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Abstract

This paper provides bounds on the errors in coverage probabilities of maximum
likelihood-based, percentile-t, parametric bootstrap conÞdence intervals for Markov
time series processes. These bounds show that the parametric bootstrap for Markov
time series provides higher-order improvements (over conÞdence intervals based on
Þrst order asymptotics) that are comparable to those obtained by the parametric and
nonparametric bootstrap for iid data and are better than those obtained by the block
bootstrap for time series. Similar results are given for Wald-based conÞdence regions.

The paper also shows that k-step parametric bootstrap conÞdence intervals achieve
the same higher-order improvements as the standard parametric bootstrap for Markov
processes. The k-step bootstrap conÞdence intervals are computationally attractive.
They circumvent the need to compute a nonlinear optimization for each simulated
bootstrap sample. The latter is necessary to implement the standard parametric
bootstrap when the maximum likelihood estimator solves a nonlinear optimization
problem.

Keywords: Asymptotics, Edgeworth expansion, Gauss-Newton, k-step
bootstrap, maximum likelihood estimator, Newton-Raphson, parametric
bootstrap, t statistic.
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1 Introduction

This paper analyzes the higher-order properties of the parametric bootstrap for
maximum-likelihood- (ML) based conÞdence intervals (CIs) for κ-th order Markov
processes possibly with exogenous variables. It is shown that the parametric boot-
strap obtains essentially the same higher-order improvements in coverage probabilities
relative to standard delta method CIs in the time series context as do the parametric
and non-parametric bootstraps for independent and identically distributed (iid) ob-
servations. This contrasts with the (nonparametric) block bootstrap for time series,
which does not obtain as large improvements, e.g., see Zvingelis (2000), Inoue and
Shintani (2000), and Andrews (2001).

In particular, the paper shows that symmetric percentile t CIs constructed using
the parametric bootstrap have errors in coverage probability of order O(N−2), where
N is the sample size. Symmetric percentile t CIs constructed using the delta method,
which utilizes the asymptotic normal distribution, have coverage probability errors
of magnitude O(N−1). Hence, the use of the parametric bootstrap reduces the errors
in coverage probability by O(N−1). Analogous results are obtained for Wald-based
conÞdence regions based on the parametric bootstrap. For equal-tailed percentile
t CIs, the use of the parametric bootstrap yields errors in coverage probabilities of
order O(N−1 lnN), whereas those of the delta method are O(N−1/2 lnN). (The lnN
factors are a product of the method of proof and would not appear in the best possible
results.) In contrast, the improvements established in Andrews (2001) for the block
bootstrap are only of magnitude O(N−1/4) (due to the inßuence of the independence
across blocks, which does not mimic the dependence in the time series of interest).

This paper also analyzes the higher-order properties of a computationally attrac-
tive k-step parametric bootstrap procedure for ML estimators. The method was Þrst
considered by Davidson and MacKinnon (1999a). For the case of the (nonparametric)
block bootstrap, its properties are analyzed in Andrews (2001). The k-step bootstrap
is closely related to the one-step and k-step estimators considered by many authors,
including Fisher (1925), LeCam (1956), Pfanzagl (1974), Janssen, Jureckova, and Ve-
raverbeke (1985), and Robinson (1988), among others. Let B denote the number of
bootstrap repetitions. The standard bootstrap for an ML estimator requires that one
solve B nonlinear optimization problems to obtain B bootstrap estimators. These
estimators are then used to construct bootstrap CIs, test statistics, etc. In contrast,
the k-step bootstrap requires calculation of a closed-form expression for each of the
B bootstrap repetitions. Given a bootstrap sample, the k-step bootstrap estimator
is obtained by taking k-steps of a Newton-Raphson (NR), default NR, line-search
NR, or Gauss-Newton (GN) iterative scheme starting from the estimate based on the
original sample.

We show that the distribution function of a k-step bootstrap statistic differs from
that of a standard bootstrap statistic by at most N−a with probability 1−o(N−a) for
any a > 0, provided k is taken large enough and sufficient smoothness and moment
conditions hold. For example, it is often sufficient to take k ≥ 2 for a = 1 and k ≥ 3
for a = 2 for the NR, default NR, and line-search NR k-step bootstraps and k ≥ 3
for a = 1 and k ≥ 5 for a = 2 for the GN k-step bootstrap. These results are used to
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show that k-step parametric bootstrap CIs yield the same higher-order improvements
over delta method CIs as does the standard parametric bootstrap.

The method of proof of the results for the standard parametric bootstrap is as
follows. First, we establish an Edgeworth expansion for the ML estimator and the t
statistic based on the ML estimator that holds uniformly over a compact set in the
parameter space. The method of doing so is similar to that of Bhattacharya and
Ghosh (1978). This method is also used by Hall and Horowitz (1996) and Andrews
(2001) among others. We utilize an Edgeworth expansion for the normalized sum
of strong mixing random variables due to Lahiri (1993), which is an extension of a
result of Götze and Hipp (1983), whereas Bhattacharya and Ghosh (1978) consider
iid random variables and use a standard Edgeworth expansion for iid random vari-
ables. Second, we convert these Edgeworth expansions into Edgeworth expansions
for the bootstrap ML estimator and bootstrap t statistic using the fact that the ML
estimator lies in a neighborhood of the true value with probability that goes to one
at a sufficiently fast rate. Third, we use the argument of Hall (1988) to obtain the
error in coverage probability of symmetric percentile t conÞdence intervals given the
Edgeworth expansions for the ML and bootstrap ML t statistics.

To prove the results for the k-step parametric bootstrap, we use the method in
Andrews (2001). This method is similar to that used in the numerical analysis liter-
ature to establish the quadratic convergence of the Newton-Raphson algorithm. It is
also similar to that used in the statistics and econometrics literature to determine the
distributional and stochastic differences between statistics, e.g., see Pfanzagl (1974)
and Robinson (1988).

This paper provides some Monte Carlo results to illustrate performance of the
parametric bootstrap compared to the delta method in the second-order autoregres-
sive (AR(2)) model with Gaussian errors. This model is convenient for Monte Carlo
experiments because the ML estimator is the LS estimator, which is available in closed
form and, hence, computation is quick. We consider CIs for a nonlinear function of
the AR parameters, viz., the cumulative impulse response (CIR), as well as for the
AR parameters themselves. We consider sample sizes of 50 and 100 and a variety
of different parameter combinations. To see how robust the (Gaussian) parametric
bootstrap is to non-normal errors, we also consider errors with t distribution with
Þve degrees of freedom, which exhibits fat tails, and χ2 distribution with one degree
of freedom, which exhibits skewness.

The performances of the delta method and the parametric bootstrap CIs are found
to depend on how close the sum of the AR coefficients is from one. When the sum is
close to one, both types of CIs perform much more poorly than otherwise. In virtually
all parameter combinations, the parametric bootstrap outperforms the delta method
in terms of coverage probability. The difference is most pronounced when the sum of
AR coefficients is near one. For example, when the AR parameters are .90 and 0.0,
the sample size is 100, the errors are normal, and the nominal coverage probabilities
of the CIs are .95, the actual coverage probabilities of the delta method, symmetric
parametric bootstrap, and equal-tailed parametric bootstrap CIs for the CIR are
.714, .876, and .847 respectively. As a second example, when the AR parameters
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are .50 and 0.0 and everything else is the same as above, the analogous coverage
probabilities are .880, .929, and .915. The results change very little when t-5 or χ2-1
errors are used. Overall, the simulation results indicate that in one Markov model of
interest the parametric bootstrap outperforms the delta method.

An alternative bootstrap procedure that can be used in the AR(2) model is the
residual-based (RB) bootstrap. We compare the (Gaussian) parametric bootstrap to
the RB bootstrap when the errors are normal, t-5, and χ2-1. For normal and t-5 er-
rors, there is very little difference in the coverage probabilities of the parametric and
RB bootstraps. For χ2-1 errors, the differences are larger. The coverage probabili-
ties of the parametric bootstrap CIs are almost always higher than those of the RB
bootstrap CIs. For about half of the parameter combinations considered, the para-
metric bootstrap coverage probabilities are closer to the nominal value .95 than the
RB bootstrap coverage probabilities and vice versa. Hence, the overall performance
of the parametric and RB bootstraps are quite similar in the AR(2) model.

No other papers in the literature that we are aware of consider higher-order im-
provements of the parametric bootstrap for time series processes. In fact, there are
few papers that consider higher-order improvements of the parametric bootstrap even
for iid observations. One paper that does is Davidson and MacKinnon (1999b). On
the other hand, numerous papers in the literature consider different types of bootstrap
procedures for time series observations. Horowitz (2001) considers a nonparametric
bootstrap for Markov processes that utilizes a nonparametric estimator of the tran-
sition densities of the process. Bose (1988) and Inoue and Kilian (1999) consider a
residual-based bootstrap for AR processes that relies on transforming the data to
obtain approximately iid residuals. Bühlmann (1998), Park (1999), and Chang and
Park (1999) consider sieve bootstraps for linear time series processes. Many other
papers consider the block bootstrap. These include Carlstein (1986), Künsch (1989),
Lahiri (1992, 1993, 1996), Hall and Horowitz (1996), Götze and Künsch (1996), Zvin-
gelis (2000), Gonçalves and White (2000), Inoue and Shintani (2000), and Andrews
(2001).

The remainder of the paper is organized as follows: Section 2 introduces the
parametric Markov model that is considered in the paper and deÞnes the ML esti-
mator and t and Wald statistics. Section 3 deÞnes the parametric bootstrap CIs and
CRs. Section 4 states the assumptions. Section 5 provides bounds on the coverage
probability errors of the parametric bootstrap CIs and CRs. Section 6 introduces
k-step parametric bootstrap CIs and CRs and shows that the same bounds on the
coverage probability errors apply as for the standard parametric bootstrap, provided
k is taken large enough. Section 7 presents some Monte Carlo simulation results for
the parametric bootstrap for an AR(2) model. An Appendix contains proofs of the
results.

2 Markov Model and Maximum Likelihood Estimator

In this section, we provide results for likelihood-based methods using the para-
metric bootstrap. The parametric bootstrap utilizes the ML estimator to generate
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bootstrap samples. It can be used for both bootstrap conÞdence intervals and tests.
We obtain higher-order improvements of the parametric bootstrap that are the

same whether or not the data are dependent.
We consider a correctly speciÞed parametric model for a time series

{Wi : i = 1, ..., n}, where Wi ∈ RLw . Let Wi = (Y "i ,X
"
i)
", where Yi is a vector of

dependent (or response) variables and Xi is a vector of �regressor� variables. The
dependent random variables {Yi : i = 1, ..., n} form a κ-th order Markov process.
The regressor variables {Xi : i = 1, ..., n} are strictly exogenous and, hence, are
taken to be Þxed (i.e., non-random). All probabilities are based on the randomness
in {Yi : i = 1, ..., n} alone.

Assumption 1. (a) The parametric model speciÞes the density of Yi given
(Xi,Wi−1,Wi−2, ...,W1) (with respect to some σ-Þnite measure µ) to be d(·|Xi,Wi−1,
Wi−2, ...,Wi−κ; θ) for i = κ+ 1, ..., n, for some integer κ ≥ 0, where θ is a parameter
in the parameter space Θ ⊂ RLθ . (b) For any θ0 ∈ Θ, when {Yi : i ≥ 1} is distributed
with true parameter θ0, then {Yi : i ≥ 1} is a strong mixing sequence of random vari-
ables with strong mixing numbers {α(θ0,m) : m ≥ 1} that satisfy supθ0∈Θ α(θ0,m)
≤ C1 exp(−C2m) for some constants 0 < C1, C2 <∞.

Let Eθ0 and Pθ0 denote expectation and probability, respectively, when the dis-
tribution of the observations is given by the parametric model with true parameter
θ0.

It is convenient notationally to deÞne overlapping observations!Wi = (W
"
i , ...,W

"
i+κ)

"

for i = 1, ...,N, where N = n− κ. The sample in terms of the overlapping variables
is denoted by χN :

χN = {!Wi : i = 1, ..., N}. (2.1)

The normalized negative of the log likelihood function is

ρN(θ) = N−1
N"
i=1

ρ(!Wi, θ), where

ρ(!Wi, θ) = − log d(Yi+κ|Xi+κ,Wi+κ−1,Wi+κ−2, ...,Wi; θ).
2 (2.2)

By deÞnition, the ML estimator, #θN , solves
min
θ∈Θ

ρN(θ). (2.3)

The ML estimator also satisÞes the Þrst-order conditions

N−1
N"
i=1

g(!Wi,#θN) = 0, where

g(!Wi, θ) = (∂/∂θ)ρ(!Wi, θ). (2.4)

The asymptotic covariance matrix, Σ(θ0), of the extremum estimator #θN when
the true parameter is θ0 is

Σ(θ0) = D(θ0)
−1V (θ0)D(θ0)−1, where
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V (θ) = lim
N→∞

N−1
N"
i=1

Eθg(!Wi, θ)g(!Wi, θ)
" and

D(θ) = lim
N→∞

N−1
N"
i=1

Eθ
∂

∂θ"
g(!Wi, θ). (2.5)

A consistent variance matrix estimator ΣN for #θN can be deÞned in several ways
because D(θ0) and V (θ0) are square matrices and the information matrix equality
implies that D(θ0) and V (θ0) are equal. In particular, one can use

ΣN = ΣN(#θN) for
ΣN(θ) = D−1N (θ)VN(θ)D

−1
N (θ), ΣN(θ) = D

−1
N (θ), or ΣN(θ) = V

−1
N (θ), where

VN(θ) = N−1
N"
i=1

g(!Wi, θ)g(!Wi, θ)
", and

DN(θ) = N−1
N"
i=1

∂

∂θ"
g(!Wi, θ). (2.6)

Let θr, θ0,r, and #θN,r denote the r�th elements of θ, θ0, and #θN respectively.
Let (ΣN)rr denote the (r, r)�th element of ΣN . The t statistic for testing the null
hypothesis H0 : θr = θ0,r is

TN (θ0,r) = N
1/2(#θN,r − θ0,r)/(ΣN)1/2rr . (2.7)

Suppose β ∈ RLβ is a sub-vector of θ, say, θ = (β", δ")". The Wald statistic for
testing H0 : β = β0 versus H1 : β '= β0 is

WN(β0) = HN(#θN ,β0)"HN(#θN ,β0), where
HN(θ,β0) = ([ILβ

...0]ΣN(θ)[ILβ
...0]")−1/2N1/2(β − β0). (2.8)

3 Parametric Bootstrap

The parametric bootstrap sample {W ∗
i : i = 1, ..., n} is deÞned as follows. The

bootstrap regressors are the same Þxed regressors as in the original sample and the
bootstrap dependent variables are generated recursively for i = 1, ..., n using the
parametric density evaluated at the unrestricted ML estimator #θN . That is, one
takes W ∗

i = (Y ∗"i ,X "
i)
", where Y ∗i has density d(·|Xi,W ∗

i−1,W ∗
i−2, ...,W ∗

i−κi ;
#θN ) for

i = 1, ..., n, where κi = min{κ, i + 1}. The bootstrap observations !W ∗
i are deÞned

to be !W ∗
i = (W ∗"

i , ...,W
∗"
i+κ)

" for i = 1, ...,N. Under Assumption 1, the conditional
distribution of the bootstrap sample given #θN is the same as the distribution of the
original sample except that the true parameter is #θN rather than θ0.

The bootstrap estimator θ∗N is deÞned exactly as the original estimator #θN is
deÞned, but with the original sample {!Wi : i = 1, ...,N} replaced by the bootstrap
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sample {!W ∗
i : i = 1, ...,N}. That is, θ∗N solves

min
θ∈Θ

ρ∗N(θ), where ρ
∗
N(θ) = N

−1
N"
i=1

ρ(!W ∗
i , θ). (3.1)

The bootstrap covariance matrix estimator, Σ∗N , is deÞned to be Σ
∗
N(θ

∗
N) where

Σ∗N(θ) has the same deÞnition as ΣN(θ) (see (2.6)), but with the bootstrap sample
in place of the original sample. (For example, V ∗N (θ) equals VN(θ) with !Wi replaced
by !W ∗

i .)
The bootstrap t and Wald statistics need to be deÞned such that their distribu-

tions mimic the null non-bootstrap distribution even when the sample is generated
by a parameter in the alternative hypothesis. This is done by centering the statis-
tics at #θN,r and #βN , respectively, rather than at the values speciÞed under the null
hypotheses. We deÞne

T ∗N (#θN,r) = N1/2((θ∗N)r − #θN,r)/(Σ∗N)1/2rr and

W∗
N(
#βN) = H∗

N (θ
∗
N ,
#βN)"H∗

N(θ
∗
N ,
#βN), where

H∗
N(θ,

#βN) = $
[ILβ

...0]Σ∗N(θ)[ILβ
...0]"
%−1/2

N1/2(β − #βN ), (3.2)

(θ∗N)r denotes the r-th element of θ
∗
N ,
3 and (Σ∗N)rr denotes the (r, r)-th element of

Σ∗N .
Let z∗|T |,α, z

∗
T,α, and z

∗
W,α denote the 1−α quantiles of |T ∗N(#θN,r)|, T ∗N(#θN,r), and

W∗
N(
#βN) respectively. (To be precise, we deÞne z∗|T |,α = inf{z ∈ R : P ∗(|T ∗N(#θN,r)| ≤

z) ≥ 1− α} etc.)
The symmetric two-sided bootstrap CI for the r-th element of θ0, θ0,r, of conÞ-

dence level 100(1− α)% is

CISYM = [#θN,r − z∗|T |,α(ΣN)1/2rr /N1/2, #θN,r + z∗|T |,α(ΣN)1/2rr /N1/2]. (3.3)

The equal-tailed two-sided bootstrap CI for θ0,r of conÞdence level 100(1− α)% is

CIET = [#θN,r − z∗T,α/2(ΣN)1/2rr /N1/2, #θN,r + z∗T,1−α/2(ΣN)1/2rr /N1/2]. (3.4)

The upper one-sided bootstrap CI for θ0,r of conÞdence level 100(1− α)% is

CIUP = [#θN,r − z∗T,α(ΣN)1/2rr /N1/2, ∞). (3.5)

The bootstrap conÞdence region for β0 of conÞdence level 100(1− α)% is

CR = {β ∈ RLβ : N(#βN − β)"([ILβ ...0]ΣN [ILβ ...0]")−1(#βN − β) ≤ z∗W,α}. (3.6)

Correspondingly, the symmetric two-sided bootstrap t test of H0 : θr = θ0,r
versus H1 : θr '= θ0,r of signiÞcance level α rejects H0 if |TN (θ0,r)| > z∗|T |,α. The
equal-tailed two-sided bootstrap t test of signiÞcance level α for the same hypotheses
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rejects H0 if TN(θ0,r) < z∗T,1−α/2 or TN (θ0,r) > z∗T,α/2. The one-sided bootstrap t
test of H0 : θr ≤ θ0,r versus H1 : θr > θ0,r of signiÞcance level α rejects H0 if
TN(θ0,r) > z

∗
T,α.

To carry out tests of the above sort, an alternative parametric bootstrap procedure
can be used that employs the restricted ML estimator of θ. Results of Davidson
and MacKinnon (1999b) indicate that the error in test rejection probability may be
smaller using such a procedure than using a bootstrap based on the unrestricted ML
estimator. For this reason, the results of this paper are most useful for CIs and CRs
rather than for tests.

4 Assumptions

In this section, we state assumptions that are used in conjunction with Assump-
tion 1 to obtain the results of the paper.

Let a be a non-negative constant such that 2a is an integer. The following as-
sumptions depend on a�the larger is a, the stronger are the assumptions. To obtain
higher-order improvements of the parametric bootstrap CIs, we require the assump-
tions to hold with a equal 1, 3/2, or 2 depending upon the CI.

Let f(!Wi, θ) ∈ RLf denote the vector containing the unique components of
g(!Wi, θ) and g(!Wi, θ)g(!Wi, θ)

" and their partial derivatives with respect to θ through
order d = max{2a+2, 3}. Let (∂j/∂θj)g(!Wi, θ) denote the vector of partial derivatives
with respect to θ of order j of g(!Wi, θ). Let λmin(A) denote the smallest eigenvalue
of a matrix A. Let d(θ, B) denote the usual distance between a point θ and a set B
(i.e., d(θ, B) = inf{||θ − θ1|| : θ1 ∈ B}).

We establish asymptotic reÞnements that hold uniformly for the true parameter
lying in a subset Θ0 of Θ. For some δ > 0, let Θ1 = {θ ∈ Θ : d(θ,Θ0) < δ/2}
be a slightly larger set than Θ0. To obtain the asymptotic reÞnements, we need to
establish Edgeworth expansions that hold uniformly for the true parameter lying in
Θ1. The reason is that the parametric bootstrap uses #θN as the true parameter and
Θ1 contains #θN with probability that goes to one (at a sufficiently fast rate) when the
true parameter is in Θ0. In turn, to establish the Edgeworth expansions for all true
parameters θ0 in Θ1, we need some assumptions to hold uniformly over the slightly
larger set Θ2 = {θ ∈ Θ : d(θ,Θ0) < δ}.

We use the following assumptions.

Assumption 2. (a) Θ is compact and Θ1 is an open set. (b) #θN minimizes
N−1&N

i=1 ρ(
!Wi, θ) over θ ∈ Θ. (c) ρ(θ, θ0) = limN→∞N−1&N

i=1Eθ0ρ(
!Wi, θ) exists

and satisÞes limN→∞ supθ∈Θ,θ0∈Θ1 |N−1&N
i=1Eθ0ρ(

!Wi, θ)− ρ(θ, θ0)| = 0. (d) For all
θ0 ∈ Θ1, ρ(θ, θ0) is uniquely minimized over θ ∈ Θ by θ = θ0. Furthermore, given
any ε > 0, these exists η > 0 such that ||θ − θ0|| > ε implies that ρ(θ, θ0)− ρ(θ0, θ0)
> η for all θ ∈ Θ and θ0 ∈ Θ1. (e) supθ0∈Θ1,i≥1Eθ0 supθ∈Θ ||g(!Wi, θ)||q0 < ∞ and

supθ0∈Θ1,i≥1Eθ0 |ρ(!Wi, θ)|q0 <∞ for all θ ∈ Θ for q0 = max{2a+ 1, 2}.
Assumption 3. (a) g( 'w, θ) is d = max{2a+ 2, 3} times partially differentiable

with respect to θ on Θ2 for all 'w in the support of !Wi for all i ≥ 1.
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(b) supθ0∈Θ1,i≥1Eθ0 ||f(!Wi, θ0)||q1 <∞ for some q1 > 2a+2. (c) V (θ0) and D(θ0) sat-
isfy: infθ0∈Θ1 λmin(V (θ0)) > 0, infθ0∈Θ1 λmin(D(θ0)) > 0, limN→∞ supθ0∈Θ1 |Eθ0VN(θ0)
−V (θ0)| = 0 and limN→∞ supθ0∈Θ1 |Eθ0DN(θ0) − D(θ0)| = 0. (d) There is a func-
tion Cf (!Wi) such that ||f(!Wi, θ)− f(!Wi, θ0)|| ≤ Cf (!Wi)||θ − θ0|| for all θ ∈ Θ2 and
θ0 ∈ Θ1 such that ||θ − θ0|| < δ and all i ≥ 1 and supθ0∈Θ1,i≥1Eθ0Cq1f (!Wi) < ∞ for
some q1 > 2a+ 2.

Assumption 2 imposes some fairly standard conditions used to establish consis-
tency of the ML estimator, as well as some moment conditions. Assumption 3 imposes
smoothness and moment conditions on the parametric densities and their derivatives,
as well as full rank conditions on the information matrix.

The next assumption comes from Lahiri (1993), which extends results of Götze
and Hipp (1983). The assumption guarantees that an Edgeworth expansion holds
for N−1/2&N

i=1(f(
!Wi, θ0) − Eθ0f(!Wi, θ0)) with remainder o(N−a) uniformly over

θ0 ∈ Θ1, given the moment condition in Assumption 3(b). The assumption is rather
complicated and is not easy to verify in general. Nevertheless, Götze and Hipp (1983,
1994) provide a number of examples in which this condition is veriÞed. For a Þxed
value θ0, the assumption is weaker than the corresponding assumptions employed in
Hall and Horowitz (1996) and Andrews (1999), which are based on sufficient condi-
tions for the assumption given below.

The following assumption can be replaced by any set of sufficient conditions for
an Edgeworth expansion for N−1/2&N

i=1(f(
!Wi, θ0) − Eθ0f(!Wi, θ0)) when the true

parameter is θ0 whose remainder is o(N−a) uniformly over θ0 ∈ Θ1. For example,
there are several Edgeworth expansions in the literature designed speciÞcally for
Markov processes. These include Malinovskii (1987, Thm. 1) and Jensen (1989,
Thm. 2).4

Let (Ω,A, Pθ0) for θ0 ∈ Θ be the probability space on which the random vectors
{Wi : i ≥ 1} are deÞned. Let D0,D±1,D±2, ... be a sequence of sub-σ-Þelds of A. Let
Dqp denote the σ-Þeld generated by Dj for p ≤ j ≤ q.

Assumption 4. (a) There exists a constant d1 > 0 such that for all
m, i = 1, 2, ... with m > d−11 there exists Di+mi−m-measurable random vectors Zi,m(θ0)

for which Eθ0 ||f(!Wi, θ0) − Zi,m(θ0)|| < d−11 exp(−d1m) for all θ0 ∈ Θ1. (b) There
exists a constant d2 > 0 such that for all m, i = 1, 2, ..., A ∈ Di−∞, and B ∈ D∞i+m,
|Pθ0(A ∩ B) − Pθ0(A)Pθ0(B)| ≤ d−12 exp(−dm) for all θ0 ∈ Θ1. (c) There exists a
constant d3 > 0 such that for all m, i = 1, 2, ... with d−13 < m < i and all t ∈ RLf
with ||t|| ≥ d, Eθ0|Eθ0(exp(

√−1t"(&i+m
j=i−m f(!Wj, θ0)))|Dj : j '= i)| ≤ exp(−d3) for

all θ0 ∈ Θ1. (d) There exists a constant d4 > 0 such that for all m, i, p = 1, 2, ... and
A ∈ Di+pi−p, Eθ0 |Pθ0(A|Dj : j '= i)− Pθ0(A|Dj : 0 < |i− j| ≤ i+ p)| ≤ d−14 exp(−d4m)
for all θ0 ∈ Θ1. (e) There exists matrices Ω(θ0) ∈ RLf×Lf for θ0 ∈ Θ1 such that
limN→∞ supθ0∈Θ1 ||Varθ0(N−1/2&N

i=1 f(
!Wi, θ0)) − Ω(θ0)|| = 0 and Ω(θ0) has small-

est eigenvalue bounded away from 0 over θ0 ∈ Θ1. (f) There exists a constant d5 > 0
such that for all i > d−15 and m > d−15 inf{t"Varθ0(

&i+m
j=i f(

!Wj, θ0))t : ||t|| = 1, θ0 ∈
Θ1} > d5m.

8



Assumption 4 is a conditional Cramér condition. In the case of an iid sequence
of random variables, Assumption 4 reduces to the standard Cramér condition.

5 Higher-order Improvements

One of the main results of this paper is the following Theorem.

Theorem 1 Suppose Assumptions 1�4 hold with a in Assumptions 2 and 3 as
speciÞed below. Then,
(a) supθ0∈Θ0 |Pθ0(θ0 ∈ CISYM)− (1− α)| = O(N−2) for a = 2,
(b) supθ0∈Θ0 |Pθ0(θ0 ∈ CIET )− (1− α)| = o(N−1 ln(N)) for a = 1,
(c) supθ0∈Θ0 |Pθ0(θ0 ∈ CIUP )− (1− α)| = o(N−1 ln(N)) for a = 1, and
(d) supθ0∈Θ0 |Pθ0(θ0 ∈ CR)− (1− α)| = o(N−3/2 ln(N)) for a = 3/2.

Comments. 1. The errors in coverage probability of standard delta method CIs
and CRs based on asymptotic normal and chi-square approximations are O(N−1),
O(N−1/2), O(N−1/2), and O(N−1) for symmetric t CIs, equal-tailed t CIs, one-sided
t CIs, and elliptical CRs respectively. Hence, the Theorem shows that parametric
bootstrap CIs and CRs reduce the coverage errors of standard CIs and CRs by the
multiplicative factors O(N−1), o(N−1/2 ln(N)), o(N−1/2 ln(N)), and o(N−1/2 ln(N))
respectively. These improvements are almost the same as the improvements that
have been established for parametric and non-parametric bootstrap CIs or CRs for
a population mean (based on the sample mean) in iid scenarios, which are O(N−1),
O(N−1/2), O(N−1/2), and O(N−1/2), respectively, e.g., see Hall (1988, 1992). Hence,
in contrast to the block bootstrap (e.g., see the higher-order improvement results
in Andrews (1999)), the parametric bootstrap for time series observations performs
essentially as well asymptotically as for independent observations.

2. The result of Theorem 1(a) is sharp and the results of Theorem 1(b) and
(c) are very nearly sharp. (Based on results available for population means in iid
scenarios, sharp results would be errors of magnitude O(N−1) in parts (b) and (c).)
But, the result of part (d) for the CR probably is not sharp or nearly sharp. One
may be able to obtain an error in part (d) of O(N−2) via an argument somewhat
similar to that of Hall (1988) for symmetric t CIs. This has not been done in the
literature, however, even for the case of a CR for a vector of population means in an
iid scenario.

3. The conditions on d, q0, and q1 in Assumptions 2 and 3 are as follows. For
a = 1, the Assumptions require d ≥ 4, q0 ≥ 3, and q1 > 4. For a = 3/2, the
Assumptions require d ≥ 5, q0 ≥ 5, and q1 > 6. For a = 2, the Assumptions require
d ≥ 6, q0 ≥ 5, and q1 > 6.

6 k-Step Parametric Bootstrap

In this section, we deÞne the k-step bootstrap estimator, t statistic, and Wald
statistic and corresponding CIs and CRs. Then, we establish bounds on the coverage
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probability errors of these CIs and CRs. Provided k is taken large enough, the bounds
are of the same magnitude as those obtained for the standard parametric bootstrap.

The k-step bootstrap estimator is denoted θ∗N,k. The starting value for the k-step
estimator is #θN , the estimator based on the original sample. We deÞne recursively

θ∗N,j = θ
∗
N,j−1 − (Q∗N,j−1)−1N−1

N"
i=1

g(!W ∗
i , θ

∗
N,j−1) for 1 ≤ j ≤ k, (6.1)

where θ∗N,0 = #θN .
The Lθ × Lθ random matrix Q∗N,j−1 depends on θ

∗
N,j−1. It determines whether

the k-step bootstrap estimator is a NR, default NR, line-search NR, GN, or some
other k-step bootstrap estimator. The NR, default NR, and line-search NR choices of
Q∗N,j−1 yield k-step bootstrap estimators that have the same higher-order asymptotic
behavior. The results below show that they require fewer steps, k, to approximate the
extremum bootstrap estimator θ∗N to a speciÞed accuracy than does the GN k-step
estimator. The NR choice of Q∗N,j−1 is

Q∗,NRN,j−1 = D∗N(θ
∗
N,j−1), where

D∗N(θ) = N−1
N"
i=1

∂

∂θ"
g(!W ∗

i , θ). (6.2)

The default NR choice of Q∗N,j−1, denoted Q
∗,D
N,j−1, equals Q

∗,NR
N,j−1 if Q

∗,NR
N,j−1 leads

to an estimator θ∗N,j via (6.1) for which ρ∗N (θ
∗
N,j) ≤ ρ∗N (θ

∗
N,j−1), but equals some

other matrix otherwise. In practice, one wants this other matrix to be such that
ρ∗N(θ

∗
N,j) < ρ

∗
N(θ

∗
N,j−1) (but the theoretical results do not require this). For example,

one might use the matrix (1/ε)ILθ for some small ε > 0. (See Ortega and Rheinboldt
(1970, Theorem 8.2.1) for a result that indicates that such a choice will decrease the
criterion function.)

The line-search NR choice of Q∗N,j−1, denoted Q
∗,LS
N,j−1, uses a scaled version of the

NR matrix Q∗,NRN,j−1 that optimizes the step length. SpeciÞcally, let A be a Þnite subset
of (0, 1] of step lengths that includes 1. One computes θ∗N,j = θ

∗,α
N,j via (6.1) for Q

∗
N,j−1

= (1/α)Q∗,NRN,j−1 for each α ∈ A. One takes Q∗,LSN,j−1 to be the matrix (1/α)Q
∗,NR
N,j−1 for

the value of α that minimizes ρ∗N (θ
∗α
N,j) over all α ∈ A. (If the minimizing of value of

α is not unique, one takes the largest minimizing value of α in A.)
The GN choice of Q∗N,j−1, denoted Q

∗,GN
N,j−1, uses a matrix that differs from, but is

a close approximation to, the NR matrix Q∗,NRN,j−1. In particular,

Q∗,GNN,j−1 = D
∗
N,j−1, (6.3)

where D∗N,j−1 is determined by some function ∆(·, ·) as follows:

D∗N,j−1 = N−1
N"
i=1

∆(!W ∗
i , θ

∗
N,j−1) ∈ RLg×Lθ and

E∗θ0∆(!W ∗
i , θ0) = E∗θ0

∂

∂θ"
g(!W ∗

i , θ0) for all i ≥ 1 and all θ0 ∈ Θ1. (6.4)
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The latter condition is responsible for D∗N,j−1 being a close approximation to

D∗N(θ
∗
N,j−1) = Q

∗,NR
N,j−1.

An example of a GN matrix Q∗,GNN,j−1 is the sample outer-product estimator of the
bootstrap information matrix. By the information matrix equality,

E∗θ0
∂

∂θ"
g(!W ∗

i , θ0) = E
∗
θ0g(

!W ∗
i , θ0)g(!W ∗

i , θ0)
" for all i ≥ 1 and all θ0 ∈ Θ1. (6.5)

In this case, the NR matrix Q∗,NRN,j−1 is the sample analogue of the expectation on the
left-hand side of (6.5): Q∗,NRN,j−1 = N−1&N

i=1(∂/∂θ
")g(!W ∗

i , θ
∗
N,j−1). The GN matrix

Q∗,GNN,j−1 is the sample analogue of the expectation on the right-hand side of (6.5).
Thus, Q∗,GNN,j−1 is as in (6.3) and (6.4) with

∆(!W ∗
i , θ) = g(!W ∗

i , θ)g(!W ∗
i , θ)

". (6.6)

The GN matrix does not require calculation of the second derivative of the log like-
lihood function.

Alternatively, one can use a GN matrix Q∗N,j−1 based on the expected bootstrap
information matrix:

Q∗,GN2N,j−1 = N−1
N"
i=1

E∗θ
∂

∂θ"
g(!W ∗

i , θ)

(((((
θ=θ∗N,j−1

. (6.7)

In this case, the function ∆(!W ∗
i , θ) of (6.4) is E

∗
θ (∂/∂θ

")g(!W ∗
i , θ), which is non-

random. The expected information matrix is often used in the statistical literature
on one-step and k-step estimators, e.g., see Pfanzagl (1974).

The bootstrap covariance matrix estimator Σ∗N,k is deÞned as ΣN is deÞned in
(2.6), but with the bootstrap sample in place of the original sample and θ∗N,k in place
of #θN .

The k-step bootstrap t and Wald statistics, T ∗N,k(#θN,r) and W∗
N,k(

#βN), are
deÞned as in (3.2), but with θ∗N and Σ∗N replaced by θ∗N,k and Σ∗N,k respectively.
Let z∗|T |,k,α, z

∗
T,k,α, and z

∗
W,k,α denote the 1− α quantiles of |T ∗N,k(#θN,r)|, T ∗N,k(#θN,r),

and W∗
N,k(

#βN ) respectively.
The k-step bootstrap CIs and conÞdence regions, denoted CISYM,k, CIET,k,

CIUP,k, and CRk, are deÞned as in (3.3)�(3.6), but with z∗|T |,α, z
∗
T,α, and z

∗
W,α replaced

by z∗|T |,k,α, z
∗
T,k,α, and z

∗
W,k,α respectively.

The matrices {Q∗Nj−1 : j = 1, ..., k} are assumed to satisfy the following assump-
tion.

Assumption 5. The matrices {Q∗Nj−1 : j = 1, ..., k} satisfy: For some sequence
of non-negative constants {ψN : N ≥ 1} with limN→∞ ψN = 0 and for all ε > 0,

sup
θ0∈Θ1

P ∗θ0(||Q∗N,j−1 −D∗N (θ∗N,j−1)|| > ψN) = o(N−a) for j = 1, ..., k,

11



where P ∗θ0 denotes the probability when the bootstrap sample is generated using the
parameter θ0 rather than #θN and the initial estimator θ∗N,0 is θ0 rather than #θN .

We now give sufficient conditions for Assumption 5 for the NR, default NR, line-
search NR, and GN choices of Q∗N,j−1.

Lemma 1 Suppose Assumptions 1�4 hold for some a ≥ 0 with 2a an integer. Then,
Assumption 5 holds with ψN = 0 for all N for the NR, default NR, and line-
search NR choices of Q∗N,j−1 for j = 1, ..., k. In addition, Assumption 5 holds with
ψN = N−1/2 ln(N) for the GN choice of Q∗N,j−1 for j = 1, ..., k provided Assump-

tions 1 and 4 hold with the elements of ∆(!Wi, θ) (deÞned in (6.4)) added to f(!Wi, θ)

and the function ∆(·, ·) satisÞes: (i) Eθ0(∆(!Wi, θ0) −(∂/∂θ")g(!Wi, θ0)) = 0 for
all i ≥ 1 and all θ0 ∈ Θ1, (ii) ∆(!Wi, θ) is continuously differentiable with re-
spect to θ on Θ2, (iii) supθ0∈Θ1,i≥1Eθ0||∆(!Wi, θ0)− (∂/∂θ")g(!Wi, θ0)||2a+3 <∞, and
(iv) supθ0∈Θ1,i≥1Eθ0 supθ∈B(θ0,ε) ||(∂/∂θu)(∆(!Wi, θ) − (∂/∂θ")g(!Wi, θ))||q2 < ∞ for
all u = 1, ..., Lθ, for some ε > 0, and for q2 = max{2a+1, 2}, where B(θ0, ε) denotes
an open ball at θ0 of radius ε.

Comment. Conditions (ii)�(iv) of the Lemma hold for the outer-product GN matrix
of (6.6) by Assumption 3.

The higher-order asymptotic equivalence of the k-step and standard bootstrap
statistics is established in parts (a) and (b) of the following Theorem. Part (b) gives
conditions under which the Kolmogorov distances (i.e., the sup norms of the differ-
ences between the distribution functions) betweenN1/2(θ∗N,k−#θN) andN1/2(θ∗N−#θN),
T ∗N,k(#θN,r) and T ∗N(#θN,r), and W∗

N,k(
#βN ) and W∗

N(
#βN ), respectively, are o(N−a) for

some a ≥ 0.
In part (a) of the Theorem, the difference between the k-step bootstrap estimator

and the standard ML bootstrap estimator is shown to be of greater magnitude than
µN,k with bootstrap probability o(N

−a) except on a set with probability o(N−a),
where

µN,k =

)
N−2k−1 ln2

k
(N) for NR, default NR, and line search NR matrices

N−(k+1)/2 lnk+1(N) for GN matrices.
(6.8)

Thus, for the NR procedures, the difference decreases very quickly as k increases
and for the GN procedure the difference decreases more slowly as k increases. More
generally, for ψN as in Assumption 5, µN,k is deÞned by

µN,k = max
j=0,...,k

N−2k−j−1 ln2
k−j
(N)ψjN . (6.9)

The key condition in part (b) of the following Theorem is

µN,k = o(N
−(a+1/2)), (6.10)
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where 2a is a non-negative integer. Given this condition, the Kolmogorov distances
between the k-step and bootstrap statistics are o(N−a) except on a set with proba-
bility o(N−a).

If Assumption 5 holds with ψN = 0, as it does for the NR, default NR, and
line-search NR procedures, then (6.10) holds if

2k ≥ 2a+ 2, (6.11)

where 2a is an integer. Thus, for k = 1, we have a = 0; for k = 2, we have a = 1; for
k = 3, we have a = 3; for k = 4, we have a = 7; etc.

If Assumption 5 holds with ψN = N
−1/2 ln(N), as it does for the GN procedure

under the conditions in Lemma 1, then (6.10) holds if

k ≥ 2a+ 1, (6.12)

where 2a is an integer. Thus, for k = 1, we have a = 0; for k = 2, we have a = 1/2;
for k = 3, we have a = 1; for k = 4, we have a = 3/2; etc.

The aforementioned Theorem is as follows:

Theorem 2 Suppose Assumptions 1-5 hold for some a ≥ 0 with 2a an integer in
parts (a) and (b).
(a) Then, for all ε > 0,

sup
θ0∈Θ0

Pθ0(P
∗#θN (||θ∗N,k − θ∗N || > µN,k) > N−aε) = o(N−a),

sup
θ0∈Θ0

Pθ0(P
∗#θN (|T ∗N,k(#θN,r)− T ∗N (#θN,r)| > N1/2µN,k) > N

−aε) = o(N−a), and

sup
θ0∈Θ0

Pθ(P
∗#θN (|W∗

N,k(
#βN )−W∗

N(
#βN)| > N1/2µN,k) > N

−aε) = o(N−a).

(b) Suppose µN,k = o(N
−(a+1/2)). Then, for all ε > 0,

sup
θ0∈Θ0

Pθ0

*
sup
z∈RLθ

(((P ∗#θN (N1/2(θ∗N,k − #θN) ≤ z)
−P ∗#θN (N1/2(θ∗N − #θN) ≤ z)((( > N−aε

+
= o(N−a),

sup
θ0∈Θ0

Pθ0(sup
z∈R

(((P ∗#θN (T ∗N,k(#θN,r) ≤ z)− P ∗#θN (T ∗N(#θN,r) ≤ z)((( > N−aε) = o(N−a),

and

sup
θ0∈Θ0

Pθ0(sup
z∈R

(((P ∗#θN (W∗
N,k(

#βN) ≤ z)− P ∗#θN (W∗
N(
#βN ) ≤ z)((( > N−aε) = o(N−a).

We use the results of Theorem 2 to show that the errors in coverage probability of
the k-step bootstrap CIs are the same as those of the standard bootstrap CIs given
in Theorem 1. In consequence, one can obtain higher-order improvements using
the bootstrap without doing the nonlinear optimization necessary to compute the
standard bootstrap ML estimator.
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Theorem 3 (a) Suppose Assumptions 1-5 hold with a = 2 and µN,k = o(N−5/2).
Then, supθ0∈Θ0 |Pθ0(θ0 ∈ CISYM,k)− (1− α)| = O(N−2).
(b) Suppose Assumptions 1-5 hold with a = 1 and µN,k = o(N−3/2). Then,
supθ0∈Θ0 |Pθ0(θ0 ∈ CIET,k)−(1−α)| = o(N−1 ln(N)) and supθ0∈Θ0 |Pθ0(θ0 ∈ CIUP,k)
−(1− α)| = o(N−1 ln(N)).
(c) Suppose Assumptions 1-5 hold with a = 3/2 and µN,k = o(N−2). Then,
supθ0∈Θ0 |Pθ0(θ0 ∈ CRk)− (1− α)| = o(N−3/2 ln(N)).

Comments. 1. For the NR, default NR, and line-search NR procedures, the condi-
tion µN,k = o(N

−5/2) in part (a) is satisÞed if k ≥ 3; the condition µN,k = o(N−3/2)
in part (b) is satisÞed if k ≥ 2; and the condition µN,k = o(N−5/2) in part (c) is
satisÞed if k ≥ 3. For the GN procedure, the condition µN,k = o(N−5/2) in part (a) is
satisÞed if k ≥ 5; the condition µN,k = o(N−3/2) in part (b) is satisÞed if k ≥ 3; and
the condition µN,k = o(N

−5/2) in part (c) is satisÞed if k ≥ 4. Hence, the k-step NR
bootstrap procedures require fewer steps than the k-step GN bootstrap procedure to
achieve the same higher-order improvements as obtained by the standard parametric
bootstrap. But, with NR or GN k-step bootstrap procedures, the number of steps
does not need to be very large.

7 Monte Carlo Simulations

In this section, we compare the performance of standard delta method CIs, sym-
metric percentile t CIs, and equal-tailed percentile t CIs using Monte Carlo simu-
lation. We consider a stationary Gaussian AR(2) model because it is a well-known
model, the standard delta method is known to perform poorly when the sum of the
AR coefficients is near one, and the parameter estimates are available in closed form,
which greatly speeds computation.

7.1 Experimental Design

The model we consider is given by

Yi = µ+ ρ1Yi−1 + ρ2Yi−2 + σUi for i = 3, ..., n,

Y1 =

$
1

1− ρ21 − ρ22 − 2ρ21ρ2/(1− ρ2)
%1/2

U1,

Y2 =
ρ1

1− ρ2
Y1 +

$
1− ρ21/(1− ρ2)2

1− ρ21 − ρ22 − 2ρ21ρ2/(1− ρ2)
%1/2

U2, and

Ui = iid N(0, 1) for i = 1, ..., n. (7.1)

As deÞned, this model is a stationary Gaussian AR(2) model. The model can also
be deÞned in augmented Dickey-Fuller form as

Yi = µ+ αYi−1 − ρ2∆Yi−1 + σUi for i = 3, ..., n, where
α = ρ1 + ρ2,

∆Yi−1 = Yi−1 − Yi−2, (7.2)
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and (Y1, Y2, Ui) are as in (7.1).
In terms of the notation of Section 3, κ = 2, N = n− 2, Wi = Yi for i = 1, ..., n,!Wi = (Yi+2, Yi+1, Yi)

" for i = 1, ..., N, and θ = (µ, ρ1, ρ2,σ2)". The normalized negative
log-likelihood of {!Wi : 1 ≤ i ≤ N} (conditional on Y1 and Y2) is

ρN(θ) =
1

2
log(2π) +

1

2
log(σ2) +

1

2

N"
i=1

(Yi+2 − µ− ρ1Yi+1 − ρ2Yi)2. (7.3)

The parameter space for θ is R3 ×R+. In consequence, the ML estimators of µ, ρ1,
and ρ2, denoted #µ, #ρ1, and #ρ2, are the least squares estimators from the regression
of Yi+2 on 1, Yi+1, and Yi for i = 1, ...,N. The ML estimator, #α, of α is #ρ1 + #ρ2. The
ML estimator of σ2 is

#σ2 = (1/N) N"
i=1

(Yi+2 − #µ− #ρ1Yi+1 − #ρ2Yi)2. (7.4)

Researchers are often interested in the persistence of a time series. This can be
measured by the impulse response function (IRF). The IRF traces out the effect of
an increase in the innovation σUi by a unit quantity on the values Yi+h, denoted
IRF(h), for h = 0, 1, ... and i ≥ 3. The cumulative impulse response (CIR), deÞned
by CIR =

&∞
h=0 IRF (h), provides a convenient scalar summary measure of the

persistence of the time series. In the model of (7.1), the CIR equals 1/(1− α). The
ML estimator of CIR is!CIR = 1/(1− #α). (See Andrews and Chen (1994) for further
discussion of CIR.)

In the simulation experiment, we consider CIs for the CIR, as well as for the
parameters α, ρ1, and ρ2. Note that the CIR only depends on the parameter α, so
α also is a useful measure of persistence. (The spectrum of {Yi : i ≥ 1} at zero
equals σ2/(1−α)2 and, hence, is another measure of persistence that depends on the
regression coefficients only through α.)

The standard delta method CI for CIR with nominal coverage probability 100(1−
τ)% is given by

CICIR =

,
!CIR− #σCIRz1−τ/2√

N
, !CIR+

#σCIRz1−τ/2√
N

-
, where

#σ2CIR = #σ2α/(1− #α)4, (7.5)

and #σ2α equals #σ2 times the (2, 2) element of the inverse of N−1&N
i=1(1, Yi−1,∆Yi−1)

×(1, Yi−1,∆Yi−1)". The delta method CIs for α, ρ1, and ρ2, denoted CIα, CIρ1 , and
CIρ2, respectively, are deÞned analogously with #σCIR replaced by #σα, #σρ1, and #σρ2 ,
where #σ2ρ1 and #σ2ρ2 equal #σ2 times the (2, 2) and (3, 3) elements, respectively, of the
inverse of N−1&N

i=1(1, Yi−1, Yi−2)(1, Yi−1, Yi−2)
".

The symmetric and equal-tailed parametric bootstrap CIs for CIR, α, ρ1, and ρ2
are as deÞned in (3.3) and (3.4) of Section 3.5

Because the ML estimators of CIR, α, ρ1, and ρ2 are available in closed form, we
do not consider k-step bootstrap CIs.
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An alternative to the parametric bootstrap that can be applied in the AR(2)
model above is the residual-based (RB) bootstrap. The RB bootstrap is the same
as the parametric bootstrap except that the distribution of the bootstrap errors is
given by the empirical distribution of the residuals from the original sample, rather
than by the normal distribution. Symmetric and equal-tailed RB bootstrap CIs for
CIR, α, ρ1, and ρ2 are as deÞned just as with the parametric bootstrap but with
the bootstrap errors being iid with distribution given by the empirical distribution of
the residuals. We compute RB bootstrap CIs and compare them to the parametric
bootstrap CIs.

We report coverage probabilities for 95% CIs for each of the three types of CI,
i.e., delta method, symmetric bootstrap, and equal-tailed bootstrap, for each of the
four parameters, i.e., CIR, α, ρ1, and ρ2. In addition, for the CIs for CIR, we report
the probabilities that the CIs miss the true value to the left and to the right and the
average length of the CIs. We report results for sample size N = 100, as well as some
results for N = 50.

We consider nine different parameter combinations for ρ1 and ρ2, which corre-
spond to four different values of α, viz., .9, .5, −.5, and −.9, see Table I. These
parameter combinations have been chosen because they cover a broad spectrum of
different performances of the CIs considered. All results reported are invariant to the
values of µ and σ2, so we set µ = 0 and σ2 = 1 without loss of generality.

To assess the robustness of the parametric bootstrap CIs to the distribution of the
innovation Ui, we also consider the case where Ui has a t distribution with Þve degrees
of freedom, which has fat tails, and when it has a chi-squared distribution with one
degree of freedom (shifted to have mean zero), which has considerable skewness. The
errors in the coverage probabilities of the (Gaussian) parametric bootstrap CIs are
of the same order of magnitude as for the delta method CIs when the errors are
non-Gaussian. But, one would hope that they outperform the delta method in Þnite
samples.

All results are based on R = 10, 000 Monte Carlo repetitions and B = 5199
bootstrap repetitions. With this number of Monte Carlo repetitions, the standard
deviation of the reported coverage probabilities is .0022.

7.2 Simulation Results

Table I reports results for CIs for CIR for all nine (ρ1, ρ2) parameter combinations
andN = 100. Several features of the results are immediately apparent. First, all three
types of CIs perform most poorly when α = .9. They perform better when α = .5
and best when α = −.5 or −1.5.

Second, the error that the CIs make in almost all cases is under-coverage, not
over-coverage.

Third, both bootstrap CIs perform better than the delta method CIs in terms of
coverage probability whenever α = .9, .5, or −.5 and are comparable when α = −1.5.
This is consistent with the asymptotic results of Section 5, which show that the error
in coverage probability of the bootstrap CIs converges to zero at a faster rate than for
the delta method CIs. When α = .9 or .5, the bootstrap CIs perform substantially
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better than the delta method CIs. For example, when (ρ1, ρ2) = (.9, 0), the coverage
probabilities of nominal 95% delta, symmetric bootstrap, and equal-tailed bootstrap
CIs are .71, .88, and .85, respectively. In this case and others in which the delta
method performs quite poorly, the bootstrap CIs perform much better. But, they do
not eliminate under-coverage.

Fourth, the symmetric bootstrap CIs perform better in terms of coverage proba-
bility than the equal-tailed bootstrap CIs in almost all cases. Especially when α = .9,
the difference is noticeable. This also is consistent with the asymptotic results of Sec-
tion 5, which show that the error in coverage probability of the symmetric bootstrap
CIs converges to zero at a faster rate than for the equal-tailed bootstrap CIs.

Fifth, the center of the delta method and symmetric bootstrap CIs is signiÞcantly
smaller than the true value in all cases. This is reßected in the fact that the proba-
bilities that these CIs miss to the right is essentially zero in all cases. On the other
hand, the equal-tailed bootstrap CIs are fairly well centered around the true para-
meter values. The probabilities that these CIs miss to the left is roughly the same as
the probabilities that they miss to the right, in most cases.

Sixth, the average length of the CIs mirrors their coverage probabilities. The delta
method CIs are shorter than the bootstrap CIs in all cases except when α = −1.5. In
these cases, they are too short, which causes their coverage probabilities to be too low.
Similarly, the equal-tailed bootstrap CIs are shorter than the symmetric bootstrap
CIs in those cases in which the former exhibit under-coverage, which occurs in all
cases except when α = −1.5.

Overall, it is clear that both bootstrap CIs out perform the delta method CI. The
comparison between the two bootstrap CIs is not as clear cut. The symmetric boot-
strap CIs outperform the equal-tailed bootstrap CIs in terms of coverage probability.
But, the equal-tailed bootstrap CIs are much better centered. Depending upon how
one weights these two characteristics of the CIs, one might prefer one bootstrap CI
or the other.

Table II reports coverage probabilities for CIs for α, ρ1, and ρ2 for the same cases
as in Table I. The results for α are quite similar to those for CIR in a qualitative
sense. In particular, the delta method CIs under-cover by more than the bootstrap
CIs and the equal-tailed bootstrap CIs under-cover by more than the symmetric
bootstrap CIs. The main difference is that all three types of CIs perform much better
in terms of the amount of under-coverage. For example, the coverage probabilities
for (ρ1, ρ2) = (.9, 0) are .91, .93, and .92 for the delta, symmetric bootstrap, and
equal-tailed bootstrap CIs, respectively. These probabilities are much closer to .95
than the probabilities listed above for the CIR CIs.

Note that one could construct a CI for CIR by transforming the CI for α, because
CIR is a monotone transform of α. (That is, the lower endpoint of such a CI for CIR
is given by 1/(1 − LEα), where LEα is the lower endpoint of the CI for α, and the
upper endpoint is deÞned analogously.) The resulting CI for CIR has the same
coverage probability as the CI for α.

The results of Table II for ρ1 and ρ2 are better than those for α for all three types
of CIs. That is, the magnitudes of under-coverage are smaller. In fact, in a few cases
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there is a small amount of over-coverage. In the cases where the delta method CIs
under-cover, the bootstrap CIs under-cover by a smaller amount or by none at all.
Hence, the bootstrap CIs for ρ1 and ρ2 provide an improvement over those of the
delta method.

Tables I and II do not report results for RB bootstrap CIs because they differ
very little from the parametric bootstrap results. In most cases, the differences in
coverage probabilities are .001 or less. In a few cases, the differences are .002.

Tables III and IV report coverage probability results for the cases of t-5 errors and
χ2-1 errors respectively. These results show that the Gaussian parametric bootstrap
CIs still outperform the delta method CIs even when the errors are not Gaussian. In
fact, the most salient feature of the results in Tables III and IV is how similar they
are to the results when the errors are Gaussian.

Table III does not report results for RB bootstrap CIs because, as in the normal
error case, the results are quite similar to those for the parametric bootstrap. The
differences between the two for t-5 errors are slightly larger than for N(0, 1) errors, but
are still small in most cases. There are a few cases where the differences are as large as
.004, but in most cases the differences are .002 or less. The coverage probabilities of
the parametric bootstrap CIs are almost always the same as, or closer to, the nominal
value .95 than those of the RB bootstrap CIs. This holds because it is almost always
the case that the parametric bootstrap CIs have coverage probabilities that are as
high or higher than those of the RB bootstrap CIs and both bootstrap CIs usually
exhibit under-coverage. These results indicate that the parametric bootstrap CIs are
fairly robust to the existence of fat-tailed t-5 errors.

Table IV lists the coverage probabilities of the RB bootstrap CIs for the case of
χ2-1 errors, which are skewed. The differences in coverage probabilities between the
parametric and RB bootstrap CIs are noticeably larger than in the N(0, 1) and t-5
error cases. The differences are as large as .021, but usually are smaller. In almost
all cases, the coverage probabilities of the parametric bootstrap CIs exceed those of
the RB bootstrap CIs. Thus, the parametric bootstrap CIs are more conservative.
In roughly half the cases, the parametric bootstrap coverage probabilities are closer
to .95 than the RB bootstrap coverage probabilities. Hence, in an overall sense, the
parametric bootstrap performs at least as well as the RB bootstrap in the case of
(skewed) χ2-1 errors (at least for sample size 100).

Table V presents results for the case of sample size N = 50 and N(0, 1) errors.
Comparing the results to those of Tables I and II for N = 100, the results are
what one would expect. The magnitudes of under-coverage of the CIs are larger and
the average lengths of the CIs are larger when N = 50 than when N = 100. The
comparative performances of the delta, symmetric parametric bootstrap, and equal-
tailed parametric bootstrap CIs are quite similar for N = 50 to those for N = 100.
The symmetric parametric bootstrap CIs outperform the delta method CIs in terms
of coverage probabilities in all cases. The equal-tailed parametric bootstrap CIs
outperform the delta method CIs in terms of coverage probabilities in most cases.
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8 Appendix of Proofs

In the Þrst subsection of this Appendix, we state Lemmas 2�9 that are used in the
proofs of Theorems 1�3 and Lemma 1. In the second subsection, we prove Theorems
1�3. In the third subsection, we prove Lemmas 1�9.

Throughout the Appendix, a denotes a constant that satisÞes a ≥ 0 and 2a is an
integer, C denotes a generic constant that may change from one equality or inequality
to another, and B(θ, ε) denotes an open ball of radius ε > 0 centered at θ.

8.1 Lemmas

Lemma 2 Suppose supθ0∈Θ0 Pθ0(#θN /∈ B(θ0, δ/2)) = o(N−a) (for δ as in the def-
initions of Θ1 and Θ2 given in Section 4) and {λN(θ) : N ≥ 1} is a sequence of
(non-random) real functions on Θ1 that satisÞes supθ∈Θ1 |λN(θ)| = o(N−a). Then,
for all ε > 0,

sup
θ0∈Θ0

Pθ0(|λN(#θN)| > N−aε) = o(N−a).

Comments. 1. This is a simple, but key, result that is used to obtain bootstrap
results from results that hold for statistics based on the original sample uniformly
over θ0 ∈ Θ0. For example, suppose we take λN(θ) = P ∗θ (||V ∗N (θ∗N)−V (θ)|| > ε) and
we show that supθ0∈Θ1 Pθ0(||VN(#θN) − V (θ0)|| > ε) = o(N−a) and supθ0∈Θ0 Pθ0(#θN
/∈ B(θ0, δ/2)) = 1 − o(N−a). Note that λN(θ) = Pθ(||VN(#θN) − V (θ)|| > ε) be-
cause the bootstrap distribution of V ∗N(θ

∗
N) when the true parameter is θ is the

same as the original sample distribution of VN(#θN) when the true parameter is θ.
Hence, we know that supθ∈Θ1 |λN (θ)| = o(N−a) and, by Lemma 2, we conclude that
supθ0∈Θ0 Pθ0(P

∗#θN (||V ∗N (θ∗N )− V (#θN)|| > ε) > N−aε) = o(N−a).

2. The condition of Lemma 2 on #θN is an implication Lemma 5 below.
Lemma 3 Suppose Assumption 1 holds.
(a) Let m(·, θ0) be a matrix-valued function that satisÞes Eθ0m(!Wi, θ0) = 0 for all
i ≥ 1 and all θ0 ∈ Θ1 and supθ0∈Θ1,i≥1Eθ0 ||m(!Wi, θ0)||p <∞ for p > 2a and p ≥ 2.
Then, for all ε > 0,

sup
θ0∈Θ1

Pθ0(||N−1
N"
i=1

m(!Wi, θ0)|| > ε) = o(N−a).

(b) Let m(·, θ0) be a matrix-valued function that satisÞes supθ0∈Θ1,i≥1
Eθ0 ||m(!Wi, θ0)||p < ∞ for p > 2a and p ≥ 2. Then, there exists K < ∞ such
that

sup
θ0∈Θ1

Pθ0(||N−1
N"
i=1

m(!Wi, θ0)|| > K) = o(N−a).

(c) Suppose Assumptions 3(b) and 4 also hold. Then, for all ε > 0,

sup
θ0∈Θ1

Pθ0(||N−1/2
N"
i=1

(f(!Wi, θ0)−Eθ0f(!Wi, θ0))|| > ln(N)ε) = o(N−a).
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Lemma 4 Suppose Assumptions 1�3 hold. Let θN denote an estimator that satis-
Þes: For all ε > 0, supθ0∈Θ1 Pθ0(||θN − θ0|| > ε) = o(N−a). Then, for all ε > 0 and
some K <∞,

sup
θ0∈Θ1

Pθ0(||VN(θN)− V (θ0)|| > ε) = o(N−a),

sup
θ0∈Θ1

Pθ0(||DN(θN )−D(θ0)|| > ε) = o(N−a),

sup
θ0∈Θ1

Pθ0(||
∂3

∂θ3
ρN(θN )|| > K) = o(N−a), and

sup
θ0∈Θ1

Pθ0(||N−1
N"
i=1

g(!Wi, θN)|| > ε) = o(N−a).

Lemma 5 Suppose Assumptions 1�4 hold. Then, for all ε > 0,

sup
θ0∈Θ1

Pθ0

.
N1/2||#θN − θ0|| > ln(N)ε+ = o(N−a).

Lemma 6 Suppose Assumption 1 holds. Let {AN(θ0) : N ≥ 1} be a sequence of
LA × 1 random vectors with Edgeworth expansions for each θ0 ∈ Θ1 with coeffi-
cients of order O(1) and remainders of order o(N−a) both uniformly over θ0 ∈ Θ1.
(That is, there exist polynomials {πN,i(z, θ0) : i = 1, ..., 2a} in z whose coefficients
are O(1) uniformly over θ0 ∈ Θ1 such that supθ0∈Θ1 supB∈BLA |Pθ0(AN (θ0) ∈ B)

− /B(1+&2a
i=1N

−i/2πN,i(z, θ0))φΩ(z)dz| = o(N−a), where φΩ(z) is the density func-
tion of a N(0,Ω) random variable, Ω is nonsingular, and BLA denotes the class of
all convex sets in RLA.) Let {ξN(θ0) : N ≥ 1} be a sequence of random vectors with
supθ0∈Θ1 Pθ0(||ξN(θ0)|| > ϑN) = o(N−a) for some constants ϑN = o(N−a), where
ξN(θ0) ∈ RLA . Then,

sup
θ0∈Θ1

sup
B∈BLA

|Pθ0(AN (θ0) + ξN(θ0) ∈ B)− Pθ0(AN (θ0) ∈ B)| = o(N−a).

Let SN(θ) = N−1&N
i=1 f(

!Wi, θ) and S∗N (θ) = N
−1&N

i=1 f(
!W ∗
i , θ).

Lemma 7 Suppose Assumptions 1�4 hold. Let ∆N(θ0) denote N1/2(#θN − θ0),
TN(θ0,r), or HN(#θN ,β0), where θ0 = (β"0, δ"0)". Let L denote the dimension of ∆N(θ0).
For each deÞnition of ∆N(θ0), there is an inÞnitely differentiable function G(·) that
does not depend on θ0 that satisÞes G(Eθ0SN(θ0)) = 0 for all N large and all θ0 ∈ Θ1
and

sup
θ0∈Θ1

sup
B∈BL

|Pθ0(∆N(θ0) ∈ B)− Pθ0(N1/2G(SN(θ0)) ∈ B)| = o(N−a).

20



We now deÞne the components of the Edgeworth expansions of TN(θ0,r) and
WN(β0), as well as their bootstrap analogues T

∗
N (
#θN,r) and W∗

N (
#βN). Let ΨN(θ0)

= N1/2(SN(θ0)− Eθ0SN(θ0)). Let ΨN,j(θ0) denote the j-th element of ΨN(θ0). Let
νN,a(θ0) denote a vector of moments of the form Nα(m)Eθ0

0m
µ=1ΨN,jµ(θ0), where

2 ≤ m ≤ 2a + 2, α(m) = 0 if m is even, and α(m) = 1/2 if m is odd. Let
πTi(δ, νN,a(θ0)) be a polynomial in δ = ∂/∂z whose coefficients are continuous func-
tions of νN,a(θ0) and for which πTi(δ, νN,a(θ0))Φ(z) is an even function of z when i is
odd and is an odd function of z when i is even for i = 1, ..., 2a. The Edgeworth expan-
sion of TN(θ0,r) depends on πTi(δ, νN,a(θ0)). In contrast, the Edgeworth expansion of
WN(β0) depends on πWi(y, νN,a(θ0)), where πWi(y, νN,a(θ0)) denotes a polynomial
function of y whose coefficients are continuous functions of νN,a(θ0) for i = 1, ..., [a].
The Edgeworth expansions of T ∗N(#θN,r) andW∗

N(
#βN) depend on πTi(δ, νN,a(#θN)) and

πWi(y, νW,N,a(#θN)) respectively.
Let Φ(·) denote the distribution function of a standard normal random variable.

Let χ2λ denote a chi-square random variable with λ degrees of freedom. Let θ0,r
denote the r-th element of θ0.

Lemma 8 Suppose Assumptions 1�4 hold. Then, for all ε > 0,

sup
θ0∈Θ1

Pθ0(N
1/2||νN,a(#θN)− νN,a(θ0)|| > ln(N)ε) = o(N−a).

Lemma 9 Suppose Assumptions 1�4 hold.
(a) Then,

sup
θ0∈Θ1

sup
z∈R

|Pθ0(TN(θ0,r) ≤ z)

−[1 +
2a"
i=1

N−i/2πTi(δ, νN,a(θ0))]Φ(z)| = o(N−a) and

sup
θ0∈Θ1

sup
z∈R

|Pθ0(WN(β0) ≤ z)

−
1 z

−∞
d[1 +

[a]"
i=1

N−iπWi(y, νN,a(θ0))]P (χ2LH ≤ y)| = o(N−a).

(b) Then, for all ε > 0,

sup
θ0∈Θ1

Pθ0

$
sup
z∈R

|P ∗#θN (T ∗N(#θN,r) ≤ z)
−[1 +

2a"
i=1

N−i/2πTi(δ, νN,a(#θN))]Φ(z)| > N−aε

2
= o(N−a) and

sup
θ0∈Θ1

Pθ0

$
sup
z∈R

|P ∗#θN (W∗
N(
#βN ) ≤ z)

−
1 z

−∞
d[1 +

[a]"
i=1

N−iπWi(y, νN,a(#θN))]P (χ2LH ≤ y)| > N−aε

 = o(N−a).
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Comments. 1. The terms in the Edgeworth expansions for the Wald statistic only
involve integer powers of N−1, not powers N−1/2, N−3/2, etc. as in the Edgeworth
expansions for the t statistic, due to a symmetry property of the expansions.

2. The conditions on q1 and d in Assumption 3 are not needed in all of the
Lemmas above. In particular, Lemmas 4 and 5 only use q1 ≥ max{2a + 1, 2} and
d = 3.

8.2 Proofs of Theorems

8.2.1 Proof of Theorem 1

We establish part (c) Þrst. Note that Pθ0(θ0,r ∈ CIUP ) = Pθ0(TN(θ0,r) ≤ z∗T,α).
We show that the latter equals 1− α+ o(N−2) uniformly over θ0 ∈ Θ0. By Lemma
9(b), Lemma 8, and Lemma 9(a), respectively, each with a = 1, we have: for all
ε > 0,

sup
θ0∈Θ0

Pθ0

$
sup
z∈R

|P ∗#θN (T ∗N(#θN,r) ≤ z)
−[1 +

2"
i=1

N−i/2πTi(δ, νN,1(#θN))]Φ(z)| > N−1
2
= o(N−1),

sup
θ0∈Θ0

Pθ0

$
sup
z∈R

|[πTi(δ, νN,1(#θN ))
−πTi(δ, νN,1(θ0))]Φ(z)| > N−1/2 ln(N)ε

+
= o(N−1) for i = 1, 2, and

sup
θ0∈Θ0

sup
z∈R

|Pθ0(TN(θ0,r) ≤ z)− [1 +
2"
i=1

N−i/2πTi(δ, νN,1(θ0))]Φ(z)| = o(N−1). (8.1)

The results of (8.1) combine to give

sup
θ0∈Θ0

Pθ0(sup
z∈R

|P ∗#θN (T ∗N(#θN,r) ≤ z)− Pθ0(TN(θ0,r) ≤ z)| > N−1 ln(N)ε) = o(N−1).

(8.2)
Let FT (·) denote the distribution function of TN(θ0,r) when θ0 is the true para-

meter. Taking z = z∗T,α in (8.2) yields

sup
θ0∈Θ0

Pθ0(|1− α− FT (z∗T,α)| > N−1 ln(N)ε) = o(N−1). (8.3)

Using (8.3), we have: for all ε > 0,

supθ0∈Θ0 Pθ0(TN (θ0,r) ≤ z∗T,α)
≤ supθ0∈Θ0 Pθ0

.
FT (TN(θ0,r)) ≤ FT (z∗T,α), |1− α− FT (z∗T,α)| ≤ N−1 ln(N)ε

+
+supθ0∈Θ0 Pθ0

.
FT (TN(θ0,r)) ≤ FT (z∗T,α), |1− α− FT (z∗T,α)| > N−1 ln(N)ε

+
≤ supθ0∈Θ0 Pθ0

5
FT (TN(θ0,r)) ≤ 1− α+N−1 ln(N)ε

6
+ o(N−1)

≤ 1− α+N−1 ln(N)ε+ o(N−1),
(8.4)
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where the last inequality holds because FT (TN(θ0,r)) has a uniform (0, 1) distribution.
(If TN(θ0,r) is not absolutely continuous, then the Edgeworth expansion for TN(θ0,r)
in (8.1) is used to obtain the last inequality.) Equation (8.4) also holds with supθ∈Θ0
replaced by infθ∈Θ0 throughout, with the three inequalities (outside the probabilities)
reversed, and with �+N−1 ln(N)ε� replaced by �−N−1 ln(N)ε.� This establishes that
Pθ0(TN (θ0,r) ≤ z∗T,α) = 1 − α + o(N−1 ln(N)) uniformly over θ0 ∈ Θ0, and so, part
(a) of the Theorem holds.

The proof of part (b) is analogous to that for part (c). The proof for part (d) is also
analogous to that of part (c), but using the Wald statistic results of Lemmas 8 and
9, rather than the t statistic results, and with these Lemmas applied with a = 3/2
rather than a = 1. In part (d) the coverage probability error is o(N−3/2 ln(N)),
rather than o(N−1 ln(N)) (which is the error in part (c)), because the Þrst terms in
the Edgeworth expansions for the Wald statistic in Lemma 9 are O(N−1), whereas
those for the t statistic are O(N−1/2).

Next, we prove part (a). Note that Pθ0(θ0 ∈ CISYM) = Pθ0(|TN (θ0,r)| ≤ z∗|T |,α).
We show that the latter is o(N−1 ln(N)) uniformly over θ0 ∈ Θ0.

By Lemma 7 with a = 2, it suffices to establish the result with TN (θ0,r) and
T ∗N(#θN,r) replaced by N1/2G(SN(θ0)) and N1/2G(S∗N(#θN)) respectively. Part (a)
now can be established using methods developed for �smooth functions of sample
averages,� as in Hall (1988, 1992). DeÞne z|G|,α by Pθ0(|N1/2G(SN(θ0))| ≤ z|G|,α) =
1− α and let ∆ = z|G|,α − z∗|T |,α. The idea of the proof is to show that

Pθ0(N
1/2G(SN(θ0)) +∆ ≤ z|G|,α) = 1− α/2 +N−3/2r1(z|G|,α)φ(z|G|,α) +O(N−2)

and

Pθ0(N
1/2G(SN(θ0))−∆ ≤ −z|G|,α) = α/2−N−3/2r1(−z|G|,α)φ(−z|G|,α) +O(N−2),

(8.5)

uniformly over θ0 ∈ Θ0, where r1(x) is a constant times x and φ(·) denotes the
standard normal density function, as in of Hall (1988). Then,

Pθ0(|TN(θ0,r)| ≤ z∗|T |,α) = Pθ0(|N1/2G(SN(θ0))| ≤ z∗|T |,α) +O(N−2)

= 1− α+N−3/2r1(z|G|,α)φ(z|G|,α)

+N−3/2r1(−z|G|,α)φ(−z|G|,α) +O(N−2)

= 1− α+O(N−2), (8.6)

uniformly over θ0 ∈ Θ0, using the fact that r1(x) is an odd function and φ(·) is an even
function. The results of (8.5) are established by the same argument as used to prove
(3.2) of Hall (1988), where his T corresponds to our N1/2G(SN(θ0)). (More details
of this argument can be found in Hall (1992, Pf. of Thm. 5.3), which considers one-
sided conÞdence intervals, but can be extended to symmetric two-sided conÞdence
intervals.) This argument relies on Edgeworth expansions of N1/2G(SN(θ0)) and
N1/2G(S∗N(#θN )):
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sup
θ0∈Θ0

sup
z∈R

(((Pθ0(|N1/2G(SN(θ0))| ≤ z)

−[1 +N−1π2(δ, νN,2(θ0)) +N−2π4(δ, νN,2(θ0))](Φ(z)−Φ(−z))
((

= o(N−2) and

sup
θ0∈Θ0

Pθ0

$
sup
z∈R

(((P ∗#θN (|N1/2G(S∗N(#θN))| ≤ z)− [1 +N−1π2(δ, νN,2(#θN))
+N−2π4(δ, νN,2(#θN))](Φ(z)−Φ(−z))((( > N−2

+
= o(N−2), (8.7)

which hold by Lemma 9 with a = 2 and with TN(θ0,r) and T ∗N(#θN,r) replaced by
N1/2G(SN(θ0)) andN1/2G(S∗N (#θN)), respectively. The former replacements are valid
by the proof of Lemma 9. !

8.2.2 Proof of Theorem 2

DeÞne #θN,k, QN,j−1, TN,k(θ0,r), and WN,k(β0) just as θ
∗
N,k, Q

∗
N,j−1, T

∗
N,k(

#θN,r),
and W∗

N,k(
#βN) are deÞned but with the bootstrap sample {!W ∗

i : i = 1, 2, ...,N}
replaced by the original sample {!Wi : i = 1, 2, ..., N} and with the initial estimator#θN,0 used to generate #θN,k given by the true parameter θ0. To establish part (a) of
the Theorem, we apply Lemma 2 three times with

λN(θ0) = P ∗θ0(||θ∗N,k − θ∗N || > µN,k) = Pθ0(||#θN,k − #θN || > µN,k),
λN(θ0) = P ∗θ0(|T ∗N,k(θ0,r)− T ∗N(θ0,r)| > N1/2µN,k)

= Pθ0(|TN,k(θ0,r)− TN(θ0,r)| > N1/2µN,k), and

λN(θ0) = P ∗θ0(|W∗
N,k(β0)−W∗

N(β0)| > N1/2µN,k)

= Pθ0(|WN,k(β0)−WN(β0)| > N1/2µN,k). (8.8)

The condition of Lemma 2 on #θN is established in Lemma 5. In consequence, to
establish part (a) of the Theorem, it suffices to show that

sup
θ0∈Θ1

Pθ0(||#θN,k − #θN || > µN,k) = o(N−a),

sup
θ0∈Θ1

Pθ0(|TN,k(θ0,r)− TN(θ0,r)| > N1/2µN,k) = o(N−a), and

sup
θ0∈Θ1

Pθ0(|WN,k(β0)−WN(β0)| > N1/2µN,k) = o(N−a). (8.9)

We establish the Þrst result of (8.9) Þrst. A Taylor expansion about #θN,k−1 gives
0 =

∂

∂θ
ρN(#θN )
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=
∂

∂θ
ρN(

#θN,k−1) + ∂2

∂θ∂θ"
ρN(

#θN,k−1)(#θN − #θN,k−1) +RN,k
=

∂

∂θ
ρN(

#θN,k−1) +QN,k−1(#θN,k − #θN,k−1) +QN,k−1(#θN − #θN,k)
+(

∂2

∂θ∂θ"
ρN(

#θN,k−1)−QN,k−1)(#θN − #θN,k−1) +RN,k
= QN,k−1(#θN − #θN,k) + ( ∂2

∂θ∂θ"
ρN(

#θN,k−1)−QN,k−1)(#θN − #θN,k−1) +RN,k,
where

RN,k =

,
(#θN − #θN,k−1)" ∂3

∂θu∂θ∂θ
"ρN(θ

+
N,k−1,u)(#θN − #θN,k−1)/2-

Lθ

, (8.10)

[ξu]Lθ denotes an Lθ vector whose u-th element is ξr, θ
+
N,k−1,u lies between #θN and#θN,k−1, the Þrst equality holds except with supremum Pθ0-probability over θ0 ∈ Θ1

equal to o(N−a) by Lemma 5, and the fourth equality holds because (∂/∂θ)ρN(#θN,k−1)
+ QN,k−1 (#θN,k − #θN,k−1) = 0 by the deÞnition of #θN,k. Rearranging (8.10) yields

||#θN,k − #θN ||
≤ ||(QN,k−1)−1RN,k||+ ||(QN,k−1)−1( ∂2

∂θ∂θ"
ρN(

#θN,k−1)−QN,k−1)(#θN,k−1 − #θN)||
≤ ζN (||#θN,k−1 − #θN ||2 + ψN ||#θN,k−1 − #θN ||), where

ζN = max
j=1,...,k

{||(QN,j−1)−1)|| ·
Lθ"
u=1

|| ∂3

∂θu∂θ∂θ
"ρN(θ

+
N,j−1,u)/2||

+||(QN,j−1)−1)|| · 'ψN || ∂2∂θ∂θ"
ρN(

#θN,j−1)−QN,j−1||+ 1}, (8.11)

'ψN = ψ−1N if ψN > 0 and 'ψN = 0 if ψN = 0. Repeated substitution into the right-
hand side of the inequality gives an upper bound that is a Þnite sum of terms with
dominant terms of the form:

CζφN ||#θN,0 − #θN ||2k−jψjN for j = 0, ..., k, (8.12)

where φ is a positive integer and #θN,0 = θ0 when the true parameter is θ0. To see
this, consider the solution in terms of x0 of the equation xk = x2k−1 + λxk−1. Collect
all terms in powers of λ that are multiplied by the smallest number of x0 terms.

An upper bound on the right�hand side of the inequality in (8.11) is

CζφN max
j=0,...,k

(γN )
2k−jN−2k−j−1 ln2

k−j
(N)ψjN , where γN = N

1/2||#θN,0 − #θN || ln−1(N).
(8.13)

For all ε > 0, supθ0∈Θ1 Pθ0(γN > ε) = o(N−a) by Lemma 5 because #θN,0 = θ0. In
addition, by Lemma 4 and Assumptions 3(a) and 5, there exists a Þnite constant
K such that supθ0∈Θ1 Pθ0(ζN > K) = o(N−a). Assumption 5 applies here because
P ∗θ0(||Q∗N,j−1−D∗N(θ∗N,j−1)|| > ψN) = Pθ0(||QN,j−1− (∂2/∂θ∂θ")ρN(#θN,j−1)|| > ψN).
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Combining these results with (8.11) and (8.13) gives:

sup
θ0∈Θ1

Pθ0

$
||#θN,k − #θN || > max

j=0,...,k
N−2k−j−1 ln2

k−j
(N)ψjN

%
≤ sup

θ0∈Θ1
Pθ0(Cζ

φ
NλN > 1)

= sup
θ0∈Θ1

Pθ0(CK
φε > 1) + o(N−a)

= o(N−a), (8.14)

where the last equality holds for ε > 0 sufficiently small. Hence, the Þrst result of
part (a) of the Theorem holds.

Next, we establish the second result of part (a) of the Theorem. Let Σr denote
(ΣN)rr. Let Σk,r denote Σr with #θN replaced by #θN,k in all parts of its deÞnition in
(2.6). We use the following:

|TN,k(θ0,r)− TN(θ0,r)| ≤ N1/2||#θN,k − #θN ||/Σ1/2k,r
+N1/2||#θN − θ0|| · |Σ1/2k,r −Σ1/2r |/(Σk,rΣr)1/2. (8.15)

By (8.13), the second result of part (a) is implied by the Þrst result plus the following:
There exists a K <∞ and a δ > 0 such that

sup
θ0∈Θ1

Pθ0(|Σ1/2k,r −Σ1/2r | > µN,k) = o(N−a), (8.16)

sup
θ0∈Θ1

Pθ0(||#θN − θ0|| > K) = o(N−a), (8.17)

sup
θ0∈Θ1

Pθ0(Σk,r < δ) = o(N−a), and (8.18)

sup
θ0∈Θ1

Pθ0(Σr < δ) = o(N−a). (8.19)

Equation (8.17) holds by Lemma 5. Equations (8.18) and (8.19) hold by Lemma 5,
the Þrst result (8.9), and the Þrst and/or second results of Lemma 4.

Equation (8.16) is implied by (8.18), (8.19), and

sup
θ0∈Θ1

Pθ0(|Σk,r −Σr| > µN,k) = o(N−a) (8.20)

by a mean value expansion. Equation (8.20) is implied by

sup
θ0∈Θ1

Pθ0(||DN(#θN,k)−DN(#θN)|| > µn,k) = o(N
−a) and/or

sup
θ0∈Θ1

Pθ0(||VN (#θN,k)− VN(#θN)|| > µn,k) = o(N
−a). (8.21)

These results hold by mean value expansions, Lemma 3(b) with m(!Wi, θ0) = supθ∈Θ2
||(∂2/∂θu∂θ")g(!Wi, θ)|| and m(!Wi, θ0) = supθ∈Θ2 ||(∂/∂θu)(g(!Wi, θ)g(!Wi, θ)

")|| for
u = 1, ..., Lθ, Lemma 5, the Þrst result of (8.9), and Assumption 3.
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We now prove the third result of part (a). Let HN = HN (#θN) and HN,k
= HN(#θN,k). We have

|WN,k(β0)−WN(β0)| = |(HN,k −HN)"HN,k +H "
N (HN,k −HN)|

≤ ||HN,k −HN ||(||HN,k||+ ||HN ||). (8.22)

Hence, it suffices to show that

sup
θ0∈Θ1

Pθ0(||HN,k −HN || > N1/2µN,k) = o(N
−a) and

sup
θ0∈Θ1

Pθ0(||HN || > M) = o(N−a) for some M <∞. (8.23)

The second result of (8.23) holds by Lemma 9(a) because ||HN ||2 = WN(β0). The
Þrst result of (8.23) is implied by the matrix version of (8.20) and the Þrst result of
(8.9).

To establish part (b) of the Theorem, we apply Lemma 2 three times with

λN(θ0) = sup
z∈RLθ

(((P ∗θ0(N1/2(θ∗N,k − θ0) ≤ z)− P ∗θ0(N1/2(θ∗N − θ0) ≤ z)
(((

= sup
z∈RLθ

(((Pθ0(N1/2(#θN,k − θ0) ≤ z)− Pθ0(N1/2(#θN − θ0) ≤ z)((( , (8.24)
etc. In consequence, it suffices to show that

sup
θ0∈Θ1

sup
z∈RLθ

(((Pθ0(N1/2(#θN,k − θ0) ≤ z)− Pθ0(N1/2(#θN − θ0) ≤ z)((( = o(N−a),

sup
θ0∈Θ1

sup
z∈R

|Pθ0(TN,k(θ0,r) ≤ z)− Pθ0(TN(θ0,r) ≤ z)| = o(N−a), and

sup
θ0∈Θ1

sup
z∈R

|Pθ0(WN,k(β0) ≤ z)− Pθ0(WN(β0) ≤ z)| = o(N−a). (8.25)

We apply Lemma 6 three times with ϑN = N1/2µN,k and with (AN(θ0), ξN(θ0))

equal to (N1/2(#θN − θ0), N1/2(#θN,k − #θN)), (TN(θ0,r), TN,k(θ0,r) − TN(θ0,r)), and
(HN(#θN), HN(#θN,k)−HN (#θN)). In the third application, we consider the convex sets
Bz = {x ∈ RLβ : x"x ≤ z} and use the fact that WN,k = HN(#θN,k)"HN(#θN,k). By the
assumption that µN,k = o(N

−(a+1/2)), we have ϑN = o(N−a), as required by Lemma
6. The condition of Lemma 6 on ξN(θ0) holds by (8.9). As required by Lemma 6,
the random vector TN (θ0,r) has an Edgeworth expansion with remainder o(N−a) by
Lemma 9(a). The same is true for Σ−1/2N−1/2(#θN−θ0) and HN (#θN) by an argument
analogous to that used to prove Lemma 9(a). !

8.2.3 Proof of Theorem 3

The proof of Theorem 3 is the same as that of Theorem 1 except that the results of
Theorem 2(b) allow one to replace T ∗N (#θN,r), z∗T,α, and z∗|T |,α by T ∗N,k(#θN,r), z∗T,k,α, and
z∗|T |,k,α throughout. In particular, the results of Theorem 2(b) allow one to replace

T ∗N(#θN,r) by T ∗N,k(#θN,r) in the Þrst line of (8.1) and the replacements elsewhere all
follow. !
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8.3 Proofs of Lemmas

8.3.1 Proof of Lemma 1

The NR result of the Lemma holds by deÞnition of QNR,∗N,j−1.
To prove the other results of the Lemma, let QN,j−1, QsN,j−1 for s = NR,D,LS,

and GN, and #θN,j for j = 1, ..., k be deÞned as Q∗N,j−1, Q∗,sN,j−1, and θ∗N,j are deÞned,
respectively, but with the bootstrap sample {!W ∗

i : i = 1, ...,N} and estimator θ∗N
replaced by the original sample {!Wi : i = 1, ...,N} and estimator #θN and with the
initial value #θN,0 replaced by the true parameter value θ0. Then,
P ∗θ0(||Q∗N,j−1 −D∗N(θ∗N,j−1)|| > ψN) = Pθ0(||QN,j−1 −DN (#θN,j−1)|| > ψN). (8.26)

Hence, it suffices to show that the following holds for QN,j−1 = QsN,j−1 for s = D,LS,
and GN :

sup
θ0∈Θ1

Pθ0(||QN,j−1 −DN(#θN,j−1)|| > ψN) = o(N−a). (8.27)

We now establish (8.27) for the default NR matrix. Let #θN,j denote the NR j-step
estimator for j = 1, ..., k. Equation (8.27) holds with QN,j−1 = QDN,j−1 if

sup
θ0∈Θ1

Pθ0(ρN (
#θN,j)− ρN(#θN,j−1) > 0) = o(N−a) (8.28)

for all j = 1, ..., k, because this implies that supθ0∈Θ1 Pθ0(Q
D
N,j−1 '= QNRN,j−1 for some

j = 1, ..., k) = o(N−a) and, by deÞnition, QNRN,j−1 = DN(#θN,j−1).When #θN,j '= #θN,j−1,
a Taylor expansion of ρN(#θN,j) about #θN,j−1 gives

ρN(
#θN,j)− ρN(#θN,j−1)

=
∂

∂θ"
ρN(

#θN,j−1)ζN,jφN,j + 12ζ "N,j ∂2

∂θ∂θ"
ρN(

#θN,j−1)ζN,jφ2N,j + ΓN,jφ3N,j
= −1

2
ζ
#
N,j

∂2

∂θ∂θ"
ρN(

#θN,j−1)ζN,jφ2N,j + ΓN,jφ3N,j , where
ΓN,j =

1

6

Lθ"
u=1

ζN,j,uζ
#
N,j

∂3

∂θu∂θ∂θ
"ρN(θ

+
N,j−1)ζN,j,

ζN,j = (#θN,j − #θN,j−1)/||#θN,j − #θN,j−1||, φN,j = ||#θN,j − #θN,j−1||, (8.29)

ζN,j,u denotes the u-th element of ζN,j, and θ
+
N,j−1 lies between #θN,j and #θN,j−1. The

second equality holds by the deÞnition of #θN,j . Using (8.29), the left-hand side of
(8.28) is less than or equal to

sup
θ0∈Θ1

Pθ0

$
−λmin( ∂2

∂θ∂θ"
ρN(#θN,j−1))/2 + ΓN,jφN,j > 0% . (8.30)
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The expression in (8.30) is o(N−a), because

sup
θ0∈Θ1

Pθ0

$
λmin(

∂2

∂θ∂θ"
ρN (

#θN,j−1)) < λmin(D(θ0))/2% = o(N−a),

sup
θ0∈Θ1

Pθ0(|ΓN,j | > K) = o(N−a) for some K <∞, and

sup
θ0∈Θ1

Pθ0(φN,j > ε) = o(N
−a) for all ε > 0, (8.31)

where the Þrst result holds by the second result of Lemma 4 with θN = #θN,j−1 and
Assumption 3(c), the second holds by the third result of Lemma 4, and the third holds
by two applications of the Þrst result of (8.9) in the proof of part (a) of Theorem 2
for the NR estimator�one with k = j − 1 and one with k = j. This completes the
proof.

We now establish (8.27) for the line-search NR matrix. Let #θN,j be the NR j-step
estimator:#θN,j = #θN,j−1 − ϕN,j−1πN,j−1, where
ϕN,j−1 = ||(QNRN,j−1)−1

∂

∂θ
ρN(

#θN,j−1)|| and πN,j−1 = (QNRN,j−1)−1 ∂∂θρN(#θN,j−1)/ϕN,j−1.
(8.32)

Let

#θαN,j = #θN,j−1 − α(QNRN,j−1)−1 ∂∂θρN(#θN,j−1) = #θN,j + (1− α)ϕN,j−1πN,j−1. (8.33)

It suffices to show that

sup
θ0∈Θ1

Pθ0( inf
α∈A,α (=1

ρN(
#θαN,j)− ρN(#θN,j) < 0) = o(N−a) (8.34)

for all j = 1, ..., k, because this implies that supθ0∈Θ1 Pθ0(Q
LS
N,j−1 '= QNRN,j−1 for some

j = 1, ..., k) = o(N−a).
A Taylor expansion of ρN(#θαN,j) about #θN,j gives

ρN(
#θαN,j)− ρN(#θN,j) = (1− α)ϕN,j−1π#N,j−1 ∂∂θρN(#θN,j)

+
1

2
(1− α)2ϕ2N,j−1π

#
N,j−1

∂2

∂θ∂θ"
ρN(

#θN,j)πN,j−1
+
1

6
(1− α)3ϕ3N,j−1

Lθ"
u=1

πN,j−1,uπ
#
N,j−1

∂3

∂θu∂θ∂θ
"ρN(θ

+
N,j)πN,j−1, (8.35)

where θ+N,j lies between #θαN,j and #θN,j and πN,j−1,u denotes the u-th element of πN,j−1.
Element by element Taylor expansions of (∂/∂θ)ρN (#θN,j) about #θN,j−1 give

∂

∂θ
ρN(

#θN,j) = ∂

∂θ
ρN(

#θN,j−1) + ∂2

∂θ∂θ"
ρN(

#θN,j−1)(#θN,j − #θN,j−1)
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+
1

2
[(#θN,j − #θN,j−1)" ∂3

∂θu∂θ∂θ
"ρN(θ

++
N,j−1,u)(#θN,j − #θN,j−1)]Lθ

= 0 +
1

2
ϕ2N,j−1[π

"
N,j−1

∂3

∂θu∂θ∂θ
"ρN(θ

++
N,j−1,u)πN,j−1]Lθ , (8.36)

where θ++N,j−1,u lies between #θN,j and #θN,j−1, [Au]Lθ denotes the Lθ-vector whose u-th
element is Au, and the second equality holds using the deÞnition of #θN,j.

The following properties hold: for all ε > 0,

sup
θ0∈Θ1

Pθ0(λmin(
∂2

∂θ∂θ"
ρN (

#θN,j−1)) < λmin(D(θ0))/2) = o(N−a),

sup
θ0∈Θ1

Pθ0(||
∂3

∂θ3
ρN (θ

++
N,j−1)|| > K) = o(N−a) for some K <∞, and

sup
θ0∈Θ1

Pθ0(ϕN,j > ε) = o(N
−a) for some ε > 0 (8.37)

for j = 1, ..., k, where the Þrst result of (8.37) holds by the second result of Lemma 4
with θN = #θN,j−1, Assumption 3(c), and the Þrst result of (8.9) of the proof of part
(a) of Theorem 2 (which ensures that supθ0∈Θ1 Pθ0(||#θN,j−1 − θ0|| > ε) = o(N−a)),
the second holds by the third result of Lemma 4 with θN = θ++N,j−1, and the third
holds by (i) the second result of Lemma 4 with θN = #θN,j−1 and Assumption 3(c)
(which ensure that (QNRN,j )

−1 is well-behaved) and (ii) the fourth result of Lemma 4
with θN = #θN,j−1. The second result of (8.37) also holds with θ++N,j−1 replaced by
θ+N,j−1.

Substituting (8.36) into the right-hand side of (8.35), dividing (8.35) by ϕ2N,j−1
(when ϕN,j−1 > 0), and applying (8.37) yields the resultant Þrst and third terms on
the right-hand side of (8.35) to have norm greater than ε > 0 with probability o(N−a)
and the second term to be strictly positive with probability 1 − o(N−a) (uniformly
over α ∈ A with α '= 1), which gives (8.34). This completes the proof.

Lastly, we establish (8.27) for the GN matrix. It suffices to show that

sup
θ0∈Θ1

Pθ0(||N−1
N"
i=1

(∆(!Wi,#θN,j−1)− ∂

∂θ"
g(!Wi,#θN,j−1))|| > N−1/2 ln(N)) = o(N−a).

(8.38)
By mean value expansions about θ0 and the triangle inequality,

||N−1
N"
i=1

(∆(!Wi,#θN,j−1)− ∂

∂θ"
g(!Wi,#θN,j−1))||

≤ ||N−1
N"
i=1

(∆(!Wi, θ0)− ∂

∂θ"
g(!Wi, θ0))||

+N−1
N"
i=1

sup
θ∈B(θ0,ε),u≤Lθ

|| ∂
∂θu

∆(!Wi, θ)− ∂2

∂θu∂θ
" g(!Wi, θ)|| · ||#θN,j−1 − θ0||.

(8.39)
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In addition, ||#θN,j−1 − θ0|| ≤ ||#θN,j−1 − #θN ||+ ||#θN − θ0||. Hence, it suffices to show
that

(i) sup
θ0∈Θ1

Pθ0

*
||N−1

N"
i=1

(∆(!Wi, θ0)− ∂

∂θ"
g(!Wi, θ0))|| > N−1/2 ln(N)

2
= o(N−a),

(ii) sup
θ0∈Θ1

Pθ0

*
N−1

N"
i=1

sup
θ∈B(θ0,ε),u≤Lθ

|| ∂
∂θu

∆(!Wi, θ)− ∂2

∂θu∂θ
" g(!Wi, θ)|| > K

2
= o(N−a),

(iii) sup
θ0∈Θ1

Pθ0

.
||#θN,j−1 − #θN || > N−1/2 ln(N)

+
= o(N−a), and

(iv) sup
θ0∈Θ1

Pθ0

.
||#θN − θ0|| > N−1/2 ln(N)

+
= o(N−a) (8.40)

for all j = 1, ..., k and some K < ∞. Condition (i) holds by Lemma 3(c), (ii) holds
by Lemma 3(b) with p = min{q1, q2}, (iv) holds by Lemma 5, (iii) holds for j = 1
because #θN,0 = #θN , and (iii) holds for j = 2, ..., k by recursively applying the Þrst
result of (8.9) in the proof of part (a) of Theorem 2 with k = j − 1, which holds
without assuming Assumption 5 by the present proof that the result of Assumption
5 holds for QN,i for i ≤ j − 1 under the assumptions. !

8.3.2 Proof of Lemma 2

We have

sup
θ0∈Θ0

Pθ0(|λN (#θN)| > N−aε)

≤ sup
θ0∈Θ0

Pθ0(|λN (#θN)| > N−aε,#θN ∈ B(θ0, δ/2)) + sup
θ0∈Θ0

Pθ0(
#θN /∈ B(θ0, δ/2))

≤ sup
θ0∈Θ0

Pθ0( sup
θ∈Θ1

|λN(θ)| > N−aε) + o(N−a)

= 1(o(N−a) > N−aε) + o(N−a)
= o(N−a), (8.41)

where the second inequality uses the fact that when #θN ∈ B(θ0, δ/2) and θ0 ∈ Θ0
one has #θN ∈ Θ1. !
8.3.3 Proof of Lemma 3

A strong mixing moment inequality of Yokoyama (1980) and Doukhan (1995, The-
orem 2 and Remark 2, pp. 25�30) gives supθ0∈Θ1 Eθ0 ||

&N
i=1m(

!Wi, θ0)||p < CNp/2

provided p ≥ 2. Application of Markov�s inequality and the Yokoyama�Doukhan in-
equality yields the left-hand side in part (a) of the Lemma to be less than or equal
to

ε−pN−p sup
θ0∈Θ1

Eθ0||
N"
i=1

m(!Wi, θ0)||p ≤ ε−pCN−p/2 = o(N−a). (8.42)
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Part (b) follows from part (a) applied to m(!Wi, θ0)− Eθ0m(!Wi, θ0) and the triangle
inequality.

To establish part (c), we use the Edgeworth expansion given in Theorem 2.3 of
Lahiri (1993) (also see Corollary 2.9 of Götze and Hipp (1983)) with their s = 2a+2.
Conditions 1 and 3�6 of Lahiri (1993) hold uniformly over θ0 ∈ Θ1 by Assumption
4. Their condition 2 holds uniformly over θ0 ∈ Θ1 by Assumption 3(b). Because the
result of the Lemma can be proved element by element, we consider an arbitrary ele-
ment fv(·, θ0) of f(·, θ0). Let Φ(·) denote the standard normal distribution function.
By the Edgeworth expansion, for each θ0 ∈ Θ1 there are homogeneous polynomials
πi(δ, θ0) in δ = ∂/∂z for i = 1, ..., 2a such that

sup
z∈R

|Pθ0(N−1/2
N"
i=1

(fv(!Wi, θ0)−Eθ0fv(!Wi, θ0)) ≤ z)

−(1 +
2a"
i=1

N−i/2πi(δ, θ0))Φ(z)|

= o(N−a). (8.43)

The error o(N−a) holds uniformly over θ0 ∈ Θ1 because Assumptions 3(b) and 4 hold
uniformly over θ0 ∈ Θ1. Equation (8.43) implies that for any constant zN

Pθ0(|N−1/2
N"
i=1

(fv(!Wi, θ0)−Eθ0fv(!Wi, θ0))| > zN )

= 1− (1 +
2a"
i=1

N−i/2πi(δ, θ0))(Φ(zN )−Φ(−zN)) + o(N−a)

= 2Φ(−zN )− (
2a"
i=1

N−i/2πi(δ, θ0))(Φ(zN )−Φ(−zN)) + o(N−a), (8.44)

where the error holds uniformly over θ0 ∈ Θ1. Let zN = ε ln(N). Using Φ(−z)
≤ C exp(−z2/2) for z > 1, we have

Φ(−zN) ≤ C exp(−ε2 ln2(N)/2) ≤ C exp(−(a+ 1) ln(N)) = CN−(a+1) = o(N−a),
(8.45)

where the second inequality holds for any given a ≥ 0 and ε > 0 for N sufficiently
large. The expression πi(δ, θ0)Φ(zN ) is a Þnite sum of terms of the form b(θ0)z

j
Nφ(zN)

for some integer j and some function b(θ0) that satisÞes supθ0∈Θ1 |b(θ0)| <∞ (which
holds by the uniform moment bound over θ0 ∈ Θ1 given in Assumption 3(b)), where
φ(·) denotes the standard normal density. By an analogous calculation to that in
(8.45), zjNφ(zN) = εj lnj(N)(2π)−1/2 exp(−ε2 ln2(N)/2) = o(N−a). This completes
the proof. !
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8.3.4 Proof of Lemma 4

The Þrst result of the Lemma follows from

sup
θ0∈Θ1

Pθ0(||VN (θN)− VN(θ0)|| > ε) = o(N−a), (8.46)

sup
θ0∈Θ1

Pθ0(||VN (θ0)−Eθ0VN(θ0)|| > ε) = o(N−a), and (8.47)

sup
θ0∈Θ1

|Eθ0VN (θ0)− V (θ0)| = o(1). (8.48)

To establish (8.46), we take mean value expansions about θ0, apply Lemma 3(b)
with m(!Wi, θ0) = supθ∈Θ2 ||g(!Wi, θ)|| · ||(∂/∂θ")g(!Wi, θ)|| and p = q1, where the sup
is over θ ∈ Θ2 because supθ0∈Θ1 Pθ0(θN /∈ Θ2) = o(N−a), and use the assumption
on θN . To establish (8.47), we use Lemma 3(a) with m(!Wi, θ0) = g(!Wi, θ0)g(!Wi, θ0)

"

−Eθ0g(!Wi, θ0)g(!Wi, θ0)" and p = q1. Equation (8.48) holds by Assumption 3(c).
The remaining results of the Lemma hold by mean value expansions about θ0,

multiple applications of Lemma 3(b) with m(!Wi, θ0) = (∂j/∂θj)g(!Wi, θ0) for j =
0, ..., 3, multiple applications of Lemma 3(a) with m(!Wi, θ0) = (∂j/∂θj) g(!Wi, θ0)

−Eθ0(∂j/∂θj) g(!Wi, θ0) for j = 0, 1 and p = q1, the assumption on θN , and Assump-
tion 3(c). !

8.3.5 Proof of Lemma 5

First, we show that for all ε > 0,

sup
θ0∈Θ1

Pθ0(sup
θ∈Θ

|N−1
N"
i=1

ρ(!Wi, θ)−Eθ0ρ(!Wi, θ)| > ε) = o(N−a). (8.49)

By Assumption 2(a), Θ is compact. Hence, for any η > 0, there exist points {θj ∈
Θ : 2 ≤ j ≤ J} such that ∪Jj=2B(θj, η) contains Θ (where B(θj, ε) denotes the open
ball centered at θj with radius ε). The left-hand side of (8.49) is less than or equal to

sup
θ0∈Θ1

Pθ0

*
max
2≤j≤J

sup
θ∈B(θj ,η)

*
|N−1

N"
i=1

[ρ(!Wi, θ)−Eθ0ρ(!Wi, θ)

−(ρ(!Wi, θj)−Eθ0ρ(!Wi, θj))]|+ |N−1
N"
i=1

ρ(!Wi, θj)−Eθ0ρ(!Wi, θj)|
2
> ε

2

≤ sup
θ0∈Θ1

Pθ0

*
max
2≤j≤J

sup
θ∈B(θj ,η)

N−1
N"
i=1

*
sup
θ∈Θ

||(∂/∂θ)ρ(!Wi, θ)||

+Eθ0 sup
θ∈Θ

||(∂/∂θ)ρ(!Wi, θ)||
2
||θ − θj|| > ε/2

2

+ sup
θ0∈Θ1

Pθ0

*
max
2≤j≤J

|N−1
N"
i=1

ρ(!Wi, θj)−Eθ0ρ(!Wi, θj)| > ε/2
2
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≤ sup
θ0∈Θ1

Pθ0

*
N−1

N"
i=1

*
sup
θ∈Θ

||(∂/∂θ)ρ(!Wi, θ)||+Eθ0 sup
θ∈Θ

||(∂/∂θ)ρ(!Wi, θ)||
2
η > ε/2

2

+
J"
j=2

sup
θ0∈Θ1

Pθ0

*
|N−1

N"
i=1

ρ(!Wi, θj)−Eθ0ρ(!Wi, θj)| > ε/2
2

= o(N−a), (8.50)

where the Þrst inequality uses mean value expansions and the equality holds using
Assumption 2(e) by Lemma 3(b) with p = q0 by taking η sufficiently small and by
Lemma 3(a) with p = q0.

Next, we prove that supθ0∈Θ1 Pθ0(||#θN − θ0|| > ε) = o(N−a). By Assumption
2(d), given ε > 0, there exists a δ > 0 such that ||θ − θ0|| > ε implies that ρ(θ, θ0)
−ρ(θ0, θ0) ≥ δ > 0. Thus,

sup
θ0∈Θ1

Pθ0(||#θN − θ0|| > ε) ≤ sup
θ0∈Θ1

Pθ0(ρ(
#θN , θ0)− ρN(#θN) + ρN(#θN )− ρ(θ0, θ0) > δ)

≤ sup
θ0∈Θ1

Pθ0(ρ(
#θN , θ0)− ρN(#θN) + ρN(θ0)− ρ(θ0, θ0) > δ)

≤ sup
θ0∈Θ1

Pθ0(2 sup
θ∈Θ

|ρN(θ)−Eθ0ρN(θ)|
+2 sup

θ∈Θ
|Eθ0ρN(θ)− ρ(θ, θ0)| > δ)

= o(N−a) (8.51)

using (8.49) and Assumption 2(c).
The result of (8.51) and the assumption that all θ0 ∈ Θ1 are in the interior of

Θ imply that infθ0∈Θ1 Pθ0(#θN is in the interior of Θ) = 1 − o(N−a) and infθ0∈Θ1
Pθ0((∂/∂θ)ρN (

#θN) = 0) = 1 − o(N−a). Hence, element by element mean value
expansions of (∂/∂θ)ρN (#θN) about θ0 and rearrangement give

sup
θ0∈Θ1

Pθ0

*#θN − θ0 = −$ ∂2

∂θ∂θ"
ρN(θ

+
N )

%−1
∂

∂θ
ρN(θ0)

2
= 1− o(N−a), (8.52)

where θ+N lies between #θN and θ0 and may differ across rows. In consequence, the
result of the Lemma follows from the second result of Lemma 4 with θN = θ+N and
supθ0∈Θ1 Pθ0(||N−1/2&N

i=1 g(
!Wi, θ0)|| > ln(N)ε) = o(N−a), which holds by Lemma

3(c) with m(!Wi, θ0) = g(!Wi, θ0) using the assumption that q1 ≥ 2a+ 3. !

8.3.6 Proof of Lemma 6

For any convex set B ⊂ RLA and any τ > 0, let B+τ = {x ∈ RLA : ||x− y|| ≤ τ
for some y ∈ B}. We have

sup
θ0∈Θ1,B∈BLA

(Pθ0(AN(θ0) + ξN(θ0) ∈ B)− Pθ0(AN (θ0) ∈ B))
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= sup
θ0∈Θ1,B∈BLA

(Pθ0(AN(θ0) + ξN(θ0) ∈ B, ||ξN(θ0)|| ≤ ϑN)− Pθ0(AN(θ0) ∈ B)

+Pθ0(AN(θ0) + ξN(θ0) ∈ B, ||ξN(θ0)|| > ϑN))
≤ sup

θ0∈Θ1,B∈BLA

.
Pθ0(AN(θ0) ∈ B+ϑN )− Pθ0(AN (θ0) ∈ B)

+
+ sup
θ0∈Θ1

Pθ0(||ξN (θ0)|| > ϑN). (8.53)

The second term on the right-hand side is o(N−a) by assumption. Under the assump-
tion that AN(θ0) has an Edgeworth expansion with remainder o(N−a) uniformly over
θ0 ∈ Θ1, the Þrst term on the right-hand side of (8.53) is less than or equal to

sup
θ0∈Θ1,B∈BLA

1
B+ϑN

(1 +

[2a]"
i=1

N−i/2πN,i(z, θ0))φ(z)dz

−
1
B
(1 +

[2a]"
i=1

N−i/2πN,i(z, θ0))φ(z)dz

+ o(N−a). (8.54)

The expression in (8.54) is O(ϑN) = o(N−a) because φ(z) and its derivatives of all
orders are bounded over z ∈ RLA and the polynomials {πN,i(z, θ0) : i = 1, ..., 2a}
have coefficients that are O(1) uniformly over θ0 ∈ Θ1. Hence, the left-hand side of
(8.53) is less than or equal to o(N−a).

Let B−τ = {x ∈ B : ||x−y|| ≥ τ for all y ∈ Bc}, where Bc denotes the complement
of B. We have

Pθ0(AN(θ0) + ξN(θ0) ∈ B, ||ξN(θ0)|| ≤ ϑN) ≥ Pθ0(AN ∈ B−ϑN ). (8.55)

Using this, an analogous argument to that of (8.53) and (8.54) shows that

sup
θ0∈Θ1,B∈BLA

(Pθ0(AN (θ0) ∈ B)− Pθ0(AN(θ0) + ξN(θ0) ∈ B)) ≤ o(N−a), (8.56)

which completes the proof. !

8.3.7 Proof of Lemma 7

Suppose ∆N(θ0) = N1/2(#θN − θ0). By Lemma 5 and Assumption 2(a), we have
infθ0∈Θ1 Pθ0(#θN is in the interior of Θ) = 1−o(N−a) and infθ0∈Θ1 Pθ0(∂/∂θ)ρN (#θN) =
0) = 1− o(N−a). Element by element Taylor expansions of (∂/∂θ)ρN(#θN) about θ0
of order d− 1 give

0 =
∂

∂θ
ρN(#θN) = ∂

∂θ
ρN(θ0) +

d−1"
j=1

1

j!
Dj

∂

∂θ
ρN(θ0)(#θN − θ0, ...,#θN − θ0) + ζN(θ0),

where

ζN (θ0) =
1

j!
(Dd−1

∂

∂θ
ρN (θ

+
N)−Dd−1

∂

∂θ
ρN(θ0))(

#θN − θ0, ...,#θN − θ0), (8.57)
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θ+N lies between #θN and θ0, and Dj(∂/∂θ)ρN(θ0)(#θN − θ0, ...,#θN − θ0) denotes
Dj(∂/∂θ)ρN (θ0) as a j-linear map, whose coefficients are partial derivatives of
(∂/∂θ)ρN(θ0) of order j, applied to the j-tuple (#θN − θ0, ...,#θN − θ0). Let RN (θ0) de-
note the column vector whose elements are the unique components of (∂/∂θ)ρN(θ0),
D1(∂/∂θ)ρN(θ0), ..., D

d−1(∂/∂θ)ρN(θ0). Each element of RN (θ0) is an element of
SN(θ0). Let eN(θ0) = (ζN(θ0)

", 0, ..., 0)" be conformable to RN (θ0). The Þrst equa-
tion in (8.57) can be written as ν(RN (θ0) + eN (θ0),#θN − θ0) = 0, where ν(·, ·)
is an inÞnitely differentiable function, ν(Eθ0RN (θ0), 0) = 0 for all N ≥ 1, and
(∂/∂x)ν(Eθ0RN(θ0), x)|x=0 = N−1&N

i=1Eθ0g(
!Wi, θ0)g(!Wi, θ0)

" is positive deÞnite
for N large by Assumption 3(c). Hence, the implicit function theorem can be applied
to ν(·, ·) at the point (Eθ0RN(θ0), 0) to obtain

inf
θ0∈Θ1

Pθ0(
#θN − θ0 = Λ(RN (θ0) + eN (θ0))) = 1− o(N−a), (8.58)

where Λ is a function that does not depend on N or θ0, is inÞnitely differentiable in
a neighborhood of Eθ0RN(θ0) for all N large and satisÞes Λ(Eθ0RN (θ0)) = 0.

We apply Lemma 6 with AN (θ0) = N1/2Λ(RN(θ0)) and ξN(θ0) = N
1/2(Λ(RN(θ0)

+eN(θ0))− Λ(RN(θ0))) to obtain
sup

θ0∈Θ1,B∈BLθ
|Pθ0(N1/2Λ(RN(θ0)+eN(θ0)) ∈ B)−Pθ0(N1/2Λ(RN(θ0)) ∈ B)| = o(N−a).

(8.59)
Lemma 6 applies because (i) Pθ0(||ξN(θ0)|| > ϑN ) ≤ Pθ0(CN1/2||eN(θ0)|| > ϑN ) by a
mean value expansion, (ii) ||eN (θ0)|| = ||ζN(θ0)||, (iii) ζN(θ0) satisÞes
infθ0∈Θ1 Pθ0(||ζN(θ0)|| ≤ C||#θN − θ0||d) = 1 − o(N−a), (iv) ϑN , which is deÞned to
equal N1/2−d/2 lnd(N), is o(N−a) because d ≥ 2a + 2 by Assumption 3(a),
(v) supθ0∈Θ1 Pθ0(N

1/2||eN(θ0)|| > ϑN) ≤ supθ0∈Θ1 Pθ0(CN
1/2||#θN − θ0||d > ϑN)

+o(N−a) = o(N−a) by Lemma 5, (vi) Λ(RN (θ0)) can be written as G(SN(θ0)),
where G(·) is inÞnitely differentiable and G(Eθ0SN(θ0)) = 0 for all N large and
(vii) AN(θ0) = N1/2Λ(RN(θ0)) = N

1/2G(SN(θ0)) has an Edgeworth expansion (with
remainder o(N−a) uniformly over θ0 ∈ Θ1) by the proof of Lemma 9 below.

Equations (8.58) and (8.59) and Λ(RN(θ0)) = G(SN(θ0)) yield the result of the
Lemma.

Each of the remaining forms of ∆N(θ0) (viz., TN(θ0,r) and HN (#θN ,β0)) is a
function of #θN . We take a Taylor expansion of ∆N(θ0)/N1/2 about #θN = θ0 to order
d− 1 to obtain

∆N(θ0) = N
1/2(Λ∗∗(SN(θ0),#θN − θ0) + ζ∗∗N (θ0)), (8.60)

where Λ∗∗ is an inÞnitely differentiable function that does not depend on θ0,
Λ∗∗(Eθ0SN(θ0), 0) = 0 for N large, ζ∗∗N (θ0) is the remainder term in the Taylor
expansion, and ||ζ∗∗N (θ0)|| = O(||#θN − θ0||d). Combining (8.58) with (8.60) gives
∆N(θ0) = N1/2(Λ∗∗(SN(θ0), Λ(RN(θ0) + eN (θ0))) +ζ∗∗N (θ0)). We apply Lemma 6
again, using the result above for ||ζ∗∗N (θ0)||, to obtain an analogue of (8.59) with
AN(θ0) = N1/2Λ∗∗(SN (θ0),Λ(RN(θ0))). We can write G(SN (θ0)) = Λ∗∗(SN(θ0),
Λ(RN (θ0))),whereG(·) is inÞnitely differentiable andG(Eθ0SN (θ0)) = Λ∗∗(Eθ0SN(θ0),
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Λ(Eθ0RN(θ0))) = Λ∗∗(Eθ0SN(θ0), 0) = 0 for all N large. Combining this, the ana-
logue of (8.59), and (8.60) gives the result of the Lemma for ∆N (θ0) equal to TN(θ0,r)
and HN (#θN ,β0). !
8.3.8 Proof of Lemma 8

We show below that for all θ0 ∈ Θ1 and all θ ∈ Θ2 such that ||θ− θ0|| < δ (where
δ is as in the deÞnition of Θ1),

|Nα(m)Eθ

m9
µ=1

ΨN,jµ −Nα(m)Eθ0

m9
µ=1

ΨN,jµ | ≤ BN ||θ − θ0||, (8.61)

where lim supN→∞BN < ∞. Let η > 0 satisfy η < ε/(L1/2ν lim supN→∞BN ), where
Lν denotes the dimension of νN,a(θ0). Then,

sup
θ0∈Θ1

Pθ0(N
1/2||νN,a(#θN )− νN,a(θ0)|| > ln(N)ε)

≤ sup
θ0∈Θ1

Pθ0(N
1/2||νN,a(#θN )− νN,a(θ0)|| > ln(N)ε, N1/2||#θN − θ0|| ≤ ln(N)η)

+ sup
θ0∈Θ1

Pθ0(N
1/2||#θN − θ0|| > ln(N)η)

≤ sup
θ0∈Θ1

Pθ0(L
1/2
ν BNN

1/2||#θN − θ0|| > ln(N)ε, N1/2||#θN − θ0|| ≤ ln(N)η) + o(N−a)

= o(N−a), (8.62)

where the second inequality uses (8.61) Lemma 5.
Under the assumptions, (8.61) holds provided: for all θ0 ∈ Θ1 and all θ ∈ Θ2 such

that ||θ − θ0|| < δ,

|Eθ
m9
µ=1

fjµ(!Wi, θ)−Eθ0
m9
µ=1

fjµ(!Wi, θ0)| ≤ B1,N ||θ − θ0||, (8.63)

for all m ≤ 2a + 2, all i ≥ 1, and all jµ ≤ Lf , where fjµ(!Wi, θ) denotes the jµ�th
element of f(!Wi, θ) and lim supN→∞B1,N <∞. The triangle inequality, a mean-value
expansion, and some calculations show that (8.63) holds if

sup
θ0∈Θ1,i≥1

Eθ0||Cjf (!Wi)f
2a+3−j
jµ

(!Wi, θ0)|| <∞ for all j = 0, ..., 2a+ 2 (8.64)

and for all elements jµ of f(!Wi, θ0). This holds if q1 ≥ 2a+ 3, as is assumed. !

8.3.9 Proof of Lemma 9

We establish the Þrst result of part (a) Þrst. By Lemma 7, it suffices to show
that the random variable N1/2G(SN(θ0)) of Lemma 7(a) possesses an Edgeworth
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expansion with remainder o(N−a) uniformly over θ0 ∈ Θ1. We obtain an Edge-
worth expansion for N1/2(SN(θ0) − Eθ0SN(θ0)) for each θ0 ∈ Θ1 via Theorem 2.1
of Lahiri (1993) (also see Corollary 2.9 of Götze and Hipp (1983)), as in the proof
of Lemma 3(c). The remainder is uniform in θ0 ∈ Θ1 because the conditions in As-
sumptions 3(b), 3(c), and 4 hold uniformly over θ0 ∈ Θ1. Edgeworth expansions for
N1/2G(SN(θ0)) are now obtained from those of N1/2(SN (θ0) − Eθ0SN (θ0)) by the
argument in Bhattacharya (1985, Pf. of Thm. 1) or Bhattacharya and Ghosh (1978,
Pf. of Thm. 2) using the smoothness of G(·), G(Eθ0SN (θ0)) = 0 for all N ≥ 1 and
all θ0 ∈ Θ1, and Assumption 3(c).

To establish the second result of part (a), we consider the convex sets Bz = {x ∈
RLβ : x"x ≤ z} for z ∈ R. By Lemma 7(a) with ∆N(θ0) = HN (#θN ,β0), we have

o(N−a) = sup
θ0∈Θ1

sup
z∈R

|Pθ0(HN(#θN ,β0) ∈ Bz)− Pθ0(N1/2G(SN(θ0)) ∈ Bz)|

= sup
θ0∈Θ1

sup
z∈R

|Pθ0(WN (β0) ≤ z)− Pθ0(NG(SN(θ0))"G(SN(θ0)) ≤ z)|.
(8.65)

Hence, it suffices to show that the second result of part (a) holds with WN(β0)
replaced by NG(SN(θ0))"G(SN(θ0)). By the same argument as in the previous para-
graph, N1/2G(SN (θ0)) has a multivariate Edgeworth expansion with remainder o(N−a)
uniform in θ0 ∈ Θ1, when N1/2G(SN (θ0)) corresponds to HN(#θN ,β0). This Edge-
worth expansion, coupled with Theorem 1 and Remark 2.2 of Chandra and Ghosh
(1979), yields an Edgeworth expansion forNG(SN(θ0))"G(SN(θ0)) equal to that given
for WN(β0) in the Lemma.

The Þrst result of part (b) follows from Lemma 2 with

λN (θ0) = sup
z∈R

|P ∗θ0(T ∗N(θ0,r) ≤ z)− [1 +
2a"
i=1

N−i/2πTi(δ, νN,a(θ0))]Φ(z)|

= sup
z∈R

|Pθ1(TN(θ0,r) ≤ z)− [1 +
2a"
i=1

N−i/2πTi(δ, νN,a(θ0))]Φ(z)|.

(8.66)

The Þrst condition of Lemma 2 holds by Lemma 5 and the second condition of Lemma
2 holds by part (a) of the present Lemma. The proof of the second result of part (b)
is analogous. !
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Footnotes
1 The author thanks Carol Copeland for proofreading the manuscript. The author

gratefully acknowledges the research support of the National Science Foundation via
grant number SBR-9730277.

2 This speciÞcation of the log likelihood does not utilize the Þrst κ observations
except as conditioning variables.

3 The r-th element of θ∗N is denoted (θ
∗
N)r, rather than θ

∗
N,r, to distinguish it from

the k-step bootstrap estimator, θ∗N,k deÞned in Section 6.
4 The latter results only require strong mixing coefficients that decline polynomi-

ally fast. In this case, it is useful to weaken the conditions on the mixing numbers
in Assumption 1(b) to

&∞
m=1(m+1)

λ/2−1αδ/(λ+δ)(m) <∞ for some λ > max{2a, 2}
and some δ > 0, where α(m) = supθ0∈Θ1 α(m, θ0). This weakening is possible be-
cause one can establish the results of Lemma 3(a) and (b) in the Appendix using the
given condition and results of Yokoyama (1980) and Doukhan (1995, Theorem 2 and
Remark 2, pp. 25�30).

5 Stationarity of an AR(2) process with AR parameters (ρ1, ρ2) requires that (i)
−1 < ρ2 < 1, (ii) ρ1 + ρ2 < 1, and (iii) ρ2 − ρ1 < 1. To ensure that the para-
metric bootstrap distribution of the AR(2) process is stationary, we adjust the LS
estimators (#ρ1,#ρ2) (only when generating bootstrap samples and not in the expres-
sions for the CIs given in (3.3) and (3.4)) so that they necessarily satisfy the sta-
tionarity conditions. In particular, the parametric bootstrap distribution is based
on the estimators ('ρ1,'ρ2), where 'ρ2 = sgn(#ρ2)min{|#ρ2|, .98} and 'ρ1 = 1(#ρ1 ≥
0)min{#ρ1, .98−'ρ2}+1(#ρ1 < 0)min{#ρ1,'ρ2− .98}. These alterations have no effect on
the asymptotic properties of the bootstrap CIs (for the true parameter values that
we consider) because 'ρ1 = #ρ1 and 'ρ2 = #ρ2 with probability that goes to one at a
sufficiently fast rate as N → ∞. In fact, these adjustments very rarely come into
play in the simulations and, hence, have no noticeable impact on the results.
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TABLE I
Coverage Probabilities etc. of Nominal 95% ConÞdence Intervals for the Cumulative
Impulse Response, 1/(1− α), for AR(2) Processes, N(0, 1) Errors, and N = 100

Type of Probability Probability Average
ConÞdence Coverage CI CI Length

(ρ1, ρ2) α Interval Probability Misses Left Misses Right of CI

(1.4, -.5) .9 Delta .802 .198 .000 11.4
Sym Boot .909 .091 .000 24.5
ET Boot .886 .058 .056 18.1

(.9, 0) .9 Delta .714 .286 .000 15.0
Sym Boot .876 .124 .000 50.3
ET Boot .847 .087 .067 34.8

(0, .9) .9 Delta .591 .409 .000 218
Sym Boot .822 .178 .000 4018
ET Boot .794 .131 .074 2599

(1.0, -.5) .5 Delta .920 .080 .001 1.11
Sym Boot .945 .055 .000 1.35
ET Boot .930 .033 .038 1.21

(.5, 0) .5 Delta .880 .121 .000 1.52
Sym Boot .929 .071 .000 2.19
ET Boot .915 .041 .045 1.81

(0, .5) .5 Delta .855 .145 .000 1.82
Sym Boot .921 .079 .000 2.99
ET Boot .905 .048 .046 2.36

(0, -.5) -.5 Delta .941 .053 .007 .215
Sym Boot .947 .050 .003 .223
ET Boot .937 .033 .030 .220

(-.5, 0) -.5 Delta .931 .067 .002 .301
Sym Boot .944 .057 .000 .336
ET Boot .933 .035 .033 .316

(-1.0, -.5) -1.5 Delta .947 .042 .011 .101
Sym Boot .949 .043 .008 .101
ET Boot .938 .031 .031 .101



TABLE II
Coverage Probabilities of Nominal 95% ConÞdence Intervals for α, ρ1, and ρ2 for

AR(2) Processes, N(0, 1) Errors, and N = 100

Type of Coverage Probability of
ConÞdence ConÞdence Interval for

(ρ1, ρ2) α Interval α ρ1 ρ2

(1.4, -.5) .9 Delta .926 .933 .945
Sym Boot .943 .947 .946
ET Boot .930 .946 .939

(.9, 0) .9 Delta .907 .930 .939
Sym Boot .934 .946 .944
ET Boot .920 .947 .936

(0, .9) .9 Delta .880 .908 .853
Sym Boot .918 .933 .916
ET Boot .907 .932 .912

(1.0, -.5) .5 Delta .943 .939 .950
Sym Boot .951 .946 .952
ET Boot .943 .946 .945

(.5, 0) .5 Delta .937 .937 .943
Sym Boot .948 .946 .948
ET Boot .938 .945 .943

(0, .5) .5 Delta .933 .934 .927
Sym Boot .944 .945 .944
ET Boot .934 .942 .937

(0, -.5) -.5 Delta .945 .942 .949
Sym Boot .948 .946 .951
ET Boot .945 .944 .945

(-.5, 0) -.5 Delta .942 .942 .944
Sym Boot .947 .947 .948
ET Boot .942 .944 .943

(-1.0, -.5) -1.5 Delta .945 .942 .949
Sym Boot .948 .947 .951
ET Boot .943 .944 .945



TABLE III
Coverage Probabilities of Nominal 95% ConÞdence Intervals for 1/(1− α), α, ρ1,

and ρ2 for AR(2) Processes, t-5 Errors, and N = 100

Type of Coverage Probabilities of Avg Length
ConÞdence ConÞdence Intervals for of CI for

(ρ1, ρ2) α Interval 1/(1− α) α ρ1 ρ2 1/(1− α)

(1.4, -.5) .9 Delta .805 .917 .941 .950 11.3
Sym Boot .910 .943 .951 .953 24.1
ET Boot .890 .932 .951 .945 17.8

(.9, 0) .9 Delta .713 .908 .934 .947 14.9
Sym Boot .874 .931 .950 .952 50.4
ET Boot .848 .920 .952 .946 34.9

(0, .9) .9 Delta .592 .879 .908 .850 328
Sym Boot .824 .916 .932 .913 6120
ET Boot .794 .906 .934 .917 3916

(1.0, -.5) .5 Delta .914 .943 .943 .953 1.10
Sym Boot .938 .950 .950 .954 1.34
ET Boot .934 .948 .948 .949 1.20

(.5, 0) .5 Delta .883 .939 .942 .948 1.51
Sym Boot .929 .947 .949 .954 2.17
ET Boot .920 .940 .948 .946 1.80

(0, .5) .5 Delta .854 .932 .941 .934 1.81
Sym Boot .922 .945 .949 .948 2.96
ET Boot .906 .936 .946 .943 2.34

(0, -.5) -.5 Delta .941 .948 .947 .954 .215
Sym Boot .946 .952 .951 .955 .223
ET Boot .940 .947 .950 .949 .219

(-.5, 0) -.5 Delta .932 .945 .944 .944 .300
Sym Boot .944 .949 .950 .950 .334
ET Boot .935 .946 .947 .947 .315

(-1.0, -.5) -1.5 Delta .949 .948 .948 .950 .100
Sym Boot .951 .951 .951 .952 .101
ET Boot .941 .946 .948 .946 .101



TABLE IV
Coverage Probabilities of Nominal 95% ConÞdence Intervals for 1/(1− α), α, ρ1,

and ρ2 for AR(2) Processes, χ
2-1 Errors, and N = 100

Type of Coverage Probabilities of Avg Length
ConÞdence ConÞdence Intervals for of CI for

(ρ1, ρ2) α Interval 1/(1− α) α ρ1 ρ2 1/(1− α)

(1.4, -.5) .9 Delta .814 .939 .952 .960 11.5
Sym Boot .925 .954 .962 .962 24.8
ET Boot .900 .941 .960 .957 18.3
Sym RB Boot .912 .945 .953 .955 23.1
ET RB Boot .889 .928 .949 .942 17.0

(.9, 0) .9 Delta .714 .918 .950 .949 53.8
Sym Boot .887 .944 .963 .955 522
ET Boot .862 .929 .958 .953 342
Sym RB Boot .870 .930 .954 .950 539
ET RB Boot .844 .916 .954 .948 344

(0, .9) .9 Delta .587 .884 .915 .860 205
Sym Boot .826 .923 .938 .924 3760
ET Boot .806 .917 .937 .923 2422
Sym RB Boot .812 .906 .929 .908 3619
ET RB Boot .788 .900 .928 .908 2340

(1.0, -.5) .5 Delta .933 .954 .956 .958 1.10
Sym Boot .954 .960 .963 .960 1.34
ET Boot .942 .954 .961 .955 1.20
Sym RB Boot .943 .954 .956 1.23
ET RB Boot .934 .947 .951 .947 1.12

(.5, 0) .5 Delta .900 .953 .954 .951 1.51
Sym Boot .952 .961 .961 .957 2.18
ET Boot .936 .953 .957 .947 1.81
Sym RB Boot .932 .952 .952 1.96
ET RB Boot .922 .940 .951 .944 1.65



TABLE IV (cont.)

Type of Coverage Probabilities of Avg Length
ConÞdence ConÞdence Intervals for of CI for

(ρ1, ρ2) α Interval 1/(1− α) α ρ1 ρ2 1/(1− α)

(0, .5) .5 Delta .866 .951 .947 .949 1.81
Sym Boot .941 .961 .957 .964 2.98
ET Boot .925 .948 .951 .950 2.35
Sym RB Boot .920 .949 .953 2.69
ET RB Boot .910 .936 .947 .941 2.14

(0, -.5) -.5 Delta .952 .956 .953 .952 .215
Sym Boot .959 .958 .957 .953 .224
ET Boot .947 .954 .956 .946 .220
Sym RB Boot .952 .952 .949 .214
ET RB Boot .945 .952 .951 .948 .211

(-.5, 0) -.5 Delta .949 .955 .956 .957 .300
Sym Boot .961 .960 .960 .962 .334
ET Boot .946 .954 .957 .954 .315
Sym RB Boot .952 .954 .953 .305
ET RB Boot .938 .946 .951 .948 .294

(-1.0, -.5) -1.5 Delta .955 .954 .952 .957 .100
Sym Boot .959 .956 .955 .959 .101
ET Boot .946 .951 .954 .954 .101
Sym RB Boot .951 .951 .953 .098
ET RB Boot .944 .949 .953 .948 .097



TABLE V
Coverage Probabilities for Nominal 95% ConÞdence Intervals for 1/(1− α), α, ρ1,

and ρ2 for AR(2) Processes with N = 50

Type of Coverage Probabilities of Avg Length
ConÞdence ConÞdence Intervals for of CI for

(ρ1, ρ2) α Interval 1/(1− α) α ρ1 ρ2 1/(1− α)

(1.4 , -.5) .9 Delta .702 .902 .919 .941 17.7
Sym Boot .874 .930 .947 .947 93.1
ET Boot .839 .917 .946 .933 63.3

(.9, 0) .9 Delta .576 .870 .913 .935 84.0
Sym Boot .811 .912 .943 .947 1647
ET Boot .783 .909 .943 .930 1089

(0, .9) .9 Delta .429 .827 .874 .790 13,355
Sym Boot .726 .889 .914 .890 495,905
ET Boot .714 .897 .918 .902 322,854

(1.0, -.5)∗ .5 Delta .894 .942 .933 .944 1.56
Sym Boot .937 .956 .948 .949 2.29
ET Boot .915 .944 .947 .939 2.21

(.5, 0)∗ .5 Delta .835 .930 .928 .942 2.08
Sym Boot .917 .948 .944 .954 3.87
ET Boot .892 .939 .946 .941 2.94

(0, .5) .5 Delta .787 .919 .924 .912 2.44
Sym Boot .898 .940 .944 .935 5.50
ET Boot .871 .924 .940 .926 4.01

(0, -.5) -.5 Delta .932 .942 .936 .945 .307
Sym Boot .938 .948 .946 .948 .340
ET Boot .925 .940 .944 .937 .322

(-.5, 0) -.5 Delta .907 .936 .935 .936 .422
Sym Boot .929 .945 .946 .946 .533
ET Boot .917 .938 .941 .936 .468

(-1.0, -.5)∗ -1.5 Delta .939 .940 .938 .944 .144
Sym Boot .940 .945 .948 .947 .148
ET Boot .923 .938 .943 .938 .146


