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1 Introduction

A hallmark development in time series econometrics during the last decade is the observation

that a linear combination of N individually non-stationary series can be stationary. A system of

variables with these properties is said to be cointegrated. The Granger Representation Theorem

of Engle and Granger (1987) establishes that if a N -vector time series Xt has Wold representation

∆Xt = C(L)et, then under cointegration, C(1) has rank k < N and ∆Xt has a vector error-

correction representation (VECM). A large body of work has been devoted to the determination

of k and efficient estimation of the parameters within the VECM framework under the assumption

that N is small.

An implication of cointegration is that a system with N variables only has k < N unit roots.

It follows that under cointegration, non-stationarity in the data is driven by common stochastic

trends. Idiosyncratic stochastic trends are possible only if there is no cointegration, in which case,

C(1) is full rank and ∆Xt is a VAR. The fact that a cointegrated system has common trends

also implies that Xt can be decomposed into k non-stationary (Tt) and r = N − k stationary (St)

components. Stock and Watson (1988) suggest a T-S decomposition in which Tt is a random walk,

while Gonzalo and Granger (1995) obtain a decomposition in which ∆Tt is serially correlated. Vahid

and Engle (1993) suggest a different decomposition that allows common cycles to be identified along

with the common trends. Nonetheless, the common stochastic trends are generally not regarded

as objects of interest. In part, this is because the non-uniqueness of the T-S decomposition makes

interpretation of the trends difficult. In part, this is also because under the small N assumption,

consistent estimation of the cointegration parameters does not imply consistent estimation of the

space spanned by the common trends. Hence even if the common trends can be given economic

interpretation, the statistical properties of the estimated common trends are not well understood.

The starting point of our analysis is first, that common trends and cycles can be consistently

estimated, and second, that cointegration restrictions are not necessary to identify these common

variations. The main appeal of stepping outside the cointegration framework is that it makes it

possible to decouple the issue of whether common factors exist from the issue of whether these

factors are stationary. Once the common factors are estimated, a common-idiosyncratic (I-C)

decomposition of the data follows. Our main contribution is to provide testing procedures to

determine whether non-stationarity in a panel of data is induced by common sources or if it is of

the idiosyncratic type. Because the common variations can be stationary or non-stationary, they

are referred to as common factors rather than common trends. Such an analysis is made possible

by use of large dimensional panels. Because N is large by assumption, pooling across units allows
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for consistent estimation of the common factors whether or not they are stationary. By virtue of

the fact that N is large, more information can also be used for analysis. This not only improves

statistical efficiency of the estimates, it also allows for identification of factors that are ’common’

in a more general sense.

We consider a factor analytic framework

Xit = ci + λ′iFt + eit

= ci + λT ′
i F T

t + λS′
i F s

t + eit

where Ft is a k× 1 vector of common factors, λi are the factor loadings, and eit is an idiosyncratic

error. The common factors can be non-stationary (F T
t ) or stationary (FS

T ). Thus, common factors

with different orders of integration can co-exist. A factor model with N variables can have N

idiosyncratic components and an unrestricted number of common factors that can be stationary

and non-stationary In a I-C decomposition, non-stationarity in Xit can arise because of common

stochastic trends, or because the idiosyncratic error is non-stationary. The factor model encom-

passes the multivariate local level model of Nyblom and Harvey (2000) as a special case. In that

analysis, F s
t is not permitted, N is fixed, and their object of interest is simply to determine k. Our

interest is in understanding whether non-stationarity in Xit is due to Ft, eit, or both, based on

their consistent estimates. We refer to these procedures as Panel Analysis of Non-stationarity in

the Idiosyncratic and Common components (PANIC).

Many macroeconomic issues of interest can be addressed using PANIC. Let Xit be output across

countries. With integrated world markets, real output of country i may consist of a global growth

component (F T
t ), a global cyclical component (FS

t ), and a idiosyncratic component which may itself

be non-stationary. The framework then allows us to establish the source of non-stationarity and

the relative importance of the country specific variations. In the same vein, let Xit be the inflation

rate of good i, and core inflation be that component of inflation that is common to all goods.

The proposed framework allows us to determine if an individual inflation series is non-stationary

because core inflation is non-stationary, or because the series has idiosyncratic component has a

unit root.

Testing stationarity of the common and idiosyncratic components separately can potentially a

problem that has challenged unit root and stationarity tests. The problem arise when Ft is a weak

random walk that is dominated by the variation of the stationary process eit. It can also arise

when eit is I(1) but Ft is stationary. In such cases, unit root tests on Xit tend to be oversized while

stationarity tests tend to have no power. The issue is documented by Schwert (1989), and formally

analyzed in Perron and Ng (1996) and Ng and Perron (1997). The problem arises because Xit has
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two components with different degrees of integration. However, if the non-stationary component is

common to a large number of series, PANIC can be used to disentangle Ft from the idiosyncratic

component. We can test whether these components are individually I(1) or I(0). Non-stationarity

in any one component will then imply Xit is non-stationary.

PANIC makes use of information in a panel and yet it is not designed specifically for panel unit

root tests, though they can be performed. The testing is applied to the estimated common and

idiosyncratic components, one at a time. Thus, it can determine the proportion of the series in the

panel that has unit roots. While pooling of the the tests based on observed data is invalid when

the cross-sections are correlated, the I-C decomposition also allows us to pool on the basis of tests

on the idiosyncratic components. Thus, panel unit root tests can also be obtained to test the joint

stationarity of these idiosyncratic components.

The rest of the paper is organized as follows. The PANIC procedures are presented in Section

2. Asymptotic properties of the proposed tests are given in Section 3. Simulations are presented

in Section 4, along with an application to real exchange rate data. Section 5 concludes. Proofs are

given in the Appendix.

2 The PANIC Procedures

We consider the model

Xit = ci + λ′iFt + eit (1)

Fmt = αmFmt−1 + umt m = 1, . . . k (2)

eit = ρieit−1 + εit i = 1, . . . N. (3)

Equation (1) represents a series Xit as the sum of a common component λ′iFt and an idiosyncratic

component. The common factors Ft are k dimensional. Factor m is non-stationary if αm = 1.

Our analysis permits some, none, or all of the factors to be non-stationary. The idiosyncratic

component is stationary if ρi < 1 and has a unit root if ρi = 1. Furthermore, εit is allowed to be

weakly correlated in the cross section dimension, so that (1) is an ‘approximate factor model’ in

the sense of Chamberlain and Rothschild (1983).

We observe Xit, i = 1, . . . N , t = 1, . . . T . Non-stationarity in Xit can be due to the presence of

common stochastic trends, a non-stationary idiosyncratic component, or both. These components

are not, in general, identifiable from the observed data. Accordingly, the key to PANIC is an

I-C decomposition of the data into common and idiosyncratic components. We use the method

of principal components (PC) to estimate Ft. The PC has been suggested by Harris (1997) as

an estimator of cointegrating vectors, but estimation of Ft is not considered. In fact, consistent
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estimation of Ft is not possible when N is small. However, this is no longer the case when N is large.

This is because the idiosyncratic variations must be dominated by those of the common factors

when the data are averaged across N . The principal components estimator effectively provides the

weights for averaging. Asymptotic properties of the estimator when N and T are both large are

analyzed in Forni, Hallin, Lippi and Reichlin (2000), Stock and Watson (1998), and Bai (2001a,b).

PANIC has two modules. The PANIC-UR allows us to test the null hypothesis that eit has a

unit root, while the PANIC-S takes stationarity as the null hypothesis. Specific implementation of

the principal component estimator depends on the null hypothesis to be tested.

2.1 The PANIC-S

The PANIC-S procedure is set up to test

H0 : ρi < 0, or eit is I(0) for all i.

H1 : ρi = 1, or eit is I(1) for some i.

Since eit is stationary for every i, estimation of Ft is based on the data in level form.

S1: Estimate Ft by the method of principal components. Denote this by ̂Ft.

S2: Test the null hypothesis that demeaned ̂Fmt,m = 1, . . . k is stationary. Denote the statistic

by SF (m) .

S3: Given ̂Ft, obtain êit as the residual from the regression

Xit = ci + λ′i ̂Ft + eit.

S4: Test the null hypothesis that êit is stationary, for each i = 1, . . . N . Denote the test by Se(i).

We use the KPSS statistic of Kwiatkowski, Phillips, Schmidt and Shin (1992) to test stationarity.

2.2 The PANIC-UR

The PANIC-UR procedure is set up to test

H0 : ρi = 1 or eit is I(1) for all i.

H1 : ρi < 1 or eit is I(0) for some i.

Since eit is non-stationary for every i under the null hypothesis, we apply the method of principal

components to the first differenced data,

∆Xit = λ′i∆Ft + ∆eit. (4)
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UR1: Estimate ̂∆Ft and ̂λi by the method of principal components.

UR2: Given ̂∆Ft, define for each m = 1, . . . k,

̂Fmt =
t

∑

s=2

̂∆Fms.

UR3: Test for the null hypothesis that demeaned ̂Fmt has a unit root for each m = 1, . . . k. Denote

this test by URF (m).

UR4: For each i = 1, . . . N , denote by URe(i) the test for the null hypothesis that there is a unit

root in êit, where êit is defined as follows:

• If Fmt is I(0) for every m = 1, . . . k, then for t = 2, . . . T , let ẽit = Xit − ̂λ′i ̂Ft and define

êit = ẽit − ẽi2.

• If we cannot reject ̂Fmt is I(1) for some m, then obtain êit as the residual from the

regression

Xit = ci + λ′i ̂Ft + eit.

We consider the ADF test of Said and Dickey (1984) based on êit.

3 Properties of PANIC

The validity of PANIC-S and PANIC-UR hinges on the fact that consistent estimates of Ft can be

obtained by the method of principal components when N is large. The factors and their loadings

are not, in general, separately identifiable. Assuming that F ′F/T = Ik, we construct the principal

component estimator for Ft as
√

T times the eigenvector corresponding to the largest eigenvalue

of the T × T matrix XX ′. Denote this by ̂Ft. Then N × k matrix λ is estimated as ̂Λ = ̂F ′X/T .

Consistency results are obtained in Bai (2001a) for stationary panels and in Bai (2001b) when

the factors are non-stationary. The convergence rate of a rescaled version of ̂Ft is min[
√

n, T ] for

the stationary case and min[
√

n, T 3/2] in the non-stationary case. Since the space spanned by ̂Ft

is preserved after scaling, these convergence results imply that PANIC can treat Ft as though it

was known. Once consistent estimation of the factors is granted, the limiting distributions of the

statistics are then obtained by application of the functional central limit theorem. That is, for a

time series zt satisfying mixing conditions stated in Phillips and Perron (1988)

1√
T

t
∑

s=1

zs ⇒ σzWz(r),
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where σz = limT→∞ T−1E(
∑T

j=1 zj)2 and Wz(r) is a standard Brownian motion. Following con-

vention, limits for the demeaned and detrended processes are denoted σzW c
z (r) and σzW τ

z (r) re-

spectively. Furthermore, let z̄ = 1
T

∑T
t=1 zt. Then

1√
T

t
∑

s=1

(zs − z̄) ⇒ σz

(

Wz(r)− rWz(1)
)

≡ σzVz(r)

is a Brownian bridge.

Theorem 1 PANIC-S: Suppose the KPSS statistic developed in Kwiatkowski et al. (1992) is used

to test stationarity. Let Vum (m = 1, . . . k) be Brownian bridges independent of Vei (i = 1, . . . N),

which are N mutually independent Brownian bridges.

1. If Fmt is stationary, then

SF (m) ⇒
∫ 1

0
Vum(r)2dr.

2. If Fmt is I(0) for every m, then for each i = 1, . . . N ,

Se(i) ⇒
∫ 1

0
Vei(r)2dr.

3. Suppose k̄ of the factors are I(1). Then Se(i) has the same limiting distribution as the statistic

developed in Shin (1994) for testing the null hypothesis of cointegration in a equation with k̄

integrated regressors.

Since ̂Ft can be consistently estimated, the test can treat the estimated factors as though they

were known. As stated in part (1) of the Theorem, SF (m) has the same distribution as derived in

Kwiatkowski et al. (1992). At the 5% level, this is 0.463. The limiting distribution for the Se(i)

test depends on whether Ft is I(1) or I(0). Part (2) of the theorem states that if Fmt is I(0) for

every m = 1, . . . k, Se(i) has the same limit as the KPSS stationary test. At the 5% level, this is

also 0.463. If k̄ factors are I(1), stationarity of eit implies cointegration between Xi and a subset

of F of dimension k̄. Then Se(i) has the same limiting distribution as the Shin test for the null

hypothesis of cointegration, as indicated in part (3) of the Theorem. The critical values are those

in Shin (1994) for k̄ regressors and a mean included in the cointegrating regression. At the 5%

level, this is 0.314 for k̄ = 1 and 0.221 when k̄ = 2. In each case, the null hypothesis is rejected

when the test statistic exceeds the critical value.

Theorem 2 PANIC-UR: Suppose the ADF statistic of Said and Dickey (1984) is used. Let Wum

(m = 1, . . . k) and Wei (i = 1, . . . N) be standard Brownian motions.
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1. If Fmt is I(1), then

URF (m) ⇒
∫ 1
0 W c

um(r)dWum(r)
∫ r
0 W c

um(r)2dr
.

2. if Fmt is I(0) for every m, then for every i = 1, . . . N ,

URe(i) ⇒
∫ 1
0 Wei(r)dWei(r)
∫ 1
0 Wei(r)2dr

.

3. If Fmt is I(1) for some k̄ factors, URe(i) has the same limiting distribution as the residuals

based cointegration test of Phillips and Ouliaris (1990) with k̄ integrated regressors.

PANIC-UR is based on the the first differenced model which satisfies the assumptions of Bai

(2001a). Since ̂Ft can be consistently estimated, URF (m) has the same limiting distribution as

derived in Fuller (1976) for the constant only case. The 5% asymptotic critical value is -2.86. The

critical values of URe(i) depend on whether Ft has a unit root. If Fmt is I(0) for every m, the critical

values are those of a unit root test and are tabulated in Fuller (1976) for the case of no constant.

At the 5% significance level, this is -1.95. Essentially, when Ft is I(0), ĉi is
√

T consistent and its

effects on êit are asymptotically negligible. However, when k̄ of Ft series are I(1), testing the null

hypothesis that eit is I(1) is the same as testing the null hypothesis that Xit does not cointegrate

with k̄ integrated factors. URe(i) then becomes the residuals based test for no cointegration with

k̄ regressors. The critical values are tabulated in Phillips and Ouliaris (1990). When a mean is in

the regression, the critical value at the 5% level is -3.37 for k̄ = 1 and -3.77 for k̄ = 2.

As defined, êi1 = êi2 = 0 for every i, which provides an initial condition assumption. One

simpler alternative computationally is to take êit is the cumulative sum of ̂∆eit. Another method

is to obtain êit as the residuals from a regression of Xit on a constant and ̂Ft, which effectively sets

the mean of the process to zero. The latter two methods appear to have similar properties in finite

samples, though our proof is based explicitly on the assumption that êi2 = 0.

The number of factors k is unknown. Bai and Ng (2000) showed that P (̂k = k) → 1 as

N, T →∞ when Fmt is stationary for every m if ̂k is the minimizer of

PC(m) = log
1
N

N
∑

i=1

σ̂2
i (m) + kg(N,T ) (5)

where σ̂2
i (m) = 1

T
∑T

t=1 ê2
it(m) is the sample variance from estimation of a model with m factors,

and g(N, T ) → 0 as N, T → and min[N, T ]g(N, T ) → ∞. Bai (2001b) showed if we use the first

differenced model and let σ̂2
i = T−1 ∑T

j=1
̂∆e2

it, the PC criterion remains valid. This is also true even
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if ∆Ft or ∆eit is over-differenced. Furthermore, the PC consistently estimates the total number of

factors whether or not the factors are non-stationary. Bai and Ng (2000) showed that

g(N, T ) =
N + T
NT

log
[

NT
N + T

]

satisfies the conditions required for consistent estimation of k.

3.1 Panel Tests

Thus far, we have introduced PANIC as univariate tests on the common and idiosyncratic compo-

nents. A common criticism of univariate unit root tests is low power, especially when T is small.

This has generated substantial interest to improve power. A popular method is to pool informa-

tion across units, leading to panel unit root tests. A survey of panel unit root tests is offered by

Maddala and Wu (1999). The early test developed in Levin and Lin (1993) imposes substantial

homogeneity but independence across units. Subsequent developments have led to tests that allow

for heterogeneous intercepts and slopes, while maintaining the assumption of independence across

units. This assumption is restrictive, and if violated, can lead to over-rejections of the null hy-

pothesis. O´ Connell (1998) provides a solution to this problem assuming that all cross-section

correlation is of the stationary type.

If cross-section correlation can be adequately represented by common factors, the idioyscractic

components will more likely satisfy the assumption of independence across units. Thus, while

panel unit root tests applied to Xit may be inapproriate, panel unit root tests can be applied to eit.

PANIC allows consistent estimates of eit to be obtained. To allow as much heterogeneity across

units as possible, we consider panel unit root tests based on meta analysis.

Theorem 3 Let pSe(i) and pURe(i) be the p-value associated with the stationarity and unit root

tests on êit, respectively. Consider pooled tests defined by

PSe = −2
n

∑

i=1

log pSe(i)

PURe = −2
n

∑

i=1

log pURe(i).

If Fmt is I(0) for every m = 1, . . . k,

PSe − 2N√
4N

d⇒N(0, 1) and
PURe − 2N√

4N
d⇒N(0, 1).

Theorems 1 and 2 show tests involving êit are functionals of Brownian motions that are independent

across i. The p-values are thus independent U[0,1] random variables. Taking logarithms, summing
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over i, and applying central limit theorem gives the result stated. The pooled test −2
∑N

i=1 ln pSx(i)

was first proposed in Maddala and Wu (1999) for fixed N . Choi (2001) extended the analysis to

allow N → ∞. But pooling is invalid when the units are not independent. Theorem 3 shows if

the factors are stationary, pooling over tests based on êit is yields a test statistic that is standard

normal. However, when a subset of Ft is I(1), the limiting distributions of the pooled tests will be

mixture of χ2 random variables

4 Monte Carlo Simulations

We simulate data using Equations (1)-(3). We let λ be a N × r matrix, ε a T ×N matrix of N(0, 1)

variables, and ut ∼ N(0, 1)σF . The following variations are considered:

• σF =20, 10, 5, and 1.

• α=0, .5, .8, .9, .95, 1;

• ρ=0, .5, .8, .9, .95, 1;

• k = 0, 1, 2;

• N=10, 20, 30, 100;

• T=100, 200.

Simulations are performed assuming k (the total number of common factors) and k̄ (the number

of I(1) common factors) are known. Naturally, k̄ = k if αm = 1 for every m = 1, ldotsk. We report

results for k = 1, T=200 and N=20. Table 1 reports rejection rates for unit-root tests applied to

{X1t}, { ̂F1t}, and {ê1t}. The number of lags for the ADF test is set to 4(T/100)1/4 throughout.

URx1 should have a rejection rate of .05 when α = 1 or ρ = 1. This is true only when α = 1 but

is not the case when ρ = 1, α < 1. The problem is once again that the random walk component

is small relative to the stationary variations of the idiosyncratic component, so that ∆Xit has a

moving average root that is close to unity. The consequence of the near common factor is severe

over-rejections of the unit root hypothesis. Such size distortions evidently arise because Xit has

two components with different degrees of integration. Thus, if one of these components is common,

PANIC will be able to consistently estimate it and separate unit root tests then become possible.

The last six rows of Table 1 most clearly illustrate what PANIC can deliver. The column URF1 is

the rejection rate of the ADF test applied to ̂F1. It is around .05 when α is 1 and exhibit little size

distortion. At other values of α, it reflects power. The column URe1 is the rejection rate when the

test is applied to ê1. It too should be .05 when ρ = 1, and the results show that the finite sample

rejection rates are indeed close to the nominal size. In contrast, the URx1 column shows that the
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ADF test applied to the observed data does not give the correct inference. Table 2 reports results

with different values for the variance σF . The finding is similar to that of Table 1.

More tables will be added.

5 Application to PPP

The PANIC can be used to shed new light on a much research issue:- the validity of the purchasing

power parity (PPP) hypothesis. Under PPP, real exchange rates should be mean reverting and thus

stationarity. The low power of unit root tests over short span has often been used to rationalize non-

rejections of the unit root null. This has prompted the development of panel unit root tests which

exploit information in the cross section dimension to increase power. But a major shortcoming of

panel unit root tests is the assumption of independence across units. Indeed, because real exchange

rates are often defined using the same base country, cross-section correlation arises almost by

construction. Such strong cross-section correlation amounts to a common factor that cannot be

aggregated away. Panel unit root tests based on pooling in the cross-section dimension will depend

on this nuisance cross-section correlation parameter. As O´ Connell (1998) found, the tests are

biased towards the alternative hypothesis. That is, if the null hypothesis is I(1), we tend to

accept stationarity. If the null is stationary, we tend to accept nonstationarity. O’Connell suggest

removing the cross-section correlation by a GLS transformation of the data. This presupposes

that the common variation is stationary, which need not be the case. A PANIC allows us to test

if real exchange rates are non-stationary because of a common non-stationary component, or if

country-specific variations are the source of non-stationarity.
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Appendix

Lemma 1 Consistency of ̂Ft.

• Suppose Ft is I(0) and Assumptions A to G of Bai (2001a) hold.. Then ̂Ft is
√

N consistent

if
√

N/T → 0. If
√

n/T → τ > 0, ̂Ft is T consistent.

• Suppose Ft is I(1) and Assumptions A-F of Bai (2001b) hold. Then ̂Ft is
√

N consistent if

N/T 3 → 0. If N/T 3 → τ > 0, ̂Ft is consistent at rate T 3/2.

Stationarity and unit root applied to ̂Ft have the same distributions as though ̂Ft is known.

Theorems 1.1 and 2.1 are stated in terms of the KPSS and the ADF test, but other tests are equally

valid. The remaining proofs assume that Ft is known.

Proof of the Theorem 1, part 2

For a given i, consider the regression

Xit = ci + γ′iFt + eit.

Because Ft is stationary and an intercept is allowed in the regression, without loss of generality, we

assume E(Ft) = 0. Let êit be the estimated residuals. By direct calculations,

êit = eit − (ĉi − ci)− (̂λ− λ)′Ft.

Note that ĉi and ̂λi are
√

T consistent.

1√
T

t
∑

j=1

êij =
1√
T

t
∑

j=1

eij −
t√
T

(ĉi − ci)−
(̂λi − λi)√

T

′ t
∑

j=1

Fj

=
1√
T

t
∑

j=1

eij −
t
T

√
T (ĉi − ci)−

√
T (̂λi − λi)′

1
T

t
∑

j=1

Fj

=
1√
T

t
∑

j=1

eij −
t
T

√
T (ĉi − ci)−Op(

1√
T

)

But ĉi = X̄i − ̂λ′iF̄ . We have
√

T (ĉi − ci) = 1√
T

∑T
j=1 eit + op(1). Thus,

1√
T

t
∑

j=1

êij =
1√
T

t
∑

j=1

eij −
t
T

1√
T

T
∑

j=1

eij + op(1).

Let t = [Tr] and t/T → r. By the functional central limit theorem, 1√
T

∑t
j=1 eij ⇒ Wei(r)σei.

Thus,
1√
T

t
∑

j=1

êij ⇒
[

Wei(r)− rWei(1)
]

σei.
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Let s2
ei be a consistent estimate of σ2

ei, the long run variance of ei. Then

Se(i) =
1
T

∑T
j=1(

1√
T

∑t
j=1 êij)2

s2
ei

⇒
∫ 1

0
(Wei(r)− rWei(1))2dr ≡

∫ 1

0
Vei(r)2dr.

Proof of Theorem 2, part 2

Again, we assume Ft is known. The model is Xit = ci+λ′iFt+eit = ĉi+̂λ′iFt+ êit. Set êi1 = êi2 = 0.

Then Xi2 = ĉi + ̂λ′F2 which implies ĉi = Xi2− ̂λ′iF2. It follows that êit = Xit− ĉi− ̂λ′iFt = ẽit− ẽi2,

where ẽit = Xit − ̂λ′iFt by definition. We have

êit = eit − (̂λi − λi)′Ft − (ĉi − ci)

= [1 −
√

T (̂λi − λi)′ (ĉi − ci)]







eit
1√
T

Ft

1





 ≡ ̂b′ζt.

∆êit = ∆eit − (̂λi − λi)′∆Ft

= [1 −
√

T (̂λi − λi)′]

[

∆eit
1√
T

∆Ft

]

≡ ̂hηt.

Note that ̂b ⇒ b ≡ (1, b2, b3)′ and ̂h ⇒ h ≡ (1, h2). We want the limiting distribution of ρ̂i − 1,

where T (ρ̂i) is obtained a first order autoregression in êit.

T (ρ̂i − 1) =
T−1 ∑T

t=2 êit−1∆êit

T−2 ∑T
t=2 ê2

it−1
.

The numerator is

T−1
T

∑

t=2

êit−1∆eit = ̂b′T−1
T

∑

t=2

ζt−1ηt
̂h

= ̂b′







T−1 ∑T
t=2 eit−1∆eit T−3/2 ∑T

t=2 eit−1∆Ft

T−3/2 ∑T
t=2 Ft−1∆eit T−5/2 ∑T

t=2 Ft−1∆Ft

T−1 ∑T
t=2 ∆eit T−3/2 ∑T

t=2 ∆Ft







̂h

⇒ b′







σ2
εi

∫ 1
0 Wεi(r)dWεi(r) 0

0 0
0 0





 h = σ2
εi

∫ 1

0
Wεi(r)dWεi(r).

Analogous calculations give

T−2
T

∑

t=2

ê2
it−1 = ̂b′[T−2

T
∑

t=2

ζtζ ′t]̂b ⇒ σ2
εi

∫ 1

0
Wεi(r)2dr.

Combining the results,

T (ρ̂i − 1) ⇒
∫ 1
0 Wεi(r)dWεi(r)
∫ 1
0 Wεi(r)2dr

.

The t statistic follows.
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Table 1: Rejection rates for H0: eit is I(1)
σF = 20 σF = 5

T N ρ α URx1 URF1 URe1 UR∗
e1 URx1 URF1 URe1 UR∗

e1
200 20 0.00 0.00 1.00 1.00 0.71 0.70 1.00 1.00 0.71 0.72
200 20 0.00 0.50 1.00 1.00 0.70 0.69 1.00 1.00 0.68 0.68
200 20 0.00 0.80 0.96 0.96 0.67 0.67 0.98 0.97 0.70 0.71
200 20 0.00 0.90 0.68 0.67 0.68 0.69 0.71 0.68 0.72 0.72
200 20 0.00 0.95 0.26 0.25 0.69 0.68 0.32 0.27 0.72 0.70
200 20 0.00 1.00 0.07 0.07 0.74 0.74 0.08 0.07 0.75 0.74
200 20 0.50 0.00 1.00 1.00 0.80 0.79 1.00 1.00 0.81 0.81
200 20 0.50 0.50 1.00 1.00 0.81 0.81 1.00 1.00 0.81 0.80
200 20 0.50 0.80 0.98 0.98 0.81 0.81 0.98 0.97 0.81 0.79
200 20 0.50 0.90 0.65 0.64 0.81 0.80 0.73 0.67 0.80 0.79
200 20 0.50 0.95 0.30 0.27 0.82 0.82 0.32 0.24 0.81 0.81
200 20 0.50 1.00 0.07 0.06 0.90 0.89 0.08 0.05 0.88 0.89
200 20 0.80 0.00 1.00 1.00 0.81 0.81 1.00 1.00 0.81 0.82
200 20 0.80 0.50 1.00 1.00 0.81 0.81 0.99 1.00 0.81 0.82
200 20 0.80 0.80 0.97 0.97 0.82 0.84 0.97 0.97 0.82 0.82
200 20 0.80 0.90 0.68 0.66 0.83 0.83 0.72 0.67 0.83 0.83
200 20 0.80 0.95 0.28 0.26 0.81 0.82 0.33 0.25 0.81 0.81
200 20 0.80 1.00 0.07 0.06 0.76 0.76 0.11 0.07 0.78 0.77
200 20 0.90 0.00 0.97 1.00 0.78 0.76 0.91 1.00 0.77 0.77
200 20 0.90 0.50 0.98 1.00 0.74 0.75 0.93 1.00 0.75 0.74
200 20 0.90 0.80 0.95 0.97 0.76 0.76 0.91 0.97 0.76 0.76
200 20 0.90 0.90 0.67 0.68 0.76 0.77 0.69 0.69 0.76 0.75
200 20 0.90 0.95 0.29 0.28 0.75 0.75 0.34 0.27 0.74 0.74
200 20 0.90 1.00 0.06 0.05 0.31 0.33 0.11 0.06 0.33 0.32
200 20 0.95 0.00 0.91 1.00 0.53 0.54 0.65 1.00 0.52 0.52
200 20 0.95 0.50 0.94 1.00 0.52 0.53 0.75 1.00 0.52 0.51
200 20 0.95 0.80 0.91 0.97 0.52 0.53 0.74 0.97 0.51 0.50
200 20 0.95 0.90 0.61 0.65 0.53 0.52 0.54 0.66 0.49 0.51
200 20 0.95 0.95 0.26 0.24 0.54 0.53 0.26 0.26 0.53 0.53
200 20 0.95 1.00 0.06 0.06 0.10 0.10 0.07 0.06 0.09 0.09
200 20 1.00 0.00 0.73 1.00 0.06 0.06 0.27 0.98 0.06 0.06
200 20 1.00 0.50 0.79 1.00 0.05 0.06 0.41 1.00 0.04 0.05
200 20 1.00 0.80 0.80 0.96 0.05 0.05 0.47 0.95 0.05 0.05
200 20 1.00 0.90 0.56 0.68 0.06 0.06 0.32 0.62 0.06 0.06
200 20 1.00 0.95 0.23 0.27 0.05 0.06 0.17 0.28 0.04 0.04
200 20 1.00 1.00 0.05 0.05 0.02 0.02 0.07 0.07 0.02 0.01
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Table 2: Rejection rates for H0: eit is I(1)
σF = 10 σF = 1

T N ρ α URx1 URF1 URe1 URx1 URF1 URe1

200 20 0.00 0.00 1.00 1.00 0.71 1.00 1.00 0.70
200 20 0.00 0.50 1.00 1.00 0.70 1.00 1.00 0.68
200 20 0.00 0.80 0.97 0.96 0.67 0.99 0.97 0.70
200 20 0.00 0.90 0.68 0.67 0.68 0.82 0.68 0.72
200 20 0.00 0.95 0.27 0.25 0.69 0.47 0.27 0.71
200 20 0.00 1.00 0.08 0.07 0.74 0.19 0.07 0.71
200 20 0.50 0.00 1.00 1.00 0.80 1.00 1.00 0.81
200 20 0.50 0.50 1.00 1.00 0.82 1.00 1.00 0.81
200 20 0.50 0.80 0.98 0.98 0.81 0.99 0.97 0.80
200 20 0.50 0.90 0.67 0.64 0.81 0.86 0.68 0.79
200 20 0.50 0.95 0.32 0.28 0.82 0.55 0.25 0.81
200 20 0.50 1.00 0.09 0.06 0.90 0.22 0.05 0.88
200 20 0.80 0.00 1.00 1.00 0.81 0.98 1.00 0.81
200 20 0.80 0.50 0.99 1.00 0.81 0.98 1.00 0.81
200 20 0.80 0.80 0.97 0.97 0.82 0.97 0.97 0.83
200 20 0.80 0.90 0.70 0.66 0.83 0.86 0.68 0.83
200 20 0.80 0.95 0.31 0.26 0.81 0.62 0.28 0.81
200 20 0.80 1.00 0.08 0.06 0.76 0.31 0.07 0.77
200 20 0.90 0.00 0.95 1.00 0.78 0.74 0.99 0.77
200 20 0.90 0.50 0.96 1.00 0.74 0.77 1.00 0.75
200 20 0.90 0.80 0.93 0.97 0.76 0.78 0.96 0.75
200 20 0.90 0.90 0.67 0.68 0.76 0.68 0.68 0.76
200 20 0.90 0.95 0.31 0.28 0.75 0.46 0.27 0.74
200 20 0.90 1.00 0.08 0.05 0.31 0.24 0.06 0.33
200 20 0.95 0.00 0.82 1.00 0.53 0.32 0.87 0.52
200 20 0.95 0.50 0.88 1.00 0.52 0.35 0.96 0.52
200 20 0.95 0.80 0.86 0.97 0.52 0.42 0.92 0.51
200 20 0.95 0.90 0.57 0.65 0.53 0.36 0.62 0.50
200 20 0.95 0.95 0.26 0.24 0.54 0.26 0.27 0.53
200 20 0.95 1.00 0.07 0.06 0.10 0.12 0.06 0.09
200 20 1.00 0.00 0.52 1.00 0.06 0.06 0.28 0.06
200 20 1.00 0.50 0.64 1.00 0.05 0.08 0.50 0.04
200 20 1.00 0.80 0.67 0.96 0.05 0.11 0.59 0.05
200 20 1.00 0.90 0.46 0.69 0.06 0.09 0.42 0.06
200 20 1.00 0.95 0.21 0.26 0.05 0.06 0.21 0.04
200 20 1.00 1.00 0.06 0.05 0.02 0.07 0.06 0.02
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