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Abstract

Lagrange multiplier tests against nonstationary unobserved components
such as stochastic trends and seasonals are based on statistics which, under
the null hypothesis, have asymptotic distributions belonging to the class
of generalised Cramér-von Mises distributions. Conversely, unit root tests
can be formulated, again using the Lagrange multiplier principle, so as to
yield test statistics which also have Cramer-von Mises distributions under
the null hypothesis. These ideas may be extended to multivariate models
and to models with structural breaks thereby providing a simple unified
approach to testing in nonstationary time series.
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1. Introduction

In a unit root test, the null hypothesis that a process contains a unit root while
the alternative is that it is stationary. Stationarity tests operate in the opposite
direction. The null hypothesis is that the series is stationary, while the alternative
is that a nonstationary component is present; see Nyblom and Mikeldinen (1983)
and Kwiatkowski, Phillips, Schmidt and Shin (1992). Used in the context of
testing the validity of a pre-specified co-integrating vector, the null hypothesis
is that the co-integrating relationship is true. The asymptotic distribution of



the stationarity test statistic under the null hypothesis is the Cramér-von Mises
distribution. When a time trend is present the distribution is different but can
still be regarded as belonging to the same family. Furthermore the test statistic
against the presence of a multivariate random walk and the seasonality test of
Canova and Hansen (1995) both have asymptotic distributions under the null
hypothesis which belong to a class of generalised Cramér-von Mises distributions,
indexed by a degree of freedom parameter.

The most widely used unit root test is the (augmented) Dickey-Fuller
(ADF) test; see Fuller (1996, ch 10) and the references therein. However, the
autoregressive model means that the roles of the constant and time trend are
different under the null and alternative hypotheses. This problem may be avoided
by working with models set up in terms of components; see, for example, the
discussion in Maddala and Kim (1998, pp 37-9) and the papers by, amongst others,
Bhargava (1986), Nabeya and Tanaka (1990) and Schmidt and Phillips (1992).
As with stationarity tests, the components framework leads naturally to unit root
tests which derive from the Lagrange multiplier principle rather than being Wald
tests. What has apparently not been noticed is that it is possible to formulate
the LM-type unit root tests in such a way that under the null hypothesis the
test statistics have asymptotic distributions belonging to the Cramér-von Mises
family. This extends to multivariate and seasonality tests. Thus unit root and
stationarity tests display an appealing symmetry - or perhaps asymmetry in that
the critical values for the unit root tests are in the lower tail of the Cramér-von
Mises distributions while those for the stationarity tests are in the upper tails.

The plan of the paper is as follows. Section 2 reviews the theory of
stationarity tests. The relative merits of dealing with serial correlation by the
nonparametric approach of Kwiatkowski, Phillips, Schmidt and Shin (1992) as
opposed to a parametric approach based on estimating an unobserved components
models are discussed. The extensions to testing against nonstationary seasonal
components and stochastic slopes are then reviewed.

Section 3 shows how unit root test can be set up so that the test statistics
have asymptotic distribution which belong to the Cramér-von Mises family under
the null hypothesis. For general unobserved components models the test statistics
can be constructed very easily using standardized innovations - one-step ahead
prediction errors - produced by the Kalman filter. We will refer to such parametric
tests as unobserved components unit root tests.

Section 4 extends the ideas of section 3 to multivariate models. In partic-
ular, a multivariate unit root test with a Lagrange multiplier interpretation and a
Cramér-von Mises distribution is suggested. Section 5 looks at seasonal unit root



tests, suggesting an LM alternative to the procedure of Hylleberg, Engle, Granger
and Yoo (1992). A test of the null hypothesis that there is a unit root in the slope
of a trend is derived in section 6.

Section 7 follows Busetti and Harvey (2001) in showing how the stationar-
ity tests are affected by structural breaks in a series which are modelled by dummy
variables. Although the form of the test statistics is unchanged, their asymptotic
distributions are altered. However, the additive properties of the Cramér-von
Mises distribution suggest a simplified test which is much easier to implement.
The effect on LM type unit root tests is then examined. These remain the same
unless there are breaks in the slope in which case a modification along the lines
proposed for stationarity tests leads to simplified statistics with Cramér-von Mises
distributions under the null hypothesis. Similar results hold for seasonality tests
when breaks in the seasonal pattern are modelled by dummy variables. All of
these tests extend to multivariate models.

2. Stationarity tests

This section reviews the literature on testing against the presence of nonstationary
unobserved components. The leading case, testing against a random walk in an
otherwise stationary series, is sometimes called a stationarity test. In adopting
this terminology more widely it must be realized that the model may contain
other nonstationary components, such as seasonals, which remain present under
the null hypothesis.

2.1. Testing against the presence of a random walk component

Consider a univariate unobserved components model consisting of a random walk
plus noise for a set of observations, y; :

Y ::ut_l_gt) oy ::ut—l_l_nt? t= 17"'7T7 (21)

where the n;s and €}s are mutually and serially uncorrelated Gaussian distur-
bances with variances o; and o? respectively. When o7 = 0 the random walk
becomes a constant level. Nyblom and Mékeldinen (1983) showed that the lo-
cally best invariant test (LBI) test of the null hypothesis that 072] = 0, against the

alternative that 0727 > 0, can be formulated as

n= T—QZT: [ iletr/SQ >, (2.2)

i=1 L=
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where e; = y; — 7, s> = T 'YL (y; — 7)? and c is a critical value. In fact, one
initially obtains a form of the statistic with the summations running in reverse,
that is from ¢ = 7 to T, but it is easily seen that the two statistics are identical. The
test can also be interpreted as a one-sided Lagrange multiplier (LM) test. Because
numerical optimisation is needed to estimate (2.1), implementing likelihood ratio
and Wald tests is less straightforward; see Kuo (1999).

The asymptotic distribution of the statistic under the null hypothesis is
found by first observing that the partial sum of deviations from the mean converges
weakly to a standard Brownian bridge, that is

(Tr]
o173 > es = B(r), r € [0,1] (2.3)

s=1

where [T'r] is the largest integer less than or equal to T'r and B(r) = W (r)—rW (1),
with W(-) being a standard Wiener process or Brownian motion. Hence

7> /0 ' B(r)dr (2.4)

since s2 % o2, This is the Cramér-von Mises distribution, denoted as CvM. It is
sufficient for the observations to be independent and identically distributed (with
finite variance) to yield this asymptotic distribution.

If a linear time trend is included in (2.1) so that
yt:,ut—l—ﬁt—l—st, t = 1,...,T, (25)
the test statistic, 7, is as in (2.2) except that it is formed from the OLS residuals

from a regression on a constant and time. The partial sum of residuals weakly
converges to a second level Brownian bridge, denoted By(-). Then

N, = /01 By(r)2dr . (2.6)

This is a second level Cramér-von Mises distribution, denoted C'vM, In the case
of any ambiguity the distribution in (2.4) will be referred to as CvM;.

2.2. Serial correlation

Now suppose that the model is extended so that e; is any indeterministic station-
ary process. In this case the asymptotic distribution of the n test statistic remains



the same if s? is replaced by a consistent estimator of the long-run variance (the
spectrum at frequency zero)

o2 = lim T7'E
T—oo

<i 5)] B Tiﬂ(ﬂ (2.7)

where y(7) is the autocovariance of ¢; at lag 7. Kwiatkowski et al (1992) - KPSS
- construct such an estimator nonparametrically as

s2(0)=T"" ;e§+2T*1 le (1,0) > eerr =4(0)+2 Z:l w (1, 0)3(1) (2.8)

t=7+1

where w (7, ¢) is a weighting function, such asw (7,4) =1—7/({+ 1), 7 =1, ..., L.
In what follows this statistic will be referred to as K PSS(¢). Other weighting
functions, such as the Parzen or Tukey windows, may be used.

Leybourne and McCabe (1994) attack the problem of serial correlation
by introducing lagged dependent variables into the model. The test statistic
obtained after removing the effect of the lagged dependent variables is then of the
same form as (2.2). The practical implication, as demonstrated in their Monte
Carlo results, is a gain in power. However, more calculation is involved since the
coefficients of the lagged dependent variables are estimated under the alternative
hypothesis and this requires numerical optimization.

Since we are testing for the presence of an unobserved component it seems
natural to work with structural time series models. If the process generating the
stationary part of the model were known, the LBI test for the presence of a ran-
dom walk component could be constructed. Harvey and Streibel (1997) derive
such a test and show how it is formed from a set of ‘smoothing errors’. A gen-
eral algorithm for calculating these statistics is the Kalman filter and associated
smoother. The smoothing errors are, in general, serially correlated but the form of
this serial correlation may be deduced from the specification of the model. Hence
a (parametric) estimator of the long-run variance may be constructed and used to
form a statistic which has a Cramér-von Mises distribution, asymptotically, under
the null hypothesis. An alternative possibility is to use the standardized one-step
ahead prediction errors ( innovations), calculated assuming that p is fixed'. No
correction is then needed and, although the test is not strictly LBI, its asymp-
totic distribution is the same and the evidence presented in Harvey and Streibel

! This requires estimating p, by smoothing. Another possibility is to reverse the order of the
observations and to calculate innovations starting from the filtered estmator of pp. This avoids
smoothing.



(1997) suggests that, in small samples, it is more reliable in terms of size. As in
the Leybourne-McCabe test, the nuisance parameters need to be estimated and
this is best done under the alternative hypothesis. This has the compensating
advantage that since there will often be some doubt about a suitable model spec-
ification, estimation of the unrestricted model affords the opportunity to check
its suitability by the usual diagnostics and goodness of fit tests. Once the nui-
sance parameters have been estimated, the test statistic is calculated from the
innovations or the smoothing errors with 0727 set to zero.

An advantage of the unobserved components approach is that it can easily
accommodate the kind of evolving seasonal pattern that is often a feature of
monthly or quarterly data. Within a structural time series model framework,
seasonality is modelled by a nonstationary component, v,, which has the property
that

S(L)y, ~MA(s—2) (2.9)

where S (L) = 1+ L+ ...+ L*! is the seasonal summation operator and s is
the number of seasons; see Harvey (1989, ch 2) and the next sub-section. The
inclusion of such a component in the model has no effect on testing procedures in
that the innovations can be used exactly as before.

2.3. Testing against nonstationary seasonality

Consider a Gaussian model with a trigonometric seasonal component:

Y = b+ Y + €ty t=1,...T (2.10)
where p is a constant and
s/2
Y = Sl v (2.11)
where each v, is generated by
Vit cos\; sin); Vi1 Wit j=1,...,[s/2],
= + ,
Vit —sin; cos\; Vit-1 Wi t=1,....,T,
(2.12)

where \; = 2mj/s is frequency, in radians, and w;; and wj, are two mutually
uncorrelated white noise disturbances with zero means and common variance a?.
For s even [s/2] = s/2, while for s odd, [s/2] = (s — 1)/2. For s even, the
component at j = s/2 collapses to

Vit = Vji_1COSAj + Wi, Jj=s/2. (2.13)
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If ¢; is white noise, the LBI test against the presence of a stochastic
trigonometric component at any one of the seasonal frequencies, \;, apart from
the one at 7, is

T i 2 i 2
wj = 2T’2$’22 [(Z €; COS )\jt> + <Z €, sin )\jt> ] , j=1,...,[s/2],
i=1 | \t=1 t=1

(2.14)
where s? is the sample variance of the OLS residuals from a regression on sines
and cosines. Canova and Hansen (1995) show that the asymptotic distribution of
this statistic is (generalized) Cramér-von Mises with two degrees of freedom?, that
is CvM;(2). The component at m gives rise to a test statistic which has only one
degree of freedom. A joint test against the presence of stochastic trigonometric
components at all seasonal frequencies is based on a statistic obtained by summing
the individual test statistics.® This statistic has an asymptotic distribution which
is CvuMi(s — 1). If desired it can be combined with a test against a random
walk to give a test statistic which is CvM;(s) when both level and seasonal are
deterministic.

Canova and Hansen show how the above tests can be generalized to handle
serial correlation by making a correction similar to that in KPSS, the difference
being that the correction now involves the spectrum at seasonal frequencies rather
than at zero. If the model contains a stochastic trend, then the test must be carried
out on differenced observations. A parametric test may be carried out by fitting
an unobserved components model. If there is a trend it may be a deterministic
trend, a random walk, with or without drift, or a trend with a stochastic slope, as
defined in the next sub-section. The examples given in Busetti and Harvey (2000)
indicate that the parametric test is far more effective.

2.4. Testing against a stochastic slope

Generalizing the trend in (2.1) to include a stochastic slope gives
fe = M1+ Biq 0 mNNfD(O,U%),
By = Bi1+G CtNNID(OaUz“);

where N1D(0, 0727) denotes normally and independently distributed and the level

and slope disturbances, 7, and (,, respectively, are mutually independent. If 072]

(2.15)

2 Actually Canova and Hansen derive the above statistic from a slightly different form of the
stochastic cycle model in which the coefficients of a sine-cosine wave are taken to be random
walks. However, it is not difficult to show that the model as defined above leads to the same
test statistic

*This is the LM test if 05 = o2, for all j except j = s/2 when 05/2 =02 /2.
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is assumed to be zero the trend, p,, is an integrated random walk, or ‘smooth
trend’. Nyblom and Harvey (2001) derive the asymptotic distribution of the LBI
test of Hy : ag = (0 against H; : ag > (0. However, a Monte Carlo study of the test
seems to show that it offers little gain in power over n,. Whichever test is chosen,
nuisance parameters should be estimated by fitting the smooth trend model.

If 07 > 0, then, when o7 = 0 the trend reduces to a random walk plus
drift. Differencing yields

Ayt :ﬁtfl +77t+A8t7 t:277T (216)

with 1, + Ae; being invertible. The test statistic, denoted (, for testing whether
(,_, is a random walk can be constructed as in sub-section 2.2, but its asymptotic
distribution is CvM; rather than CvM,.

2.5. The family of Cramér-von Mises distributions

The asymptotic distributions of the various test statistics described above suggest
a family of Cramér-von Mises distributions, denoted CvM,,.;(k), dependent on de-
grees of freedom, k, and whether or not a constant (p = 0) or a time trend (p = 1)
is fitted. (Recall that when p = 0, the p+ 1 subscript is often dropped). The dis-
tribution when no deterministic component is fitted (p = —1) is CoMy(k). An ex-
ample is the general test for seasonality proposed by Busetti and Harvey (2000), in
which no seasonal dummies are fitted when the Canova-Hansen statistic is formed,
and the asymptotic distribution is CvMy(s — 1). MacNeill (1978, p431) considers
fitting polynomials of degree p and tabulates CvM,4(1) for p = —1,0,1,..,5. If
a stationarity test is applied to d — th differences, as with the test for a stochastic
slope, then the asymptotic distribution of the test statistic, ¢, is CvM,_q41(1).

The Cramér-von Mises distribution with p = 0 and %k degrees of freedom

may be expanded as

CoM (k) = Z(Wj)*z)(?(k;), (2.17)
=1

There are similar series expansion representation for other members of the family.
In particular for CvMy(k) the weights are 72(j — 1/2)72, while for CvMy(k),
the weights are obtained by changing (7)™~ to /\]-_2, where \g;_1 = 2jm and \o; is
the root of tan(A\/2)=A/2 on (2jm,2(j + 1)7), j = 1,2,... An important corollary
is that, because of the additive property of chi-square distributions, the sum of
two independent random variables with distributions CvM (k;) and CvM (k) is
CoM (kl + kg)



It follows from the series expansion in (2.17) that E[CvM (k)] = k/6
and Var[CvM (k)] = k/45. As k — oo, each chi-square distribution may be
approximated by a normal and so CvM (k) may also be approximated by a normal.

Hence the 5% critical value for large £ may be approximated by k/6+1.645,/k/45.
For k = 4, this yields 1.159 as opposed to the value of 1.237, while for k = 11, the
approximate value is 2.646 as against 2.739.

The test for a stochastic slope in a smooth trend model, introduced in the
previous sub-section, suggests a further generalization of the family of Cramér-von
Mises distributions. This generalization will not be pursued here.

3. Unit root tests

3.1. Lagrange multiplier tests

The Dickey-Fuller test is based on the model
yt:a+ﬁt+¢ytfl +€t7 StNN]D((]?UQ)a t:177T (31)

with variations in which the trend and both the constant and the trend are omit-
ted. The null is that ¢ is unity, so the model is nonstationary, while the alternative
is that it is less than unity, so the model is (trend) stationary. If the model is
reformulated with Ay, as the dependent variable, the parameter associated with
Y:—1, and denoted here as p, is equal to ¢ — 1 and hence is zero under the null
hypothesis. The test statistic is based on the regression coefficient of the lagged
dependent variable or its ‘t-statistic’. Lagged differences can be added to the right
hand side without affecting the asymptotic distribution of the estimator of p.

Formulating the unit root test in an autoregressive framework is compu-
tationally convenient. However, as Schmidt and Phillips (1992, p 258) observe,
the parameterizations of (3.1) are “...not convenient...” because “...they handle
level and trend in a clumsy and potentially confusing way.” Specifically the mean-
ings of a and ( differ under the null and alternative hypotheses. These difficulties
can be avoided by following Bhargava (1986), Nabeya and Tanaka (1990) and
Schmidt and Phillips (1992) and setting up the unit root test of Hy : ¢ = 1 against
Hy : ¢ < 1 within the components framework

Y = a+ Bt + py, pe = ey +1m, t=1,....T, (3.2)

The interpretation of a and 3 is now the same under both the null and alternative
hypotheses.



Schmidt and Phillips (1992) show that LM tests of the unit root hypoth-
esis are based on the residuals obtained by estimating a and # under the null
hypothesis. Since

Ay =0+n, t=2,.,T (3.3)

under the null hypothesis, these residuals are defined by
=y —aog—pt, t=1,.,T

where f = Ay = X Ay /(T — 1) = (yr —y1)/(T' — 1) and &y = y; — 5, where
ag = a + p,. Note that iy = 0, while fi,; = 0 provided a slope, 3, is estimated.
Schmidt and Phillips (1992) formulate their test in terms of a regression analogous
to the one used in the Dickey-Fuller test, with y, ; replaced by i, ; and a constant
but no time trend included. The tests are based on the regression coefficient of
[, or its ‘¢-statistic’. A variant of the test, studied further in Schmidt and Lee
(1991), excludes the constant.

Now consider the test with critical region

T T
712 1:2 Z — 1) P=(<c (3.4)
t=1

t=1

where [i, is taken to be zero. This corresponds to the N, test suggested by Bhar-
gava (1986) except insofar as his test statistic, being of the von Neumann ratio
form, is equal to 1/7°C. It is a transformation of the Schmidt-Phillips test statis-
tic given as T times the coefficient obtained by regressing A, on p,_; without
a constant term; it follows from Schmidt and Phillips (1992)and the appendix
that this statistic is equal to —1/2¢. The ( statistic is the same as R, in Nabeya
and Tanaka (1990), who show that the test is locally best invariant and unbiased
(LBIU). If it is written in first differences it becomes

(-7 Y [zAut] /3 (80 (35)
i=1 Lt=1

This is of the same form as the 7 test statistic, (2.2), except that it applies to
observations in first differences. Provided the slope is estimated so that Apu, =
Ay, — Ay for t = 2, ... T, it is immediately apparent that the statistic has a CvM;
distribution under the null hypothesis. However, while the value of the stationarity
statistic, 7, increases under the alternative, the value of ( decreases as it is T'C
which has a limiting distribution under the alternative; compare Schmidt and
Phillips (1992, p 267). Thus the appropriate critical values are those in the lower
(left-hand) tail of the CvM distribution.
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If there is no time trend in the model*, Ay is omitted and the asymptotic
distribution of the statistic is Cv M. In this case it is useful to label the statistic (;,
and to denote the time trend statistic as (, when there is any ambiguity. If there is
neither constant nor time trend, so that the statistic, ¢, is constructed by setting
I, =y for all t = 0,1, ..., T the asymptotic distribution is again CvM, ( although
a non-zero initial value has more effect on the small sample distribution). From
Tanaka (1996, table 9.1), the critical values at the 5% and 1% levels of significance
are 0.0565 and 0.0345 if no time trend is included and 0.0366 and 0.025 if one is
included®.

The modified statistic
T~ (e — 0)*) Y (i — f)?, (3.6)

where i is the mean of the fi;s, has an asymptotic distribution in which the B(r)
in (2.4) is replaced by a de-meaned Brownian bridge. It is a transformation of
the test statistic in Schmidt and Phillips (1992) and the R statistic in Bhargava
(1986). It corresponds directly to R3 in Nabeya and Tanaka(1990) and from their
table 1 the 5% critical values are 0.036 if no time trend is included and 0.027 if
one is included. Schmidt and Lee (1991) compare the tests based on (3.5) and
(3.6) using Monte Carlo simulations and seem to come down in favour of (3.6)
though the evidence is by no means clear-cut. Nabeya and Tanaka (1990), using
an analysis based on limiting powers find that there is no dominance of one test
over the other for the time trend model considered by Schmidt and Lee (1991).
Furthermore, if a time trend is not present, then ( is better. Further discussion
can be found in Tanaka (1996, p348), where ( is labelled Rs.

The distribution theory surrounding ( can be generalised by letting the
deterministic part of (3.2) be a p — th order polynomial. The residuals in (3.5)
are then obtained by regressing Ay; on a polynomial of order p — 1 with the result
that the test statistic ¢4, is asymptotically CvM,, under the null hypothesis.

The right hand tail of ( can be used to test against explosive processes,
that is ¢ > 1; see Bhargava (1986) and Nabeya and Tanaka (1990). However,
another interpretation of the alternative, which fits more nicely into the stochastic
trends framework, is that the test is against a stochastic slope. In other words it
is the test motivated by (2.16): hence the ¢ notation.

“The test is no longer the LM test when there is no time trend; see the discussion in Tanaka
(1996, ch 9).

’Nabeya and Tanaka (1990, table 4) give finite sample critical values. For example with a
time trend the 5% critical values for T' = 25 and 50 are 0.042 and 0.039 respectively.
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3.2. Serial correlation and unobserved components

Nabeya and Tanaka(1990) consider methods of adjusting the statistics (3.5) and
(3.6) so that the same asymptotic distribution is obtained under the null hypoth-
esis when 7, is serially correlated. They suggest using a nonparametric estimator
of the long-run variance, constructed in a similar way to (2.8) with Af, replacing
e;. This corresponds to the KPSS statistic computed from first differences. How-
ever, under the alternative the spectrum of first differences is zero at the origin.
Schmidt and Phillips (1992, p267) make a similar proposal but argue that a consis-
tent test requires the use of residuals obtained (under the alternative hypothesis)
from a Dickey-Fuller regression based on (3.1). Another option would be to base
a test on the coefficient of i, ; from an augmented Dickey-Fuller regression as in
Oya and Toda (1998)

If a fully parameterized UC model is set up, an LM-type test may be
carried out by estimating the model under the null hypothesis and then forming a
test statistic from the standardized innovations, ;. These are calculated starting
with the smoothed estimator of y, so they run from ¢ = 1 to 7. Assuming the
innovations have been standardized so as to have unit variance, the unobserved
components unit root test statistic is simply

g fe]

Alternatively smoothing may be avoided by reversing the order of the observations
and calculating ( a different set of ) innovations starting from the filtered estimator

of pp.

The case for a parametric UC approach can be illustrated simply by
adding white noise to (3.2) to give

Yy =+ Bt + p, + &y, t=1,....T. (3.8)

This model is easily estimated when ¢ = 1 and so forming the test statistic
from the innovations, as in (3.7), is straightforward. (Note that if o is zero,
so that the model reduces to (3.2), then 7; = 0). Applying the Dickey-Fuller
test when the data are best approximated by (3.8) is likely to result in too many
rejections under the null hypothesis if the ratio of 0727 to o2 is low. The reduced
form is an ARIMA(0,1,1) model with MA parameter close to minus one and the
poor performance of the augmented Dickey-Fuller test is well documented in this
situation; see, for example, Pantula (1991). Nonparametric corrections based on
the estimation of the long-run variance, as in Schmidt and Phillips (1992), are

12



also likely to be poor for this kind of model for the reasons given in Perron and
Mallet (1996).

Stochastic Volatility- The discrete time Gaussian SV model may be written
as
Tt:O'téft:O'gteo'E)ht, €tNNID(0,1), t= ]_,...,T,

where r; is a return on an exchange rate or stock price, o is a scale parameter
and h; is a stationary first-order autoregressive process

hy = ohy—1 + 1y, e ~ NID(07‘7727) (3.9)

Squaring the observations and taking logarithms gives

y, = logr? =logo® + h, +1loge?, t=1,...T. (3.10)

Ignoring the time trend, the model is as in (3.8), except that loge? is far
from being Gaussian, being heavily skewed with a long tail. However, this
makes no difference to the asymptotic distribution of the test statistics we
are about to consider.

In the application in Harvey et al. (1994), the r; is the difference of 946
logged daily exchange rates of the dollar against another currency start-
ing on 1st November 1981; the data are provided with the STAMP package
Koopman et al (2000). Various tests were applied to the observations trans-
formed with a modification made to logr? to avoid distortion from inliers;
see Fuller (1996, p 496). The same transformation was used when the esti-
mates of the ¢ parameters were obtained by quasi-ML using STAMP.

The results of the n test are shown in table 1. All the values apart from the
Deutschmark are significant® at the 1% level indicating the presence of a
random walk or, perhaps, a very persistent AR(1) component in volatility.
Note the reduction in power if a KPSS correction is (unnecessarily) made.
Higher lag length leads to even smaller statistics. For example, K PSS(25)
for the Pound is 0.515. The unit root test statistics are also shown in the
table. None of the ( statistics rejects at any conventional level of significance.
Indeed their values are comfortably located near the median of the null
hypothesis asymptotic distribution. The fact that the ADF t—statistics (
with constant included ) all lie way beyond the 1% asymptotic critical value
of -3.42 is a reflection of the fact that the autoregressive approximation is

5The 1%, 5% and 10% upper tail critical values for CvM; are 0.743, 0.461 and 0.347 respec-
tively.
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very poor because 0727 is dominated by the variance of log 2. However, if the
lag length is increased to 25, the ADF statistic for the Pound is -3.37 and
so just fails to reject. The poor autoregressive approximation has a similar
effect on the Oya-Toda version of the LM type test.”

Table 1 Tests of stochastic volatility of daily exchange rates

Currency 7 KPSS09) ¢ ADF(9) ¢

Pound 1.319 0.853 228 -6.43 988
DM 0.423 0.256 371 -7.50 967
Yen 5.122 2.999 439 -7.63 .998
Swiss Fr  0.774 0.465 466 -7.44 .980

The model in (3.8) may be generalised by including other components
such as seasonals and cycles. Such models are easily estimated with ¢ set to one.
The 7 statistic is computed from the innovations obtained from the Kalman filter
by setting 0727 to zero. Its aim is to determine whether a restriction should be
placed on the model, while the ( test is to find out if it should be more general.

Quarterly consumption - Harvey and Scott (1994) showed that a model con-
sisting of a random walk with drift and a stochastic seasonal component
gives a good fit to quarterly UK non-durable consumption.® The ( statistic
calculated from the innovations from this model is 0.165. This is well away
from the lower tail 10% critical value for the CvM; distribution which is
0.025 and so we cannot reject the hypothesis that the stochastic trend com-
ponent is a random walk against the alternative that it is a stationary AR(1)
process. The same statistic’ can be used to test the null hypothesis that the
slope, [, is constant against the alternative that it is a random walk; see
sub-section 2.4. It is the upper tail of the C'vM; distribution which is now
relevant, but the 10% point is 0.347 so again the null is clearly not rejected.

"Having subtracted the first observation, the ADF(9) t-statistic is found to be -6.44, while
the estimate of ¢ is 0.501.

8The data are given in the STAMP package. As in Harvey and Scott the sample period is
5793 to 92q2. The estimates of the level and seasonal variances are found to be 8.908 x 1073
and 1.012 x 1079, which differ slightly from those reported in Harvey and Scott due to small
revisions in the data.

9The nuisance parameters are normally estimated under the alternative for a ‘stationarity’
test. In this context it makes little difference since the seasonal variance is not sensitive to the
specification of the trend.
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3.3. Seasonal unit root tests

The test of Hylleberg et al. (1990) - HEGY- is related to CH in that it is testing
the null of a nonstationary seasonal against the alternative of a stationary sea-
sonal; thus it parallels the relationship between (augmented) Dickey-Fuller test
and KPSS. Rodrigues (2000) sets up LM type tests within the Schmidt-Phillips,
or rather Schmidt-Lee, framework for the autoregressive model used by HEGY.

The UC seasonal unit root test can be set up by introducing a damping
factor into (2.12) so that each trigonometric term in the seasonal component is
modelled by

Vit cosAj  sin Vi1 Wit j=1,...,[s/2],
= o, + )
Vit —sin); cos ) Vi Wi t=1,...,T.
(3.11)
For s even
Vit = V11 CO8 N + Wy, Jj=s/2. (3.12)

The seasonal component, obtained by summing the 7/ ;s is then embedded in a
general UC model which contains deterministic seasonal trigonometric terms. A
parametric test of the null hypothesis that the component at a particular frequency
is nonstationary against the alternative that it is stationary , that is Hy : ¢; =1
against H; : ¢; < 1 can be constructed from the null hypothesis innovations as

w; :2T2;T; [(iatcosAjt>2+ <t:ill7tsin)\jt>2] <ec, j=1,...[(s-1)/2.

t=1

(3.13)
Under the null hypothesis the asymptotic distribution is CvM(2) since if the
nonstationary seasonal operator, 1 — 2cos\;L + L?, were to be applied it would
remove the corresponding deterministic seasonal. For j = s/2

T /i 2
W2 = T2 Z <Z U; COS /\jt>
i=1 \t=1

and this has a CvMj(1) asymptotic distribution under the null. The full seasonal
test statistic is formed!® by summing the w’s and its asymptotic distribution
under the null is CvMy(s —1). With seasonal slopes the asymptotic distributions
are CvM,(.); compare Smith and Taylor (1998).

10T conjecture that, if seasonal slopes are included, this is the LM test if the (/)3-5 are the same
for all j.
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Seasonality tests based on an autoregreesive model, will tend to perform
poorly in situations where an unobserved components model is appropriate. The
simulation evidence in Hylleberg (1995) illustrates this point by looking at the
results of using the HEGY test for moving average models, which, as Harvey and
Scott (1994) note, typically arise as the reduced form of unobserved components
models.

A rejection of the null hypothesis in a seasonal unit root test may be an
indication of a deterministic seasonal component rather than a stationary seasonal
component of the form (3.11); see the evidence in Canova and Hansen (1995, p
244). The appropriate test of the null of deterministic seasonality against the
alternative of strong stationary seasonality, that is (3.11) with ¢; close to one, is,
perhaps surprisingly, the same as the test against non-stationary seasonality de-
scribed in sub-section 2.3; this follows form results in Harvey and Streibel (1998).
This should be borne in mind when interpreting the results of seasonal stationarity
and unit root tests.

3.4. Slope unit root test

The stochastic trend of (2.15) may be modified so as to give what is sometimes
called a damped trend, that is

Be = M1+ Bea+nyg ntNN]D((),U%);
By = o84+, CtNNfD(O,Ug),

If it is this component which appears in (3.2), a test of Hy : ¢ = 1lagainst
H, : ¢ < 1isa unit root test on the slope. In the special case of the smooth trend
model when 072] = 0, the test statistic is simply

T [ 2 7T
E=T"1> l A2yt] /> (A%y)?
=3 Lt=3 t=3
The asymptotic distribution of this statistic is CvM,. If (3.2) is generalised so
as to contain a deterministic p — th order polynomial trend, the residuals from a
regression of A%y, on a polynomial of order p—2 are used to form the test statistic

which is then asymptotically CvM,_;.

The stochastic trend component will not generally have 0727 set to zero and
it will usually appear in a model of the form (3.8), possibly with other components
such as stochastic cycles and seasonals. A parametric test statistic may then be
constructed from the innovations from the model fitted under the null hypothesis.
The tests staistic is actually (3.7), but renamed £ because what is now being
tested is the null hypothesis of a second unit root.
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4. Multivariate tests

4.1. Testing against a multivariate random walk

If y; is a vector containing N time series the Gaussian multivariate local level
model is

Yi = MytEq, e, ~ NID(0,X,),
ne = My +my, n, ~NIDO0,%,), t=1,..,T, (4.1)

where ¥, is an N x N positive definite (p.d.) matrix. Nyblom and Harvey (2000)
show that an LBI test of the null hypothesis that 3,= 0 can be constructed
against the homogeneous alternative 3,=¢3.. The test has the rejection region

n(N) = tr [S7'C| > ¢, (4.2)

where ,

T
and S=T"1> ee,/. (4.3)

t=1

T T i
C=T7?) lZet] lZet
i=1 Li=1 =1 |
where e; = y; —¥. Under the null hypothesis, the limiting distribution of (4.2)
is Cramér-von Mises with N degrees of freedom, CvM(N). The distribution
is CvMsy(N) if the model contains a vector of time trends. Although the test
maximizes the power against homogeneous alternatives, it is consistent against
all nonnull 3 s since T~'n(N) has a nondegenerate limiting distribution. This
limiting distribution depends only on the rank of X,.

The n(N) test can be generalized along the lines of the KPSS test quite
straightforwardly as in Nyblom and Harvey (2000). Parametric adjustments can
also be made by the procedure outlined for univariate models. This requires
estimation under the alternative hypothesis, but is likely to lead to an increase in
power. If there are no constraints across parameters, it may be more convenient
to construct the test statistic, (4.2), using the innovations from fitted univariate
models. Alternatively, the lagged dependent variable method of Leybourne and
McCabe (1994) may be used. This is the approach taken by Kuo and Mikkola
(2001) in their study of purchasing power parity. They conclude that dealing with
serial correlation in this way leads to tests with higher power than those formed
using the nonparametric correction.

In the above tests no restrictions are put on the matrices S and C. If N
is large this may be a problem- indeed S cannot be inverted for N > T'— and it
may be necessary to assume some structure on the covariance matrices to reduce
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the number of parameters to be estimated. One possibility is to impose some
spatial pattern. Panel methods may appear to offer a way out of this problem
since if the units are mutually independent, the individual 7 statistics may be
summed to give an overall test statistic which, by the central limit theorem is
asymptotically normal under the null hypothesis. Alternatively the numerators
and denominators may be summed separately as in Bhargava (1986, p 378-9).
However, such statistics will be different from the above multivariate statistic

unless S is diagonal and will be invalid with correlated units; see, for example,
O’Connell (1998).

4.2. Testing for common trends

If the rank of X, is K, the model has K common trends. Suppose we wish to test
the null hypothesis that rank(3,) = K against the alternative that rank(X%,) >
K for K=1,..,N—1.Let \; > --- > Ay be the ordered eigenvalues of S~*C. The
n(N) test statistic is the sum of these eigenvalues, but when the rank of X, is K7,
the limiting distribution of 77'n(N) is the limiting distribution of 7~! times the
sum of the KT largest eigenvalues. This suggests basing a test of the hypothesis
that rank(X,) = K on the sum of the N — K smallest eigenvalues, that is

nK,N)=Ags1 4+ Ay, K=1,..,N—1. (4.4)

If KT > K the relatively large values taken by the first KT — K of these eigenvalues

will tend to lead to the null hypothesis being rejected. This is the common trends
test. Of course if we allow K to be zero, then n(0, N) = n(N).

The distribution of the common trends test statistic under the null hy-
pothesis is not of the Cramér-von Mises form but it does depend on functions of
Brownian motion. The series expansion for K =1,...,N — 1 is

J=1 Jj=1 j=1 =1

(4.5)
where v; and u; are, respectively, K x 1 and (N — K) x 1 vectors which are
mutually independent NID(0,I). The significance points for (K, N) depend on
both K and N and are tabulated in Nyblom and Harvey (2000). A different set
of critical values are used if the model has been extended to include time trends.
Parametric and nonparametric adjustment for serial correlation may be made in
the common trends test in much the same way as was suggested for the n(NV) test.

n(K,N) 5 f: (mf) " wju— tr (i ()" ujv;) (f: () vjv;) (i (mf) " v
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4.3. Multivariate unit root tests

Taylor and Sarno (1998, p288) generalise the ADF test by using the SURE tech-
nique to fit N equations of the form (3.1) with lagged first differences added to the
right hand side. A multivariate Wald statistic, denoted MADF, is then formed
to test the null hypothesis that all equations contain a unit root. They are not
able to derive an asymptotic distribution for this test statistic. Abuaf and Jorion
(1990) had earlier proposed a simplified test based on the assumption that the
autoregressive parameter is the same in all equations, but even in this case no
asymptotic distribution has been derived.

The UC model in (3.2) generalizes to

Yt :a+/6t+l“bt7 /J‘t: ¢ut—1+nt7 t: 17"'7T7 (46)
with Var(n,) = 3,. As in the univariate case, residuals are formed by estimating

the level and slope coefficients under the null hypothesis. Generalizing the test
statistic (3.4) based on detrended observations yields

(V) = tr {% [Z Aﬁtm;] Zﬁtﬁi} (47)

where fi, =y, — &g — Bt for t = 1,..,T and fi, = 0 with 8 = (yr — y1)/(T — 1)
and & = y; — 3. Writing ¢(N) in a form analogous to (4.2) makes it apparent
that its asymptotic distribution under the null hypothesis is CvM; (N) with the
lower tail defining the critical region. If there is no time trend the critical values
are taken from the CvMy(N) distribution. The (V) test is consistent but only
against alternatives in which all the series are stationary. Like n(N), the ((N)

statistic is invariant to linear transformations of the data.

Now suppose that, as in Abuaf and Jorion (1990), ¢ =¢Iy where ¢ is a
scalar. The GLS estimator of ¢ — 1 constructed from the observations detrended
by setting ¢ equal to one is

T T
=1 =3 B A 3 B (48)
t=2 t=2

Provided the slope is included, a little algebraic manipulation, given in the ap-
pendix, shows that the numerator is constant and as a result ¢ (N) is equal to
—N/{2T(¢ — 1)}. The LM test of the null hypothesis that ¢ = 1 is based on the
statistic

T T
LM = (] Aﬁizfﬁtfl)Q/Zﬁiflﬁfﬁtfl
t=1 t=1

19



and this is also a monotonic transformation of ((N) being equal to N?/4 ((N). As
in the univariate case, a one-sided test based on the lower tail of the distribution
of (V) means that the alternative is ¢ < 1.

If the model is generalised to include more components a parametric
test statistic can be constructed from the vector of standardized innovations.
Corresponding to (3.7) this statistic is

T T i T T i i
((N) =tr {T2 > [Z Dt] [Z 17;] } =7y lz 17;] lz 174 : (4.9)

i—1 Lt=1 t=1 i—1 Lt=1 t=1
If the innovations from fitted univariate models are used, the test statistic is of
the form (4.2) so as to allow for cross-correlation.

Application to Stochastic Volatility- The multivariate stationarity and unit
root test statistics for all four daily exchange rate series considered at the
end of section 3 are n(4) = 8.325 and ((4) = 0.790. Thus the stationarity
test rejects the null hypothesis that there are no random walk components
in the series, while the unit root test just rejects the null that all four series
have unit roots at the 10% level of significance.!' This is not inconsistent
with the conclusions in Harvey et al (1994) and Nyblom and Harvey (2000)
that the series have just two common trends.

4.4. Seasonal unit root tests

The seasonality tests can be generalised to multivariate series. For example,
the multivariate test against nonstationary seasonality in N series will have a
CvM;(Ns — N) distribution under the null hypothesis, while the seasonal unit
test will be based on CvMy(Ns — N). A test of the null hypothesis that there
is a certain number of common seasonal factors, corresponding to seasonal co-
integration being present, can be obtained by generalizing the common trends
test. However, this does require the construction of tables of critical values.

5. Tests when breaks are present

Suppose there is a structural break in the trend at a known time 7 + 1, and let
A = 7/T denote the fraction of the sample before the break occurs. Consider the
following models:

"The 5% and 10% lower tail critical values for CvMg(4) are 0.641 and 0.796 respectively.
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[1] Yo =y +Oow + &

2] g = g+ Bt + 6w + Sa(wit) + &
2a] yo = py+ Bt +bw+ e (5.1)
2b] y: = py B+ sz + ey,

where 41, is a random walk, ¢, is white noise, 6 and 65 are parameters and

0 fort<r

W, — 0 fort<r
t t—r1 fort>r1

1fort>r and Zt:{
There is no slope in model [1] and so the only break is in the level. The other
models all contain a time trend. In model [2] there is a structural change in both
the level and the slope. Model [2a] contains a break in the level only while [20]
corresponds to a piecewise linear trend.

5.1. Stationarity tests

Under Gaussianity the LBI (and one-sided LM) test statistics for Hp : 0727 =0
against H; : 0727 > 0 in the above models are of the form (2.2), but have asymptotic
distributions under the null hypothesis which depend on A. Bearing in mind the
additivity property of the Cramér-von Mises distribution noted in sub-section
2.5, Busetti and Harvey (2001) propose the following simplified test statistics for
models [1] and [2]:

T t T t
tzjl( 168)2 2 Z;Fl( Z+1 65)2
* 21 8= —Tro P =1,2. 5.2
; 7242 + (T _ 7')282 ) ? ) ( )

The LBI statistics differ only insofar as the two parts of (5.2) receive weights of
A% and (1 — \)? respectively. The simplified statistics still depend on the location
of the breakpoint, but their asymptotic distributions do not since

0 = { CvM,(2) fori=1 (5.3)

CvMy(2)  fori=2.

Not having to consult a table giving the distribution of the test statistic
for all the possible values of A is a big advantage. Furthermore the tests imme-
diately generalize to cases where there are several structural breaks. If there are

21



k breaks the distribution of the simplified statistic converges to a (second-level)
generalized Cramér-von Mises distribution with k£ + 1 degrees of freedom, that is
CoM;(k+1), i = 1,2. The Monte Carlo evidence presented in Busetti and Harvey
(2001) indicates that the LBI test is clearly superior only in the region close to
the null hypothesis and for break points near the beginning or end of the sample.

5.2. Unit root tests

The effects of breaks on LM type unit root tests can be analysed by taking first
differences in (5.1). For level breaks, [1] and [2a], differencing creates a single
outlier at time 7 + 1. This may be removed by a ‘pulse’ dummy variable which
takes the value one at 7 + 1 and is zero otherwise. If the test statistics are
constructed as in (3.4), their asymptotic distributions are unaffected - in terms of
(3.5) all that happens is that Afi, ., is zero. Thus
CvMy(1) fori=1
G = { CvM,(1)  fori = 2a. (5:4)

The breaks in trend, on the other hand, do affect the distributions of the test
statistics. Taking first differences of a piecewise linear trend, [2b], results in a
level dummy variable being fitted from 7 4 1 onwards. In model [2] a pulse at
T-+1 is also needed. However, in both cases the additivity property of the Cramér-
von Mises distribution can be exploited so that statistics constructed in a similar
way to those in (5.2) have CvM;(2) asymptotic distributions under the null, that
is

T, T ~9
tzjl He t ZJrl He
== —L = 2,2b .
with
= CuM(2) fori=2,2b. (5.6)

If the models are more general and parametric test statistics are constructed from
innovations, estimation is carried out with the dummy variables in their original
undifferenced form. The inclusion of the random walk component has the same
effect as differencing.

5.3. Multivariate series and seasonality

Busetti and Harvey (2000) extend the Canova-Hansen test to allow for dummy
variables modelling breaks in the seasonal pattern. A simplified test, constructed
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on the same basis as (5.2), has a CvM;(2s — 2) asymptotic distribution when
there is one such break. The asymptotic distributions of seasonal unit root tests,
on the other hand, are not affected by the inclusion of seasonal break dummies
since these become pulse variables under the null hypothesis.

Busetti (2001) extends the multivariate tests of sub-sections 4.1 and 4.2
to deal with situations where there are breaks in some or all of a set of N time
series. He shows that a simplified version of the test against a multivariate random
walk can be constructed by allowing for a break in all the series at the same point
in time. This statistic, denoted n}(V), generalises (5.2) and has the CvM(2N)
asymptotic distribution. The modification of multivariate unit root tests follows
along similar lines to yield a generalisation of (5.5).

6. Conclusions

Unit root tests can be set up using the LM principle so as to give statistics which,
under the null hypothesis, have Cramér-von Mises distributions in large samples.
Stationarity test statistics have asymptotic distributions belonging to the same
family. This provides a remarkable unification and simplification of test proce-
dures for nonstationary time series. The distributions are easily tabulated and
have nice properties, such as additivity. For the simpler models exact distribu-
tions of the test statistics can be obtained, but once nuisance parameters have
to be estimated, the case for just using the asymptotic distributions becomes
stronger. In any case it seems that the asymptotic critical values provide a good
approximation even for relatively small sample sizes. The additivity property of
the Cramér-von Mises distribution means that it is easy to set up tests with an
allowance made for any intervention variables used to model structural breaks.

The tests are obtained by working within an unobserved components
framework. There is a strong case for estimating the nuisance parameters in such
models and constructing parametric tests. Autoregressive approximations and
nonparametric estimates of the long-run variance can often lead to tests with
unreliable type I errors and/or low power. Modifications could be made to the
tests along the lines suggested by Elliott, Rothenberg and Stock (1996) or Hwang
and Schmidt (1996), but this would be at the cost of losing the simplicity and
generality of the test statistics and their asymptotic distributions.
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A. Appendix

Let T times the coefficient obtained by regressing A, on p,_; without a constant
term be denoted by 5. To show the relationship with (, write the denominator of
(3.5) as

T T
— s 1 = Zﬁ% + Zﬁt&Q - 22/]1:/]1:71

M%

i
I
-
I

I
-
I

I
i
I

T T
= 2 Zﬁ?—l_z,aﬁb + T:_2ZAMtﬁtfl+/’j’%

This uses the fact that fi, is always zero. Note that if the summation starts at

t = 2 then
T

T
Z(/jt - /7’1‘/—1)2 = -2 ZAﬁtﬁt—l + ﬁ% - /7/%

t=2 =2
With a constant fi; = 0 and with a time trend as well fi; = 0 so that ( = —1/2p.

In the multivariate model, 7 is T(¢ — 1) in (4.8). Applying the same
argument gives

T T
Z A AR, = =2 AR + S
t=1 =1
If 3, is estimated by T Y7 | Afi, Afi;, the left hand side of the above expression
reduces to TN because >/ A% AR, = tr [E; 1T AﬂtAﬂg} and so, pro-
vided the slope is estimated, it follows that ((N) = —N/2p. As regards the LM
test, evaluating the first derivative of the log-likelihood function at ¢ = 1 yields

Olog L ro B s oo
855 = > (B — o0, 1) iy =Y A, = —1/2NT.
t=1 t=1

On evaluating the second derivative we find that (N) = N*/4LM.
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