + py < 1, and (iii)) py — p; < 1. To ensure that the para-
metric bootstrap distribution of the AR(2) process is stationary, we adjust the LS
estimators (p;,py) (only when generating bootstrap samples and not in the expres-
sions for the Cls given in (3.3) and (3.4)) so that they necessarily satisfy the sta-
tionarity conditions. In particular, the parametric bootstrap distribution is based
on the estimators (pj,py), where py = sgn(ps) min{|py|,.98} and p; = 1(p; >
0) min{p;, .98 — o} + 1(p; < 0) min{p;, py —.98}. These alterations have no effect on
the asymptotic properties of the bootstrap Cls (for the true parameter values that
we consider) because p; = p; and py = py with probability that goes to one at a
sufficiently fast rate as N — oo. In fact, these adjustments very rarely come into
play in the simulations and, hence, have no noticeable impact on the results.
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TABLE I
Coverage Probabilities etc. of Nominal 95% Confidence Intervals for the Cumulative
Impulse Response, 1/(1 — «), for AR(2) Processes, N(0, 1) Errors, and N = 100

Type of Probability =~ Probability = Average

Confidence Coverage CI CI Length
(p1,P2) a Interval Probability Misses Left Misses Right  of CI
(1.4, -.5) .9 Delta .802 198 .000 11.4
Sym Boot .909 .091 .000 24.5
ET Boot .886 .058 .056 18.1
(.9, 0) .9 Delta 714 .286 .000 15.0
Sym Boot .876 124 .000 50.3
ET Boot 847 .087 .067 34.8
(0, .9) .9 Delta 591 409 .000 218
Sym Boot .822 178 .000 4018
ET Boot 794 131 074 2599
(1.0,-5) .5 Delta 920 080 001 1.11
Sym Boot .945 .055 .000 1.35
ET Boot 930 .033 .038 1.21
(.5, 0) .5 Delta .880 121 .000 1.52
Sym Boot .929 071 .000 2.19
ET Boot 915 .041 .045 1.81
(0, .5) .5 Delta .855 145 .000 1.82
Sym Boot 921 .079 .000 2.99
ET Boot 905 048 .046 2.36
(0, -.5) -5 Delta 941 .053 .007 215
Sym Boot 947 .050 .003 223
ET Boot 937 .033 .030 .220
(-.5, 0) -5 Delta 931 .067 .002 301
Sym Boot 944 .057 .000 .336
ET Boot 933 .035 .033 316
(-1.0,-.5) -1.5 Delta 947 .042 .011 101
Sym Boot .949 .043 .008 101

ET Boot 938 .031 .031 101




TABLE II
Coverage Probabilities of Nominal 95% Confidence Intervals for «, p;, and py for
AR(2) Processes, N(0, 1) Errors, and N = 100

Type of Coverage Probability of
Confidence Confidence Interval for
(p1,pp) o Interval @  p P2
(1.4, -.5) .9 Delta 926 933 .945
Sym Boot 943 947 .946
ET Boot 930 .946 .939
(.9, 0) .9  Delta 907 .930 .939
Sym Boot 934 .946 944
ET Boot 920 .947 .936
(0, .9) .9  Delta .880 .908 .853
Sym Boot 918 .933 916
ET Boot 907 .932 912
(1.0, -.5) .5 Delta 943 939 .950
Sym Boot 951 946 .952
ET Boot 943 946 .945
(.5, 0) .5 Delta 937 937 .943
Sym Boot 948 1946 .948
ET Boot 938 .945 .943
(0, .5) .5 Delta 933 934 927
Sym Boot 944 945 .944
ET Boot 934 942 937
(0, -.5) -5 Delta 945 942 .949
Sym Boot 948 .946 951
ET Boot 945 944 .945
(-.5, 0) -5 Delta 942 942 .944
Sym Boot 947 947 948
ET Boot 942 944 .943
(-1.0,-.5) -1.5 Delta 945 942 .949
Sym Boot 948 .947 951

ET Boot 943 944 945




TABLE III
Coverage Probabilities of Nominal 95% Confidence Intervals for 1/(1 — «), a, pq,
and p, for AR(2) Processes, t-5 Errors, and N = 100

Type of Coverage Probabilities of Avg Length
Confidence Confidence Intervals for of CI for
(pr1sp2)  « Interval /I-—a) a p pp  1/(Q1-0)
(1.4, -.5) .9  Delta .805 917  .941  .950 11.3
Sym Boot .910 943 951 .953 24.1
ET Boot .890 932 951 .945 17.8
(.9, 0) .9  Delta 713 908 934 .947 14.9
Sym Boot 874 931 950 .952 50.4
ET Boot .848 920 952 .946 34.9
(0, .9) .9  Delta .592 879 .908 .850 328
Sym Boot .824 916 932 913 6120
ET Boot 794 906 934 917 3916
(1.0, -.5) .5 Delta .914 943 943  .953 1.10
Sym Boot .938 950 .950 .954 1.34
ET Boot .934 948 948  .949 1.20
(.5, 0) .5 Delta .883 939 942 948 1.51
Sym Boot .929 947 949 954 2.17
ET Boot .920 940 .948 .946 1.80
(0, .5) .5 Delta .854 932 941 934 1.81
Sym Boot .922 945 949 948 2.96
ET Boot .906 936 946 .943 2.34
(0, -.5) -.5 Delta .941 948 947 954 215
Sym Boot .946 952 951 .955 .223
ET Boot .940 947 950 .949 .219
(-.5, 0) -.5 Delta .932 945 .944 944 .300
Sym Boot .944 949 950 .950 334
ET Boot .935 946 947 947 .315
(-1.0,-.5) -1.5 Delta .949 948 948  .950 .100
Sym Boot 951 951 951 .952 .101

ET Boot 941 946 948 946 101




TABLE IV

Coverage Probabilities of Nominal 95% Confidence Intervals for 1/(1 — «), a, pq,

and p, for AR(2) Processes, x2-1 Errors, and N = 100

Type of Coverage Probabilities of Avg Length
Confidence Confidence Intervals for of CI for
(1, P2) Interval 1/l-—a) o p po 1/(1—a)
(1.4, -.5) Delta 814 939 952 .960 11.5
Sym Boot 925 954 962 .962 24.8
ET Boot .900 941 960 .957 18.3
Sym RB Boot 912 945 .953  .955 23.1
ET RB Boot .889 928  .949 .942 17.0
(.9, 0) Delta 714 918 .950 .949 53.8
Sym Boot .887 944 963 .955 522
ET Boot .862 929 958 .953 342
Sym RB Boot .870 930 .954  .950 539
ET RB Boot .844 916  .954 .948 344
(0, .9) Delta .57 .884 915 .860 205
Sym Boot .826 923 938 .924 3760
ET Boot .806 917  .937 .923 2422
Sym RB Boot 812 906 .929 .908 3619
ET RB Boot .788 900 .928 .908 2340
(1.0, -.5) Delta 933 954 .956 .958 1.10
Sym Boot 954 960 .963 .960 1.34
ET Boot .942 954 961 .955 1.20
Sym RB Boot 943 954 .956 1.23
ET RB Boot 934 947 951  .947 1.12
(.5, 0) Delta .900 953 954 .951 1.51
Sym Boot .952 961  .961 .957 2.18
ET Boot .936 953 .957 .947 1.81
Sym RB Boot 932 952 .952 1.96
ET RB Boot 922 940 951 .944 1.65




TABLE IV (cont.)

Type of Coverage Probabilities of Avg Length
Confidence Confidence Intervals for of CI for
(p1.pp) Interval I/l-a) o p pp  1/(1-0q)
(0, .5) .5 Delta .866 951 .947  .949 1.81
Sym Boot 941 961 .957 .964 2.98
ET Boot 925 948  .951  .950 2.35
Sym RB Boot .920 949  .953 2.69
ET RB Boot 910 936 .947 941 2.14
(0, -.5) -5  Delta .952 956 .953 .952 215
Sym Boot .959 958 .957 .953 224
ET Boot 947 954 .956 .946 .220
Sym RB Boot .952 952 .949 214
ET RB Boot .945 952 951 .948 211
(-.5, 0) -.5 Delta .949 955 .956 .957 .300
Sym Boot 961 960 .960 .962 334
ET Boot .946 954  .957 .954 315
Sym RB Boot .952 954 .953 .305
ET RB Boot .938 946 .951 .948 294
(-1.0,-.5) -1.5 Delta .955 954 952 .957 .100
Sym Boot .959 956 .955  .959 101
ET Boot .946 951 .954 .954 101
Sym RB Boot 951 951  .953 .098
ET RB Boot 944 949  .953  .948 .097




TABLE V
Coverage Probabilities for Nominal 95% Confidence Intervals for 1/(1 — «), a, pq,
and p, for AR(2) Processes with N = 50

Type of Coverage Probabilities of Avg Length
Confidence Confidence Intervals for of CI for
(p1;pa) o Interval 1/l-a) o p pp  1/(1-0)
(14 ,-.5) .9  Delta .702 902 919 941 17.7
Sym Boot 874 930 .947 947 93.1
ET Boot .839 917 946 .933 63.3
(.9, 0) .9  Delta 576 870 913 935 84.0
Sym Boot 811 912 .943 .947 1647
ET Boot 783 909 943 930 1089
(0, .9) .9  Delta 429 827  .874 .790 13,355
Sym Boot 726 .889 .914 .890 495,905
ET Boot 714 897 918  .902 322,854
(1.0, -.5)* .5 Delta .894 942 933 944 1.56
Sym Boot 937 956 .948  .949 2.29
ET Boot 915 944 947 939 2.21
(.5, 0)* .5 Delta .835 930 .928 .942 2.08
Sym Boot 917 0948 944 954 3.87
ET Boot .892 939 946 .941 2.94
(0, .5) .5 Delta 787 919 924 912 2.44
Sym Boot .898 940 .944 935 5.50
ET Boot 871 924 940 .926 4.01
(0, -.5) -.5 Delta .932 942 936 945 307
Sym Boot 938 948 946 948 .340
ET Boot .925 940 .944 937 .322
(-.5, 0) -.5 Delta 907 936 .935 .936 422
Sym Boot .929 945 946  .946 .533
ET Boot 917 0938 941 .936 468
(-1.0,-.5)* -1.5 Delta .939 940 938 944 144
Sym Boot .940 945 .948  .947 .148

ET Boot 923 938 943 938 .146




