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Parameter Approximations

e In this paper the unknown element is the distri-

o Consider parameter approximations to a DGP - bution function of an unobservable variate.
to a distribution function (or functional of it).
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e Three examples:
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ment:
— economic theory is silent about the form of
the unknown element, — Remove it, e.g. by conditioning.
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Example 2: covariate measurement error
Example 3: endogeneity (1)
Example 1: heterogeneity
e Let Y given X and U have conditional DF
. o . £ z,u;0) = F z:0 e Continuously distributed Y7 and Y, are deter-
e Let Y given X and U have distribution function Y‘XU(yl ’ ) Y‘X(y‘ ) .
mined by
PlY <y|X =z,U = u] = F (ylz, u; 0 L.
Y <yl ’ ! Y|XU (v, ) e Let Z = X + AU where U is independent of X, Y1 = hi(Yz,e +2wv)
at A = 0 no measurement error. Y, = ho(v)

There are realisations of Y and X, but not U.

The unknown element is the distribution func-
tion of U, Fyy(u).

Realisations of Y and X are informative about
the conditional DF of Y given X = z,

Fyx(wlei6, Fu() = [ Fypxu(vla, ui0)dFu(w).

The unknown element is the distribution func-
tion of U. The pdf of X is fx(x), also un-
known.

Realisations of only Y and Z are available.

Realisations of Y and Z are informative about
the joint DF of Y and Z,
Fyz(y,z 6, A, fx(-), Fy(-))

= [ Frixuuls = Aui0)fx(= — Au)dFy(u)

where v and ¢ are mutually independent.

e Example: Y; = wages, Y, = schooling, ¢ is
wage heterogeneity and v = ability. There may
be exogenous X as well.

e Policy to change Y5 exogenously requires knowl-
edge of

17}
ﬂ(y27 “’-’) = %hl(a, b)‘a:yz,b:w




Example 3: endogeneity (2)

e At A = \* = 0 there is NO endogeneity

Y1 = hi(Ya,€)

e If h1(Y>,¢) is monotonic increasing in ¢ for all
Y5, € then

Qvyv,(7v2) = ha(y2, Qe(7))
- Qc(7) is the T-quantile of ¢
- Qy1|y2(7', y2) is the conditional T-quantile of

Y1 given Ys = yo.

e Therefore the function of policy interest can be

estimated nonparametrically (Chaudhuri (1991)):

By2 Q=(1)) = VipQyy s 42)

e When A # 0, how is the quantile derivative
related to the function of policy interest?

Uses of parameter approximations

Understanding impact on DGP of departing from
A= A%

Understanding impact on estimators of A # A*
- local specification analysis.

Tool for developing tests of Hy : A = \* -
specification tests.

Tool for studying sensitivity of inference to A #
A%

Tool for constructing “approximately consistent”
estimators.

Related work (1)

Small variance approximations used by Kadane
(1971) to compare properties of econometric es-
timators.

Rothenberg’s (1971) discussion of local iden-
tifiability considers small parameter variations
around a value which is identifiable.

Local to unity parameter approximations in time
series models are used to approximate sampling
distributions of estimators, Ahtola and Tiao (1984),
Phillips (1987).

Local specification analysis (Kiefer and Skoog,
(1984)) employs small parameter approximations.

Related work (2)

e Cox (1983), Chesher (1984), Freidlin & Wentzell
(1984), Jorgenson (1987), employ small vari-
ance approximations in models of overdisper-

sion.

e Carrol, Ruppert, Stefanski and co-authors have
made extensive use in measurement error mod-
els. Focus on estimation not DGPs.

o Chesher and Schluter (2001), Chesher Duman-
gane and Smith (2001) use small parameter ap-
proximations to study the impact of measure-
ment error on poverty and inequality measures
and on event histories.

e Sweeting (1992) develops a general parameter-
asymptotic limiting distribution theory for esti-
mators.

Plan of this presentation

Development of parameter approximations.

Example: - discrete choice with taste variation.

Regularising parameter approximations.

Specification testing: random versus fixed pa-
rameters.

Generic effects of measurement error on quan-
tile regressions: sensitivity analysis.

Generic effects of weak endogeneity.

“A careful econometrician, armed with a little
statistical theory, a modest computer, and a lot of
common sense, can always find reasonable
approximations for a given inference problem.”

T.J. Rothenberg (1984)

Developing parameter approximations:
heterogeneity (1)

e We require an approximation to FY\X:

Fy x(ylz: 0) = /FY\XU(y»%%@)dFu(U)
e Write the DF conditional on X and U as
Fyxu(y, z,u,0) = G(y, , Au, 0)

A is lower triangular, k X k with elements A,;]-.
Normalise V[U] = I,.

o Let AN =X = [0y] = Var[AU].

e Derivatives of G with respect to elements of
v = Au are G;, Gj; and so forth. [G;;] = G.




Developing parameter approximations:
heterogeneity (1)

e Expand G with remainder term R;

G(y,z,Au; 0) =

G(y,z,0;0) + Z AijuiGi(y, z,0;0)
]
1
+ > EkijAkzujulGik(% z,0;0) + Ry
1,5,k

o Integrate term by term, Fyx = [ G x dFy(u),
use E[U] =0, V[U] = I, 3 XijAkj = oigs

1
Fyix = Gy,2,0,6) +3 > MijreiGirly, @, 0;6)
1,5,k,l

1
Gly,,0:0) + 5 > oikGir(y, ©,0;6)
By

1 )
= G(y,,0;0) + Etrace(G’”’(y,ac7 0;0)Y).

and G(y, z,0;0), is FY\XU(U‘X =2z,U =0,0)

Developing parameter approximations:
heterogeneity (1)

o The remainder term, R; can be written, with
A = [Xij], and JIAT]| < [IA]l:

Ri=—= Y XjAdmnujuunGign(y, @, Nu; 6)
ij,k,Lm,n

Suppose 3 finite valued M(y, z,6) and C such

that, V v = {vs}5_;, and V 4, k, and m,

(93
—G(y,z,v;0)| < M(y,z,0
e (R )‘ (v,2,0)

sup
i,k,m

E[‘UinUk“ <C.
Then the remainder term Rj has the property
[Ro| <

1 .
EM(y, z; 0) Z Aij Ak Amn / ‘uj'ulun| dFy(u)

i,,k,lm,n

1
SgM@zOC > Aghdmn

i,,k,lm,n

Example: Mixed Multinomial Logit Model (1)

Probability of choice i € {1,...I} conditional on
X=uzis

/3. .
Plilz] = /Md}%(“)
Zj:l exp(z 6]‘ + “j)
where u = {u}{=1 is a vector of unobserved variates,
assumed independent of X.

We have the small variance approximation (Chesher

and Santos-Silva (2001))

exp(aif+ Sy Sl warz(z: 6))
o

ERT2

g(ilz; 8,Q2) = .
Sl ew(@)B T v wstt (2 8))
s, t#*
in which i* identifies a base alternative relative to
which the u's are measured,

wgt = Covlus — w, up — ux]

Example: Mixed Multinomial Logit Model - small
parameter approximation

exp(zB+ LIy S, wezst(x: B))
b

t£i*

g(ilz; 8,Q) = =

( ) S ep(@f+ Ty S, waezs(a: 6))
s,t#1*

where

0 i=*

Lop(slz:B) i#i*, s=t, i=s
st _ )0 i£iY, s=t its
D@ =Y sy itin st iss

—p(slz; B)  iFi, s#EE i=t

0 £t sEt its At
and

!
p(ule, B) = exp(z'By)

i1 exp(2'8;)

Regularising parameter approximations (1)

It may be useful to have probabilities € [0, 1],
summing to 1, densities positive, probability mass
exactly 1.

Consider a 1st order “raw” approximation to a
density f(y; A) with A* = 0:

PRy A) = £(3:0) + Ng(y).

With f(y,0) > 0, h(-) > 0, twice differentiable,
h(1) =Vh(1) =1

Ry, . _ . , 9(y)
A yiA) = f(y:0) x <1+/\f(y;0)>

F:0) x h (1 + A’f?;?j()))> +o(2)

which is necessarily positive, and fR is correct
to O(A).

Here lim) o (o(\)/I1AI}) = .

Regularising parameter approximations (2)

e A proper approximation:

Py — ~Lp(,. _9(y)
P70 = 0000y 1+ w2 )

where

o) = /f(y;O)h (1 + A’f‘(’;;yz))) dy

e But this is only correct if C(A) =14 o(\).

e ltis:

C(0) = [ fl:0)dy =1
VCWa-o = [ 9wy = [ VafwiN)h-ody

= Vx/f(y;A)dyL:O =0




Specification tests

e Score tests of Hy : A = 0 are specification tests
to detect appearance of the unknown element.

e There is the proper approximate log likelihood
function for N independent realisations of Y,

RO

N
= > —logC(A) + log f(Yn: 0)

SRR

e The approximate score for A at A =0 is

N
A _ Q(Yn)
$= L 50m0y

Example: random parameters

In the heterogeneity example, let § = 6 + Au

Write the conditional DF of Y given X and U
as F(y,z,0 + Au).

A test of Hp: A =0 is a test of a fixed param-
eter model against a random parameter alter-
native and

9(Yn) = Vg f (Yn, Xn, 0).

The score for A is therefore

gA — g: Voo f (Yn, Xn, 0)

= f(Yni X0, 0)

M=

Vg 108 f (Y, Xn,6)

n=1

N
+ Y Vplog f(Yn, Xn,0)Vy log f(Yn, Xn,0)
n=1

Measurement error and quantile regression (1)

e The 7-quantile of Y given X = z is the QRF:
QY‘X(T,J)), defined implicitly by

Fy x(Qy|x(r,2)|lz) = 7.

Let Z = X +AU be measurement error contam-
inated X . Realisations of Y and Z are informa-
tive about the 7-quantile of Y given Z = z is
Qy‘z(‘l’,z), defined implicitly by

Fy17(Qy z(r,2)|2) = 7.

Write the conditional quantile conditional on Z
as Qy|z(7, 2 X) where ¥ = Var[AU] and

Qy|x(7,2) = Qy|z(7,20)

and develop a Taylor series approximation

Qy\z(T’Z: T) = Qy|z(7,%0)

+Z% Bor; Q1277 )|g_ oD
0]

Measurement error and quantile regression (2)

To develop an expression for T Qy‘Z(T z; ):)‘Z 0

use the following approximation to Fy|z(y|2)
(Chesher (1991))

Fyi2(l2) = Ff 2(02) + o)
2012 = Frix(v12)
2y (Rl () + SR i)

Where for example

82
Fxl9) = g5 Bl

=z

The function gx(-), is the log probability den-
sity function of X,

gx(z) = log fx (=)
with derivatives as follows.

Fele) = igx(z)

Measurement error and quantile regression (3)

e The approximate error contaminated QRF is
Qyz(7,2) = Qyx(7,2)—
F{?‘X(QY\Z|Z)9§((Z) + %F;/]‘X(Qy\z\z)

Z Tij

e Y x(QyzI2)

o(¥)

o In terms of Qy | x (7, 2).

Qyz(7,2) = Qyx(7,2)+
i j 1 i
o1 (@ (r Ak (2) + 5QY, x(,2))
]

1

2mszUQy\X(T Z)QY‘X(T 2)

11 . .
*Em %: GijQyJ‘X(ﬂ Z)Qy\x(ﬂ z)

1 Qy‘x("' 2)

2m Z Uz]QY|X(T Z)Qy|X(T z)+o(X)

Measurement error and QRFs: one covariate

e Consider the case with a SINGLE covariate.
Qy|z(7,2) = Qy|x(7,2)
2N T ‘72 TT

+o QY‘X(Tv Z)QX(Z) + ?Qy\x("'a Z)

702@;1‘)((7_7 Z)Q?/‘x("'s z)
;'x(‘rv z)

2 QY (7, 2)Q7 (7, 2)?

2 {,‘X(T,Z)2

0(02)
e Derivatives here are e.g.,

Qyx(1:2) = ViQyx(1,2)
Q¥ x(r2) = VaQy(x(r2)| __

e Derivatives of UZQy‘Z(T z) can replace deriva-
tives of o QY‘X(T z) without disturbing the
order of the approximation.




Measurement error and parallel QRFs

e Parallel conditional quantiles:

Qx(7,z) = a(7) + b(x)
arise when Y is a location shift of a random
variable W_1X,

Y = b(X) + W.

e With Qyy(7) = a(r) denoting the T-quantile of

Qx(7,z) = Qw(r) + b(x).

e In this case Q%¥(7,2) = 0 and the approxima-
tion is
Qz(1,2) = a(r) +b(2)
+02bz(z)g§((z)
0.2
a2a™T(1)b%(2)?

2 ar(7)? oo

“Sometimes, under some circumstances,
asymptotic arguments lead to good
approximations. Often they do not.” T.J.
Rothenberg (1984)

Accuracy of approximate QRFs (1)

e The approximation is EXACT for the fully Gaus-
sian model, apart from vertical location of the
QRFs.

e Consider numerical calculations with exponen-
tial power (EP) distributions.

Y = Bo+ B X +owW

Z = X+oU
W and U (mean 0, variance 1) and X (mean
0, variance 3) are independent EP variates with
shape parameters: vy, vx, YU-

Accuracy of approximate QRFs (2)

Exponential power distributed S with
E[S]=p, Var[S]=o?
v € (—1,1) has pdf.
2
1w)

e A and B are functions of v and o2.

s—p

st~ o -5

e At v =0, S is Gaussian.

At v =1, S is Laplace.

1 1
e Asy— —1, 8 — Unif[u — 320, p + 320]

Sensitivity analysis for QRFs

Suppose a parametric error free QRF is specified
- e.g. linear

Qx(7,2) = Bo + Brz + owQw(7)
where Quy(7) is the T-quantile of W_LX.

There is the approximation
Qz(r,2) = By(r) + 81 (= + o?g%(2))

2
B(r) = Bo+owQu(r) = 5 —Blali (@Qu(r)

9%(2) is the derivative of the log density of Z.

For any value (chosen /estimated) of o2 we can
estimate using §%.(2))-

Expect plim,(:31 — By = o(a?).

Sensitivity analysis for QRFs: Monte Carlo

e The error free QRF is
Qx(r,2) = Bo + 1z + owQuw(7)
Bo=0,8; = 1,00 =1
EW]=E[V] =0 Var[W] = Var[V] =1
E[X]=0 Var[X]=3

e W, X and V are EP variates with shape pa-
rameters vy, vx, vy € {—0.5,0,+0.5}.

e R2 = 0.75. Mean regression attenuation is
25%.

e Sample size 400. 2000 Monte Carlo replica-
tions.

o Examine o2 known and estimated. g%(2) known
and (sieve) estimated.

Exponential series estimation of g%(z)

Use the exponential series density estimator of
Barron and Sheu (1991).

The data are mapped by affine transformation
onto the unit interval.

The unknown density of z is specified as

f2(2) o fY(z) exp (i 9jhj(z))

=1
where fg(z) = 1 is the uniform kernel density

on [0,1] and the h;(-) is the jth order Legendre
polynomial.

e Estimate 6;'s by ML (m = 8).
e The estimated log density derivative is simply
\ mo
97(2) = 32 0;V:hi(2)
j=1




Weak endogeneity (1)

e Continuously distributed Y7 and Y5 are deter-
mined by

Y1 = hi(Yo,e+ M)
Y2 = ha(v)

where v and € are mutually independent.

e Example: Y7 = wages, Y> = schooling, € as
wage heterogeneity and v = ability. There may
be exogenous X as well.

e Implementation of policy to change Y5 exoge-
nously requires knowledge of

9
ﬁ(yZ’ ‘*") = %hl(a, b)la:yg,b:w

e At A = 0, there is no endogeneity and

B(y2, Qe(T)) = Vi Qy;|v5(7 92)

e What is Vyzle‘yz(T,yg) when X\ # 07

Weak endogeneity (2)

e Assume hi(-,-) is monotonic increasing in 2nd
argument, hy(-) monotonic increasing. There is
an inverse function

9(Y2) =v

o We have

Y1 = hi(Ya, e+ Av)
Y2 = ho(v)

and so at any Yo = y»

Y1 = hi(y2, € + Aga(y2))

monotonicity implies
Qy; |y, (7,92 A) = ha(y2, Qe(7) + Ag2(v2))
ViaQy v, (75 ¥2i A) = Viha(y2, Qe()+Ag2(12))

+AVy,92(y2) Vaha(y2, Q=(7) + Aga(y2))

Weak endogeneity (3)

e The approximate yp derivative of the condi-
tional quantile with endogeneity (X # 0) is

ViaQyy v, (7:¥2i A) = Vi Qy; v, (7, 42: 0)
+A92(y2) Vahi(y2, Qe(T))
+AV292(¥2) V2 Vihi(y2, Qe(7))

+o(A)

where V;hy (-, -) signifies the derivative of hy(-, )
with respect to its ith argument.

e Easier to interpret (and use) when expressed in
terms of quantiles. Note:
VrQyy|v,(T,42: 0)
VTQE(T)

Vo VrQy; v, (7,42 0)
VrQe(T)

Vahi(y2, Qe(1)) =

V2aVihi(y2, Qe(T)) =

Weak endogeneity (4)

e After manipulation
ViaQy Y5 (75 ¥2i A) = Vi Qy; v, (7, 421 0)
X 92(42) VrQyy 1, (192 )

+/\+vyzg2(y2)vy2VTQY1\Yz('f'v Y2 A)

+o(X)
where
+ A

= Y,0.00) = M e(Qe(T))

. QYI\Yz(TayZ? A) and its derivatives can be esti-
mated nonparametrically, as can go(y2). Con-
duct sensitivity analysis by considering varia-
tions in AT in

ﬁ(yz, Qe(7)) = Vyz@}/ln/z("'»yz? A)
N 32(42) VrQys vy (75 y2: A)

A V02(42) Vi, Ve Qyy (T 92 A)

Concluding remarks

e Parameter approximations to DGPs can elimi-
nate elements about which economic theory is
silent. Can be used to:

— characterise the impact of local departures
from DGPs in which the unknown element
is absent,

— assess the impact of such local departures
on inference when the unknown element is
ignored ,

— develop specification tests to detect the pres-
ence of the unknown element,

— produce locally consistent estimates of pa-
rameters without specifying the unknown el-
ement.

e Other applications: local to vanishing sample
selection, non-compliance, stochastic volatility...

Blank page




PARAMETER APPROXIMATIONS FOR QUANTILE REGRESSIONS WITH MEASUREMENT ERROR 25

Table 1: Means and standard deviations of QRF slope estimates ignoring measurement
error

o= =05 1 v =00 | 7y =405
| 7 | 7w | 7x | mean sd. [ mean s.d. [ mean s.d.
-0.5 | .738 .029 | .755 031 | .772 .033
-0.5 0.0 | .734 .031 | .750 .033 | .769 .034
+0.5 | .728 034 | .744 .035 | .761 .038
-0.5 | .736 .030 | .755 031 | .774 .032
0.50 0.0 0.0 | .732 031 | 0.750 .033 | .771 .034
+0.5 | .725 .034 | .743 .035 | .763 .035
-0.5 | .736 .028 | .756 .029 | .778 .032
+0.5 0.0 | .730 .030 | .750 032 | .772 .033
+0.5 | .723 .033 | .743 034 | .764 .037

-0.5 | .746 .034 | .753 .034 | .764 .036
-0.5 0.0 | .742 .034 | .750 .036 | .761 .037
+0.5 | .739 .038 | .747 .038 | .757  .040
-0.5 | 746 .033 | .752 .034 | .763  .036
0.75 0.0 0.0 | .743 .034 | .750 .036 | .761 .037
+0.5 | .740 .036 | .745 .038 | .756  .039
-0.5 | 747 .032 | 753 .034 | .763 .036
+0.5 0.0 | .743 .034 | .750 .035 | .760 .037
+05 | .739 .036 | .746 .038 | .756  .039

-0.5 | 765 .042 | .748 .044 | 736 .044
-0.5 0.0 | .766 .043 | .750 .044 | .740 .046
+0.5 | .769 .045 | .754 .047 | .743  .048
-0.5 | 766  .043 | .747 .043 | 735 .047
0.90 0.0 0.0 | .768 .044 | .750 .044 | .738  .047
+0.5 | .770 .045 | .752 .045 | .744  .048
-0.5 | 770  .045 | 746  .044 | .733  .046
+0.5 0.0 | .771 .044 | 750 .045 | 737 .047
+0.5 | 773 .046 | .754 .046 | .742  .048
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Table 2: Means and standard deviations of measurement error corrected QRF slope esti-
mates with o2 known and g%(-) known

vy = —0.5 vy = 0.0 Yy = +0.5
| T | Yy | vYx | mean s.d. | mean s.d. | mean s.d.
-0.5 | 0.989 .040 | 1.011 .040 | 1.028 .042
-0.5 0.0 | 0.978 .042 | 1.000 .044 | 1.026 .046
+0.5 | 0.972 .043 | 0.996 .046 | 1.021 .050
-0.5 | 0.986 .041 | 1.010 .040 | 1.031 .041
0.50 0.0 0.0 | 0.976 .041 | 1.000 .043 | 1.028 .045
+0.5 | 0.970 .044 | 0.995 .046 | 1.024 .047
-0.5 | 0.987 .039 | 1.013 .038 | 1.036 .041
+0.5 0.0 | 0.974 .040 | 1.000 .043 | 1.030 .044
+0.5 | 0966 .042 | 0.995 .044 | 1.025 .048

-0.5 | 0.994 .045 | 1.007 .044 | 1.018 .046
-0.5 0.0 | 0.989 .046 | 1.000 .047 | 1.015 .050
+0.5 | 0.988 .049 | 0.998 .050 | 1.011 .053

-0.5 | 0.992 .044 | 1.005 .044 | 1.018 .046
0.75 0.0 0.0 | 0.990 .046 | 1.000 .048 | 1.014 .049
+0.5 | 0.988 .047 | 0.996 .049 | 1.013 .052

-0.5 | 0.993 .044 | 1.005 .044 | 1.018 .046
+0.5 0.0 | 0.991 .046 | 1.000 .047 | 1.014 .049
+0.5 | 0.989 .047 | 0.997 .049 | 1.012 .052

-0.5 | 1.004 .056 | 0.994 .058 | 0.984 .058
-0.5 0.0 | 1.020 .058 | 1.000 .059 | 0.986 .062
+0.5 | 1.029 .058 | 1.005 .062 | 0.984 .064
-0.5 | 1.005 .056 | 0.990 .057 | 0.982 .059
0.90 0.0 0.0 | 1.023 .059 | 1.000 .059 | 0.984 .062
+0.5 | 1.032 .059 | 1.003 .059 | 0.986 .063
-0.5 | 1.007 .059 | 0.988 .059 | 0.978 .059
+0.5 0.0 | 1.026 .059 | 1.001 .059 | 0.981 .062
+0.5 | 1.036 .059 | 1.004 .059 | 0.984 .065
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Table 3: Means and standard deviations of measurement error corrected QRF slope esti-
mates with o2 unknown and ¢g%(-) known

vy = —0.5 vy = 0.0 vy = +0.5

| 7 | 7w | 7x | mean sd. | mean s.d. | mean s.d.
-0.5 | 0.870 0.107 | 1.024 .127 | 1.087 .130
-0.5 0.0

+0.5 | 1.117 .168 | 1.017 .161 | 0.910 .149
-0.5 [ 0.867 .106 | 1.023 .122 | 1.095 .129
0.50 0.0 0.0 - - - - - -
+0.5 | 1.123 .160 | 1.018 .161 | 0.909 .152
-0.5 [ 0.874 .105 | 1.029 .120 | 1.101 .128
+0.5 0.0 | - - -
+0.5 | 1.122 164 | 1.020 .158 | 0.908 .152

-0.5 (0,892 121 | 1.013 .137 | 1.074 .142
-0.5 0.0 - - - - -
+0.5 | 1.106  .180 | 1.008 .180 | 0.899 .161
-0.5 [ 0.888 .119 | 1.017 .133 | 1.078 .146
0.75 0.0 0.0 - - - - - -
+0.5 | 1.098 .170 | 1.004 .175 | 0.903 .161
-0.510.890 .116 | 1.013 .136 | 1.073 .144
+0.5 0.0 - - -
+0.5 | 1.102 .178 | 1.011 .170 | 0.903 .162

-0.5 1 0933 .152 | 0.988 .181 | 1.015 .188
-0.5 0.0 - - - - - -
+0.5 | 1.077 218 | 0.988 .216 | 0.880 .194
-0.5 0931 .158 | 0993 .169 | 1.020 .192
0.90 0.0 0.0 - - - - - -
+0.5 | 1.066  .227 | 0.980 .221 | 0.886 .194
-0.5 10934 158 | 0981 .182 | 1.013 .196
+0.5 0.0 - - -
+0.5 | 1.064 .227 | 0.987 .217 | 0.887 .201
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Table 4: Means and standard deviations of measurement error corrected QRF slope esti-
mates with o2 known and g%(-) estimated

vy = —0.5 vy = 0.0 Yy = +0.5
| T | Yy | vYx | mean s.d. | mean s.d. | mean s.d.
-0.5 | 0.979 .048 | 1.002 .049 | 1.024 .052
-0.5 0.0 | 0972 .047 | 0.994 .050 | 1.021 .052
+0.5 | 0.968 .047 | 0.991 .051 | 1.017 .056
-0.5 | 0.977 .049 | 1.003 .049 | 1.027 .051
0.50 0.0 0.0 | 0.969 .046 | 0.994 .049 | 1.024 .052
+0.5 | 0.965 .048 | 0.991 .051 | 1.020 .052
-0.5 | 0.978 .048 | 1.005 .047 | 1.032 .051
+0.5 0.0 | 0.968 .047 | 0.993 .049 | 1.024 .052
+0.5 | 0.963 .046 | 0.992 .049 | 1.021 .055

-0.5 | 0.986 .053 | 0.999 .053 | 1.015 .055
-0.5 0.0 | 0.984 .051 | 0.993 .053 | 1.012 .056
+0.5 | 0.986 .052 | 0.994 .054 | 1.008 .060

-0.5 | 0.984 .052 | 0.999 .052 | 1.016 .055
0.75 0.0 0.0 | 0985 .051 | 0.993 .053 | 1.011 .057
+0.5 | 0.986 .051 | 0.994 .053 | 1.009 .057

-0.5 | 0.986 .052 | 0.997 .052 | 1.015 .054
+0.5 0.0 | 0.986 .051 | 0.994 .054 | 1.010 .057
+0.5 | 0.985 .051 | 0.994 .053 | 1.008 .057

-0.5 1 0.999 .063 | 0.987 .064 | 0.979 .067
-0.5 0.0 | 1.015 .064 | 0.994 .064 | 0.983 .067
+0.5 | 1.027 .063 | 1.003 .065 | 0.983 .068
-0.5 | 0.999 .064 | 0.985 .064 | 0.977 .068
0.90 0.0 0.0 | 1.019 .063 | 0.992 .064 | 0.980 .068
+0.5 | 1.029 .061 | 1.002 .064 | 0.984 .067
-0.5 | 1.003 .064 | 0.983 .063 | 0.975 .067
+0.5 0.0 | 1.021 .064 | 0.997 .066 | 0.977 .069
+0.5 | 1.032 .063 | 1.002 .063 | 0.982 .069
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Table 5: Means and standard deviations of measurement error corrected QRF slope esti-
mates with o2 unknown and g%(-) estimated

vy = —0.5 vy = 0.0 vy = +0.5

| T | Yy | vYx | mean s.d. | mean s.d. | mean s.d.
-0.5 | 0.820 .102 | 0.903 .136 | 0.972 .169
-0.5 0.0

+0.5 | 0.944 .182 | 0.907 .170 | 0.863 .148
-0.5 | 0.818 .101 | 0.906 .137 | 0.974 .173
0.50 0.0 0.0 - - - - - -
+0.5 | 0.947 181 | 0.904 .153 | 0.865 .156
-0.5 | 0.817 .097 | 0.908 .128 | 0.976 .188
+0.5 0.0 | - - -
+0.5 | 0.950 .172 | 0.906 .150 | 0.862 .147

-0.5 | 0.835 .118 | 0.900 .152 | 0.958 .183
-0.5 0.0 - - - - - -
+0.5 | 0.940 .187 | 0.902 .180 | 0.845 .162
-0.5 | 0.830 .116 | 0.903 .151 | 0.955 .187
0.75 0.0 0.0 - - - - - -
+0.5 | 0.939 .187 | 0.888 .175 | 0.853 .180
-0.5 | 0.830 .117 | 0.896 .136 | 0.949 .196
+0.5 0.0 - - -
+0.5 | 0.941 .178 | 0.896 .165 | 0.845 .168

-0.5 | 0.856 .163 | 0.884 .173 | 0.906 .220
-0.5 0.0 - - - - - -
+0.5 | 0939 .214 | 0.888 .212 | 0.824 .199
-0.5 | 0.859 .158 | 0.883 .193 | 0.902 .222
0.90 0.0 0.0 - - - - - -
+0.5 | 0.933 .218 | 0.878 .219 | 0.829 .214
-0.5 | 0.857 .155 | 0.878 .173 | 0.898 .235
+0.5 0.0 - - -
+0.5 | 0933 .214 | 0.883 .203 | 0.823 .206
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Figure 1: Exact and approximate T-QRFs: 7 € {0.5,0.75,0.9}, vy = +0.5
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Figure 2: Exact and approximate 7-QRFs: 7 € {0.5,0.75,0.9}, v, = 0.0
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Figure 3: Exact and approximate QRFs: 7 € {0.5,0.75,0.9}, v = —0.5
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