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This paper presents empirical evidence concerning the finite sample performance of

empirical likelihood-type estimators when the estimating functions are well determined

and the parameters are over identified.  There are suggestions in the literature that

traditional and non-traditional asymptotically efficient estimators based on moment

equations may, for the relatively small sample sizes usually encountered in econometric

practice, have relatively large biases and/or variances and provide an inadequate basis for

estimation and inference.  Given this uncertainty we use a range of data sampling

processes and Monte Carlo sampling procedures to accumulate finite sample empirical

evidence concerning these questions for a family of empirical likelihood-type estimators.

Solutions to EL-type empirical moment-constrained optimization problems present

formidable numerical challenges. We identify effective optimization algorithms for

meeting these challenges.
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Empirical Evidence Concerning the Finite Sample Performance

of EL-Type Structural Equation Estimation and Inference Methods

1. Introduction

It is known in the literature that a number of moment-based estimators for the

linear structural model are asymptotically normally distributed and mutually

asymptotically equivalent.  There is also a growing body of evidence (see for example

Newey and Smith (2000) and the references given therein) that traditional asymptotically

efficient moment-based estimators may exhibit large biases and/or variances when

applied to the relatively small samples usually encountered in applied economic research.

Econometric models that specify a set of moment-orthogonality conditions

relating to the underlying data sampling process, and involving parameters, data

outcomes, and model noise, lead to a corresponding set of unbiased empirical estimating

functions. These estimating functions often involve instrumental variables (IV) whose

number exceeds the number of unknown parameters of interest, which then

overdetermines the model parameters.  However, in some instances the instrumental

variables may be only moderately or weakly correlated with the endogenous variables in

the model, in which case while overdetermined, the parameters may not be strongly

identified.  In this situation it is generally recognized that significant bias and/or

variability problems may arise and that large sample normal approximations may provide

a poor basis for evaluating finite sample performance (see for example Nelson and Startz

(1990), Maddala and Jeong (1992), Bound, Jaeger and Baker (1995), and Stock and

Wright 2000).
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In an effort to avoid an explicit likelihood function specification, semi-parametric

empirical likelihood (EL) type estimators have been proposed as a moment based

estimation and inference alternative to classical maximum likelihood methods (Owen,

1998, 1991; Qin and Lawless, 1994; Imbens, et al. 1998; Corcoran, 2000 and

Mittelhammer, Judge and Miller, 2000).  Given this new class of estimators, and in line

with the ongoing search for linear structural equation estimators that are efficient, have

small finite sample bias, and in terms of associated inference procedures, have accurate

size, good power, and short confidence intervals with proper coverage, the purpose of this

paper is to provide some empirical evidence relating to the finite sample performance of a

range of empirical likelihood-type estimators in situations where the estimating functions

overdetermine the model parameters, and the parameters are moderately well-identified. 

Using Monte Carlo sampling procedures and a range of underlying data sampling

processes relating to structural equations, we provide finite sample comparisons of the

optimal estimating function (OptEF) and two stage least squares (2SLS) estimator, the

generalized method of moments (GMM) estimator based on an identity weight matrix,

and a trio of empirical likelihood (EL) type estimators for recovering the unknown model

parameters, including the empirical likelihood (EL), exponential empirical likelihood

(EEL) and log Euclidean likelihood (LEL) estimators. As noted by Imbens, et. al. (1998),

the computation of solutions to EL type moment-constrained optimization problems can

present formidable numerical challenges. From both a theoretical and practical

standpoint, reliable and efficient solution algorithms are critically needed, and we suggest

an algorithm that performed well in this regard.
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In the context of finite sample situations where the instrumental variables (IV) are

moderately well-correlated with the endogenous variables in question and the

orthogonality condition between the IV and the structural equation noise holds, we seek

information relative to the following questions.

i)  Do traditional OptEF-2SLS-Optimal GMM and non-optimal GMM

estimators exhibit substantial small sample bias?

ii)  Do empirical likelihood (EL) type estimators exhibit substantial small

sample bias?

iii)  In terms of bias, are the EL-type estimators superior to traditional

estimators?

iv)  In terms of precision, are the EL-type estimators superior to traditional

estimators?

v)   Within the family of EL-type estimators, what is the relative

performance of these estimators in terms of small sample bias and

variance?

vi)  In terms of inference in small samples, do traditional testing

procedures have, relative to EL-type testing procedures, more accurate

coverage, shorter confidence intervals,  and/or test sizes that are closer

to nominal target size?

vii) What is the relative performance, in small samples, of the traditional

and EL-type inference procedures relative to testing the moment

restrictions?
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viii) What is the basis for a reliable and efficient solution algorithm for

EL-type moment-constrained estimation problems?

The format of the paper is as follows: In Section 2 the linear structural model is

defined and the competing semiparametric estimators and inference procedures are

specified.  In Section 3 the design of the sampling experiment is presented and the

alternative data sampling processes are defined. Monte Carlo estimation results are

presented and discussed in section 4 .  Conclusions and implications are presented in

section 5.

2. Statistical Models, Estimators, and Inference Procedures

Consider a single structural equation that is contained within a system of structural

equations and that has the semiparametric linear statistical model form =Y Xβ + ε . We

can observe a vector of sample outcomes ( )1 2, , , ny y y ′=y �  associated with this linear

model, Χ  is a ( )n k×  matrix of stochastic explanatory variables, ε  is an unobservable

random noise vector with mean vector 0 and covariance matrix 2
nσ I , and ∈β B  is a

( )1k ×  vector of unknown parameters.  If one or more of the regressors is correlated with

the equation noise, then E 1n− ′� � ≠� �X 0ε  or plim 1n− ′� � ≠� �X 0ε  and traditional Gauss-

Markov based procedures such as the least squares (LS) estimator, or equivalently the

method of moments (MOM)-extremum estimator mom
� =β ( )1arg n−

∈Β ′� �− =� �X Y Xβ 0β , are

biased and inconsistent, with unconditional expectation and probability limit given by

�� �Ε ≠� �β β  and plim �� � ≠� �β β .
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2.1 Traditional Instrument-Based Estimators

Given a sampling process characterized by nonorthogonality of X and ε , and in order

to avoid the use of strong distributional assumptions, it is conventional to introduce

additional information in the form of a ( ) ,n m m k× ≥ , random matrix Ζ  of instrumental

variables, whose elements are correlated with Χ  but uncorrelated with ε .  This

information is introduced into the statistical model by specifying the sample analog

moment condition

( ) ( ) p1, , ; n− ′= −  →� �� �h Y Χ Ζ Ζ Y Χ 0β β , (2.1)

relating to the underlying population moment condition derived from the orthogonality of

instruments and model noise defined by

( )E ′ − =� �� �Ζ Y Χ 0β   . (2.2)

If m k= , the vector of moment conditions just-determine the model parameters, then the

sample moments (2.1) can be solved for the basic instrumental variable (IV) estimator

( ) 1
iv .� −′ ′= Ζ Χ Ζ Yβ  When the usual regularity conditions are fulfilled, this IV estimator is

consistent, asymptotically normal distributed, and is an optimal estimating function

(OptEF) estimator (Godambe 1960; Heyde 1997; Mittelhammer, Judge, and Miller

2000).

For m k> , the vector of moment conditions overdetermine the model parameters

and other IV-like estimation procedures are available, such as the well known two stage

least squares (2SLS) estimator, � �
1

2 ,sls z zβ X P X X P Y�

� � �  where � �
1

zP Z Z Z Z�

� � �  is the

projection matrix for .Z  This estimator is equivalent to the estimator formed by applying
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the optimal estimating function (OptEF) transformation � �� � � �
-1-1 -1n X Z Z Z Z X X Z Z Z� � � � �

to the moment conditions in (2.2) (Godambe, 1960; Heyde and Morton, 1998).

The GMM estimator (Hansen, 1982) is another estimator that makes use of the

information in (2.2).  The GMM estimators minimize a single estimation criterion based

on a quadratic form in the sample moment information

( ) ( ) ( )( ) ( )( )

( ) ( )

1 1
nB B

2

B

� arg min Q arg min n n

arg min n

− −

∈ ∈

−

∈

� �′′ ′= =� �� � � �� �

� �′ ′=
� �� �

β W β Ζ Y -Χβ W Ζ Y -Χβ

Y -Χβ ΖWΖ Y -Χβ

β β

β

. (2.3)

The GMM estimator can be shown to have optimal asymptotic properties if the weighting

matrix W is defined appropriately. The optimal choice of W in the context of moment

conditions (2.2) leads back to the definition of the 2SLS-OptEF estimator.

2.2 Empirical Likelihood (EL) Type Estimators

In contrast to traditional instrument-moment based estimators, the empirical

likelihood approach (Owen, 1988, 1991, 2001; Qin and Lawless, 1994, Imbens, et. al.

(1998), Corcoran, 2000, and Mittelhammer, Judge and Miller, 2000) allows the

investigator to employ likelihood methods for model estimation and inference without

having to choose a specific parametric family of probability densities on which to base

the likelihood function. Under the EL concept, empirical likelihood weights, based on

multinomial distributions supported on a sample of observed data outcomes, are used to

reduce the infinite dimensional problem of nonparametric likelihood estimation to a finite

dimensional one.
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2.2.1 Estimation

The constrained estimation problem underlying the EL approach is in many ways

analogous to allocating probabilities in a contingency table where jw  and jq  are

observed and expected probabilities.  In our case, a solution is achieved by adjusting the

expected counts (distance between the two sets of probabilities) by making use of a

goodness-of-fit criterion subject to the moment constraints.  As an estimating criterion,

one possibility is to make use of the Cressie and Read (1984) power divergence family of

statistics

( ) ( )

λ

=1

2, ,λ   1
λ λ+1

n
i

i
i i

wI w
q

� �� �
� �= −� �
� �	 
� �

�w q , (2.4)

where λ  is an arbitrary unspecified parameter, and if the qi�s are to be interpreted as

probabilities, then they satisfy ( )0,1 ,iq i∈ ∀ and i1
q 1n

i=
=� .  When 1

iq n i−= ∀ , and in

the limit as λ  ranges from -1 to 1, several estimation and inference procedures emerge.

If in an instrumental variable context for the linear structural equation we use (2.4) as the

goodness-of-fit criterion and (2.1) as the moment-estimating function information, the EL

estimation problem can be formulated as the following extremum-type estimator for β :

( ) ( ) ( )
n n

E i i . i i. i ii 1 i 1
� arg max max I , , | w y , w 1, w 0 i,

= =

� �� �′= = − λ Σ − = Σ = ≥ ∀ ∈� �� �
	 
� �w

β β w q z x β β Bβ 0�

(2.5)
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Three main variants of ( )I , ,λw q  have emerged and received explicit attention in the

literature.  When 0,λ → this leads to the traditional empirical log-likelihood objective

function, ( )1
i1

ln wn

i
n−

=� , and the maximum empirical likelihood (MEL) estimate of β .

When 1λ → − , this leads to the empirical exponential likelihood objective function,

( )i i1
w ln wn

i=
−� , and the Maximum Empirical Exponential Likelihood (MEEL) estimate

of β .  Finally, when 1λ = , the log Euclidean likelihood function � �� �1 2 2
1

1
n

ii
n n w�

�

� ��

is implied and leads to the Maximum Log Euclidean Likelihood (MLEL) estimate of β .

If the traditional Owen MEL criterion is used, the estimation objective involves

finding the feasible weights �w  that maximizes the joint empirical probability assigned to

the observed set of sample observations, conditional on the moment constraints. In the

sense of objective function analogies, the MEL approach is the closest to the classical

maximum likelihood approach.  The MEEL criterion of maximizing ( )i i1
w ln wn

i=
−�  is

equivalent to defining an estimator by minimizing the Kullback-Leibler (KL) information

criterion ( )1
i i1

w ln w /n

i
n−

=�  . Interpreted in the KL context, the MEEL estimation

objective finds the feasible weights �w  that define the minimum value of all possible

expected log-likelihood ratios consistent with the structural moment constraints, where

the expectations are based on the �w distribution and the log-likelihood ratio has the

restricted (by moment constraints) likelihood in the numerator and the unrestricted (i.e.,

uniform distribution) likelihood in the denominator. The MLEL solution seeks feasible

weights �w that minimize the Euclidean distance of w from the uniform probability

distribution, the square of this Euclidean distance being � � � �1 1
n nn nw 1 w 1� ��

� � , where
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n1  denotes an 1n×  vector of unit values. Note that all of the preceding estimation

objective functions achieve unconstrained (by moment constraints) optima when the

empirical probability distribution is given by 1
n n−=w 1 . Note further that weights must

be nonnegative valued in the MEEL and MEL cases, but negative weights are not ruled

out by the MLEL specification.

The Lagrange function associated with the traditional MEL formulation is

� � � � � �1
. .

1 1 1

, , , ln 1
n n n

i i i i i i
i i i

L n w w y ww α α z x ββ � �
�

� � �

� �
� � � � �� � � �� 	� � � (2.6)

where α  and η  are Lagrange multipliers. From the first order conditions relating to w,

and noting that the optimal value of η  is 1, constrained optimal 'iw s  can be expressed in

terms of β  and α  as

� � � �� �
1

. ., 1i i i iw n yβ α α z x β
�

� �� � �� �� � . (2.7)

The Lagrangian form of the MEEL formulation, expressed as a minimization problem, is

� � � �. .
1 1 1

, , , ln 1
� � �

� �
� � � � �� � � �� 	� � �w α α z x ββ

n n n

i i i i i i i
i i i

L w w w y w� � (2.8)

and the constrained optimal iw �s, expressed as a function of β  and α , are

� �
� �� �

� �� �

. .

. .
1

exp
,

exp

i i i
i n

j j j
j

y
w

y

α z x β
β

α z x β
α

�

�� �
�

�� ��
. (2.9)

Finally, the Lagrangian form of the MLEL formulation, also expressed as a minimization

problem, is

� � � �� � � �1 2 2
. .1

1 1

, , , 1 1
n n

n
i i i i i ii

i i
L n n w w y ww α α z x ββ � �

�

�

� �

� �
� � � � � �� � � �� 	� � � (2.10)
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which leads to constrained optimal iw �s, expressed as a function of β  and α  , given by

� � � � � �� �
1

. ., , 2i i i iw n yβ α α z x β� �
�

� � �� � . (2.11a)

The Lagrange multiplier η  in (2.11) can be eliminated by solving the adding up

condition � �n , 11 w β α ��  for η  and then substituting the solved value of η  into (2.11a) to

obtain

� � � � � � � �� �1 1
. . . .1

, 2 2
n

i i i i i i ii
w n y n yβ α α z x β α z x β�

�

�

� � � � �� � � �� (2.11b)

where the value of �  is given by

� � � �� �1
. .1

, 2 �

�

� � �� �� α z x βn
i i ii

n y� α β . (2.12)

Under the usual regularity conditions assumed when establishing the asymptotics of

traditional structural equation estimators, all of the preceding EL-type estimators of β

obtained by optimizing the iw �s in (2.7), (2.9), or (2.11) with respect to  β , α , and/or η

are consistent asymptotically normally distributed, and asymptotically efficient relative to

the optimal estimating function (OptEF) estimator, given the set of estimating equations

under consideration.  Calculating the solution to the MEL, MEEL, or MLEL estimation

problem will generally require that a computer-driven optimization algorithm be

employed.  When ,�m k  the solutions to all of the EL-type extremum problems lead

back to the standard IV estimator 1� with .iv iw nβ �

�  When ,�m k  the estimating

equations overdetermine the unknown parameter values to be recovered and a nontrivial

EL solution results. The solution to the constrained optimization problem (2.5) based on

any of the members of the Cressie-Read family of estimation objective functions yields
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an optimal estimate, �w  and �β , that cannot, in general, be expressed in closed form and

thus must be obtained using numerical methods. Note further that for the typical

application in which 1
iq n i−= ∀ , any of the estimation objective functions contained in

the Cressie-Read family achieve unconstrained (by moment equations) optima when the

empirical probability distribution is given by 1
n n−=w 1 .

2.2.2 Inference

EL-type inference methods, including hypothesis testing and confidence region

estimation, bear a strong analogy to inference methods used in traditional ML and GMM

approaches. Owen (1988, 1990) showed that an analog of Wilks� Theorem for likelihood

ratios, -2ln(LR) ~
a

2
jχ , hold for the empirical likelihood (MEL) approach, where j denotes

the number of functionally independent restrictions on the parameter space. Baggerly

(1998) demonstrated that this calibration remains applicable when the likelihood is

replaced with any properly scaled member of the Cressie-Read family of power

divergence statistics (2.4).  In this context, the empirical likelihood ratio (LR) for the test

of the hypothesis 0β β� , or more generally for testing the linear combinations hypothesis

c rβ �  when ( )rank j=c , is given for the MEL case by

� �
� �

� �

max . .
max

E
EL

E

s t
LR

β c r
y

β
β

β

β�

�

� ��� �� (2.13)

and

� �� � � �2ln ,0� Y �

a

ELLR Chisquare j (2.14)

under Ho when .�m k  An analogous pseudo-LR approach can be applied, mutatis

mutandis, to other members of the Cressie-Read family.   One can also base tests of
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c rβ �  on the Wald Criterion in the usual way by utilizing the inverse of the asymptotic

covariance matrix of EL
�cβ as the weight matrix of a quadratic form in the vector EL

�c rβ � ,

or construct tests based on the Lagrange multipliers associated with the constraints

c rβ � imposed on the EL-type optimization problem. Confidence region estimates can be

obtained from hypothesis test outcomes in the usual way based on duality. The validity of

the moment conditions (2.1)-(2.2) can also be assessed via a variation of the preceding

testing methodology. We provide further details regarding the empirical implementation

of test statistics and confidence region estimators in our discussion of the Monte Carlo

experiments ahead.

2.3.  Test Statistics

Two different types of inference contexts are examined in this paper, including testing the

validity of the moment constraints, and testing hypotheses and generating confidence

intervals for parameters of the structural model.

2.3.1 Moment Validity Tests

Regarding the validity of the moment restrictions, Wald-type quadratic form tests,

referred to as Average Moment Tests by Imbens, Spady, and Johnson (1998), are

calculated for all five estimators. The Wald test statistics are specified as

� �� �� � � �� � � �� � � �� �� �n n

1
� � � �Wald

�

� �
� �� � � � �

� �
� �� �

1 Z Y X Z Y X Z Y X 1 Z Y Xβ β β β� � � � (2.15)

where �β  is any one of the five different estimators of theβ  vector, and �  denotes the

generalized Hadamard (elementwise) product operator. Under the null hypothesis of

moment validity, the Wald statistic has an asymptotic Chisquare distribution with degrees

of freedom equal to the degree of overidentification of the parameter vector, i.e., m-k.
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Pseudo Likelihood Ratio (LR) -type tests of moment validity, referred to as

Criterion Function Tests by Imbens, Spady, and Johnson (1998, p.342), are also

calculated for the three EL-type procedures. The respective test statistics for the MEEL

and MEL procedures are based on the same statistics utilized by Imbens, Spady, and

Johnson and are given as follows:

� �2 'ln( ) ln( )� �w wEELLR n n (2.16)

� �2 'ln( ) ln( )� � �1 wEL nLR n n . (2.17)

In the case of MLEL, the pseudo-likelihood ratio statistic derived as a special case of the

generalized empirical likelihood (GEL) class of procedures identified by Newey and

Smith (2000, p. 8) is examined, and given by

� �� �1 2
n 1

2 2
21 1

n
LEL ii

LR n n n n w1 Z Y - X αβ�
� �

�

�

� � � �� �� � � �
� � � ��� 	 � 	
 �� 	 � 	� 
 � 
� 	� � � 
� 


� (2.18)

While perhaps not initially apparent from the functional definitions, it can be shown that

LEL LELLR Wald≡ and, thus, we later report on the performance of only one copy of this

particular test. The w weights, β  vector, and Lagrange multipliers α  and η  appearing in

the LR test statistics (2.16)-(2.18) are replaced by the respective EL-type estimates. All of

the pseudo LR -type test statistics follow the same asymptotic Chisquare distribution as

for the Wald statistics of moment validity.

The final set of moment validity tests are based on the Lagrange multipliers of the

moment constraints. In the case of the EEL-type test statistic, we follow Imbens, Spady,

and Johnson (1998, p. 341) and examine a quadratic form in the Lagrange multiplier

vector that incorporates a robust estimator of the covariance matrix of the moment

constraints, as
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� �� � � � � �� � � �� � � �� � � �
1

EELLM n h w h h w h w h w hα β β β β β β α� � � �

�

� � � � � �� � �� � � � � � � �� � � � � �
 (2.19)

where � � � �� �� �h Z Y X�β β  and w, α  and β  are estimated on the basis of the MEEL

method. In the case of the MEL and MLEL methods, we instead utilize LM tests that are

based on equivalences with GEL tests implied by the asymptotic results of Newey and

Smith(2000, p. 8). Both of these LM tests are based on the statistic

( )LM n ′ ′= −
-

G VG−1 −1 −1α Ω Ω Ω α (2.20)

where

( )( ) ( )( )1n− ′≡ − −Z Y X Z Y XΩ β β� � ,  1 ,n− ′≡G X Z   ( ) 11 −− ′≡V G GΩ (2.21)

and the values of β  and α  are replaced by either MEEL or MLEL estimates. All of the

LM tests are asymptotically Chisquare distributed under the null hypothesis, with degrees

of freedom equal to m-k.

2.3.2  Tests of Parameter Restrictions

A test of the significance of the parameters of the structural model is conducted based on

the usual asymptotic normally distributed Z-statistic and concomitantly, by duality, the

accuracy of confidence region coverage of the parameters is examined. The test statistic

for all of the estimation procedures examined has the familiar form

� � �
0

�
~ (0,1) : 0�� �

a
i

i

i

Z N under H
std

�
�

�
, (2.22)

with the associated confidence interval estimate given by

� � � � � �� �� � � �,� �i i i iz std z std
� �

� � � � (2.23)
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where z
�

 denotes the 100� % quantile of the standard normal distribution, and

� � �� �
i iand std� � are the appropriate estimates of the parameter and the estimated standard

error of the estimate based on one of the five alternative estimation procedures. The

respective estimates of the standard errors used in the test and confidence interval

procedures were obtained as the square roots of the appropriate diagonal elements of the

asymptotic covariance matrices of the B2sls-OptGMM-OptEF, GMM(I), MEEL, MEL

and MLEL estimators. The covariance matrices for the traditional estimators were

defined as

� �� �
1-12

2
� �( )slsAsyCov X Z Z Z Z XΒ �

�

� � � � (2.24)

and

� � � �� �� �
1 12

( )
� �( ) � �

� � � � � � � �X ZZ X X Z Z Z Z X X ZZ XGMM IAsyCov �Β (2.25)

where 2�� is the usual consistent estimate of the equation noise variance. The common

general form of the covariance matrices for the MEEL, MEL, and MLEL procedures is

given by

� �� � � �� �� � � �� � � �

11
�( )

�

�

�� �� �� � ��� � ��� 	� 	 
 �� � 
 	� 

X Z w Z Y X w Z Y X Z w X� � � � �EL typeAsyCov Β β β

(2.26)

In empirical applications the w and β  vectors are replaced by the appropriate estimates

obtained from applications of the MEEL, MEL, or MLEL estimation procedures.
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2.4 Computational Issues and Approach

As noted by Imbens, Spady, and Johnson (1998), the computation of solutions to EL-type

constrained optimization problems can present formidable numerical challenges

especially because, in the neighborhood of the solution to such problems, the gradient

matrix associated with the moment constraints will approach an ill-conditioned state of

being less than full rank. This occurs by design in these types of problems because the

fundamental method by which the MEL, MEEL and MLEL methods (and in fact any

method based on a Cressie-Read type estimation objective function) resolve the

overdetermined nature of the empirical moment conditions, ( )
n

i i . i i.i 1
w y

=
′Σ − =z x β 0 , is to

choose sample weights that ultimately transform the m moment equations into a

functionally dependent, lower rank (k< m) system of equations capable of being solved

uniquely for the parameters. This creates instability in gradient-based constrained

optimization algorithms regarding the representation of the feasible spaces and feasible

directions for such problems. Under these conditions, Imbens, Spady and Johnson found

it advantageous in their particular EEL and EL simulation applications to utilize penalty

function methods for enforcing the moment constraints, whereby a penalty-augmented

objective function is optimized within the context of an unconstrained optimization

problem. While their penalty-function approach appeared to perform well for the range of

applications that were examined in their work, the algorithm failed (non-convergence)

too frequently when applied to the IV-based moment constrained problems examined in

this paper.
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The computational approach utilized in this work for solving the EL-type

problems consisted of concentrating out the Lagrange multiplier vector and scalar, α  and

η , from the MEL, MEEL, and MLEL optimization problems (2.6), (2.8), (2.10),

expressing α  and η  as a function of the β  vector (in the case of MEEL and MEL, the

optimal η  is simply the scalar 1). The actual process of concentrating out the Lagrange

multipliers cannot be accomplished in closed form, and so a numerical nonlinear equation

solving procedure was employed.  Then the resulting concentrated Lagrange

representations of the EL-type estimation problems were optimized with respect to the

choice of β , leading to the parameter estimates.

More specifically, the computational procedure involved the following two steps.

In the first step relating to concentrating out the Lagrangians, the Lagrange multiplier

vector α  was expressed as a function of β  by utilizing the empirical moment conditions

and the weight representation (2.7), (2.9), or (2.11b) for the vector ( ),w β α , and solving

( ) ( )( ) ( )arg ,� �′≡ =� �� �
Z Y - X w 0αα β β β α� . (2.27)

The solution to (2.27) was determined numerically using the NLSYS nonlinear equation

solver in the GAUSS mathematical programming language (Aptech Systems, Maple

Valley, Washington, Version 3.6). Regarding the Lagrange multiplier � , the first order

conditions for either the MEL or MEEL estimation problems imply that � � 1β� � . In the

case of the MLEL problem, � �β�  can be defined by substituting the value of � �α β

obtained from (2.27) into the definition of �  in (2.12), yielding

� � � � � �1
. .1

2
n

i i ii
n yα z x ββ β�
�

�

� ��� � ��� �� . (2.28)
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In the second step relating to optimization, the concentrated Lagrange function

can be represented as

� � � �� � � � � �� �

� �� �� � � � � �� � � � � � � �� �

*

. .
1 1

, ,

1
� �

�

� ��� � � � �� � �� 	� �

w α α

w α α α z x β α

β β, β β, β β

β, β β β, β β β, β
n n

i i i i i
i i

L L

w y w

�

� �

(2.29)

The value of � �*L β  is then optimized (in our characterizations (2.6),(2.8), and (2.10),

maximized for MEL, minimized for MEEL and MLEL) with respect to the choice of β ,

where ( )φ �  can denote any of the estimation objective functions in the Cressie-Read

family. The algorithm used to accomplish the optimization step was based on a Nelder-

Meade polytope-type direct search procedure written by the authors and implemented in

the GAUSS programming language (Nelder and Mead,1965; Jacoby, Kowalik, and

Pizzo,1972; and Bertsekas,1995) using the values .5, .5, and 1.1, respectively, for the

reflection, contraction, and expansion coefficients. 

3.  Design of Sampling Experiments

In terms of the EL-type formulations of Section 2, the solution for the optimal

weights and parameter estimates cannot be expressed in closed form. Moreover, the finite

sample probability distributions of the traditional 2SLS-GMM-OptEF estimators are also

generally intractable. Consequently, the finite sample properties of these estimation and

associated inference procedures cannot be derived from a direct evaluation of functional

forms applied to distributions of random variables.  We use a Monte Carlo sampling

experiment to identify and compare the finite sample performance of competing



19

estimators and inference methods. While these results are specific to the collection of

particular Monte Carlo experiments analyzed, the wide ranging sampling evidence

reported does provide an indication of the types of relative performance that can occur

over a range of scenarios for which the unknown parameters of a model are moderately

well-identified.

3.1 Experimental Design

Consider a data sampling process of the following form:

1 1 1 2 2 . εX βi i i i i iY Z Y eβ β= + + = + (3.1)

5
2 .1i j ij i i ij

Y Z v vπ
=

= + =� Z π + (3.2)

where ( )i. 1 2, ,i iZ Y=X  and 1, 2,...,i n= .  The two-dimensional vector of unknown

parameters, β , in (3.1) is arbitrarily set equal to the vector [ ]1, 2 .′−  The outcomes of the

( )6 1×  random vector [ ]2 1 2 3 4,ε , , , ,i i i i i iY Z Z Z Z  are generated iid from a multivariate

normal distribution with a zero mean vector and standard deviations uniformly set to 5

for the first two random variables, and 2 for the remaining random variables, with

5 1, .iZ i≡ ∀  Also various other conditions relating to the correlations among the six scalar

random variables were assumed.  The values of the π j �s in (3.2) are determined by the

regression function between 2iY  and [ ]1 2 3 4 5, , , ,i i i i iZ Z Z Z Z , which is itself a function of the

covariance specification relating to the marginal normal distribution associated with the

( )5 1×  random vector 2, 1 2 3 4, , , .i i i i iY Z Z Z Z� �� �  Thus the jπ �s generally change as the

scenario postulated for the correlation matrix of the sampling process changes.  In this
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sampling design, the outcomes of [ ]1,i iY V  are then calculated by applying the equations

(3.1-3.2) to the outcomes of 2, 1 2 3 4 5, , , , .i i i i i iY Z Z Z Z Z� �� �

3.2 MC Scenario Characteristics

Regarding the details of the sampling scenarios simulated for these Monte Carlo

experiments, sample sizes of n  = 50, 100 and 250 were examined. The outcomes of εi

were generated independently of the vector [ ]1 2 3 4, , ,i i i iZ Z Z Z  so that the correlations

between εi  and the 'ijZ s  were zeros, thus fulfilling a fundamental condition for

[ ]1 2 3 4, , ,i i i iZ Z Z Z  to be considered a set of valid instrumental variables for estimating the

unknown parameters in (3.1).  Regarding the degree of nonorthogonality and

identifiability in (3.1), correlations of .25, .50, and .75 between the random variables 2iY

and εi  were utilized to simulate moderately, to relatively strongly correlated-

nonorthogonality relationships between the explanatory variable 2iY and the equation

noise εi .

For each sample size, alternative scenarios were examined relating to both the

degree of correlation existing between each of the random instruments in the matrix Z

and the Y2 variable, and the levels of collinearity existing among the instrumental

variables themselves. By varying the degrees of intercorrelation among the variables, the

overall correlation of the instrumental variables with Y2 is effected, and contributes to

determining the overall effectiveness of the set of instruments in predicting values of the

endogenous Y2.  The joint correlation between Y2 and the set of instruments range from a

relatively low .25 to a relatively strong .68.
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The major characteristics of each of the scenarios are delineated in Table 3.1. In

general, the scenarios range from relatively weak but independent instruments to stronger

but more highly multicollinear instruments. All models have a relatively strong signal

component in the sense that the squared correlation between the dependent variable Y1

and the explanatory variables � �.1 2,Z Y is relatively high, being in the .84 to .95 range. All

told, there were 10 different MC experimental designs in combination with the three

different sample sizes, resulting in 30 different sampling scenarios in which to observe

estimator and inference behavior.

The sampling results, reported in section 4, are based on 5000 Monte Carlo

repetitions, and include estimates of the empirical mean squared error (MSE), expressed

in terms of the mean of the empirical squared Euclidean distance between the true

parameter vector β  and �β  (measuring parameter estimation risk) and between y with �y

(measuring predictive risk). We also report on the average estimated bias in the estimates,

Bias ( )�β  �E[ ]- ,= β β  and the average estimated variances of the estimates, ( )i
�Var β .

Regarding inference performance, we compare the empirical size of ten

alternative tests of moment equation validity with a nominal Chisquare based target size

of .05, we examine the empirical coverage probability of confidence interval estimators

based on each alternative estimation technique with a target coverage probability of .99,

we calculate and compare the empirical expected lengths of confidence intervals, and we

also report on the power of significance tests associated with the different estimation

methods.

Five different estimators, and associated inference procedures, were examined

including the GMM estimator based on the asymptotically optimal GMM weighting
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matrix (GMM-2SLS-OptEF), GMM based on an identity matrix weighting (GMM-I), and

the three EL-type estimators, including the MEL, MEEL, and MLEL estimators.

Table 3.1  Monte Carlo Experiment Definitions, with [ ]′β = −1, 2 ,

i 2i ijY Z5, 2,ε =σ = σ σ = ∀and i and j = 1,...,5 .
Experiment

Number 2i iy ,ερ
2i i,1y ,zρ

2i ij ; j 1y ,z >ρ
ij ikz ,zρ

1 1

2
�Y ,YR

2 2

2
�Y ,YR

1 .25 .25 .25 0 .84 .25

2 .25 -.25 .25 .5 .86 .40

3 .50 .25 .25 0 .89 .25

4 .50 -.25 .25 .5 .90 .40

5 .75 .25 .25 0 .95 .25

6 .75 -.25 .25 .5 .94 .40

7 .50 .1 .5 .25 .89 .53

8 .50 .1 .5 .5 .89 .50

9 .50 .1 .5 .75 .89 .68

10 .50 .5 .1 .75 .89 .53

Note: 
2i iy ,ερ denotes the correlation between Y2i and ei, and measures the degree of nonorthogonality;

2i ijy ,zρ denotes the common correlation between Y2i and each of the four random instrumental variables,

the Zij�s; 
ij ikz ,zρ denotes the common correlation between the four random instrumental variables;

1 1

2
�Y ,YR denotes the population squared correlation between 1Y and 1

� =Y Xβ ; and 
2 2

2
�Y ,YR  denotes the

population squared correlation between 2Y and 2
� =Y Zπ.

4.  Monte Carlo Sampling Results

The results of the estimation and inference simulations are presented in this section. We

limit our reporting of bias, variance, hypothesis tests and confidence region estimation
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performance relating to structural parameters to the 2� coefficient and note that the results

for the remaining structural parameter were qualitatively similar.

4.1 Estimator MSE Performance

The simulated mean squared errors associated with estimating the structural

model parameters for each of the MC scenarios are presented in Appendix table A.1. A

graph of the MSE results is presented in Figure 1. A number of general patterns are

evident from the MC results.  First of all, the OptEF-OptGMM-2SLS estimator

dominates the other four estimators in terms of parameter MSE, with the exception of the

smallest sample size and scenario 5, in which case the MEEL estimator is marginally

superior to all others. Second, the MSEs of the GMM(I) estimator are very close to the

MEEL estimator  across all scenarios, but with MEEL actually MSE superior to GMM(I)

in  only a few cases.  Third, there is a general order ranking of the MSEs of  the EL-type

estimators whereby generally MSE(MEEL) < MSE(MEL)< MSE(MLEL). However,

differences in MSE performance among these estimators is small at n = 100 and

practically indistinguishable at n = 250, making the MSE performance ranking moot for

larger sample sizes. Fourth, the MSE differences between all of the estimators dissipate

as the sample size increases, with the differences being negligible at the largest sample

size (n = 250).
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Figure 1.  Parameter MSE Results
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4.2. Bias and Variance

Empirical bias and variance results for the estimators of 2�  are presented in Figures 2

and 3, and Appendix tables A.2 and A.3. Again some general performance patterns

emerge upon examining the figures and numbers. First of all, the EL-type estimators, as a

group, generally tend to be less biased than either the 2SLS or GMM estimators, but the

EL estimators also tend to exhibit more variation than the traditional estimators. These
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performance patterns are especially evident for the small sample size (n = 50).

Figure 2.  Bias Results for B2 Parameter
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Second, volatility in bias across MC scenarios is notably more pronounced for 2SLS and

GMM than for the EL estimators, while just the opposite is true regarding volatility in

variance measures across MC scenarios. Again this performance pattern is notably more

pronounced at the smallest sample size than for the larger sample sizes. Third, regarding

comparisons among EL-estimator types, the MEEL estimator tends to be the least

variable among the three EL alternatives, with the ranking of variability tending to be in

the order var(MEEL) < var(MEL) < var(MLEL). The ranking of relative bias

performance among the EL estimators is less distinct, where especially for the smallest

sample size, each of the EL�type estimators exhibits least bias for at least one MC

scenario. For larger sample sizes the MEEL estimator more often than not has the

smallest bias, but again there are exceptions for some scenarios, and in any case the
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Figure 3.  Variance Results for B2 Parameter
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bias of all of the EL-type estimators tends to be small, bordering on inconsequential for

most of the scenarios when sample sizes are n = 100 or larger. Fourth, for the largest

sample size (n = 250), both bias and variance tends to be quite small for all of the

estimators considered, although in a relative sense, the traditional estimators continued to

have notably larger bias for most scenarios than any of the EL-type estimators.

4.3.  Prediction MSE

Figure 4 and appendix table A.4 present results relating to the MSE in predicting the

dependent variable of the structural equation. Judged in the context of generating

predictions closest in expected Euclidean distance to actual dependent variable outcomes,

it is clear that the 2SLS and GMM estimators are notably superior to the EL-type

estimators across the majority of sampling scenarios, and in any case are never worse.
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On the other hand, if one intends to use the estimated residuals from the model to

generate an estimate of the model noise variance, then the EL-type methods exhibit MSE

measures that are closer in proximity to the true noise variance, 2 25εσ =  , than do the

traditional estimation methods. Among the EL-type methods, the general rank ordering of

prediction MSE is MSE(MEEL) < MSE(MEL)< MSE(MLEL).

Figure 4.  Prediction MSE Results
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4.4. Size of Moment Validity Tests

Figure 5, and Appendix table A.5, present empirical sizes of the 10 different tests

of moment validity decribed in section 2.3. The target size of the test was .05, and when n

= 250 all of the test are generally within � .01 of this level across all MC scenarios.

However, a number of the test procedures, most notably the LR tests for MEEL and

MEL, the LM test for MEL, and to a lessor extent the Wald-Average Moment Test for
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2SLS and GMM, are erratic and notably distant from the target test size when n = 50. The

most consistent suite of tests in terms of average proximity to the true test size across MC

scenarios  were the Wald-Average Moment Tests for all three of the EL-type estimators.

In addition the LM tests in the case of MEEL and MLEL was reasonably accurate when

100n ≥ . As noted in the literature, for a subset of the scenarios, the size of the tests based

on the traditional 2SLS and GMM methods were substantially distant from target size,

although in the majority of cases when 100n ≥  both the 2SLS and GMM methods were

within .01 of the test size target. It is interesting to note that GMM exhibited superior size

performance to 2SLS in the majority of cases.

Figure 5.  Empirical Size of Moment Validity Test, Target Size = .05
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4.5 Confidence Interval Coverage and Size

Figures 6 and 7, and Appendix Tables A.6 and A.7, display results relating to the

empirical coverage probability of confidence intervals for the 2β  parameter, as well as

the empirical expected length of the confidence intervals, where target coverage is .99.

Figure 6.  Empirical Confidence Interval Coverage Probability for B2, Target = .99
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Except for two scenarios involving the 2SLS and GMM methods, all of the confidence

intervals are generally within .01 of the target coverage for the large sample size of n =

250. Again with the preceding two exceptions noted relating to the traditional estimators,

coverage is generally within .03 of target for the sample size of n = 100. Coverage

degrades significantly for the small sample size n = 50, with the traditional estimators

generally having better coverage, although they also exhibit demonstrably the worst

coverage performance for two sampling scenarios. Moreover, the traditional methods
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Figure 7.  Empirical Expected Confidence Interval Length for B2
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exhibited more volatility across MC scenarios than EL-methods. We note that the

coverage results observed for the EL-methods is consistent with other observations in the

literature that the EL-type approach consistently underachieves target coverage

probability under the asymptotic Chisquare calibration (Baggerly, 2001). We add that, in

the large majority of cases, the traditional inference procedures also underachieved target

coverage.

In the case of expected confidence interval length, a clearer relative performance

pattern was apparent. In particular, the general relative ranking of CI length among the

five alternative estimators was given by the following ordering of empirical average

lengths: CI(MEEL) < CI(MEL) < CI(MLEL) < CI(2SLS) < CI(GMM). As expected,

differences in length were most pronounced at the smallest sample size, in some cases

exceeding 15%, but differences dissipated to effectively negligible levels when n = 250.
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4.6. Test Power

Results relating to the power of the standard Z-test in testing the significance of

the 2β  parameter are displayed in Figure 8 and in Appendix table A.8. All of the test

procedures exhibited substantial power in correctly rejecting the null hypothesis

2: 0oH β = , where all rejection probabilities were in the range of .92 or higher. Among

the EL-type methods, the relative power performance ranking was in the following order:

P(MEEL) > P(MEL) > P(MLEL).  When comparing power performance to the traditional

methods, it was generally the case that 2SLS resulted in the most test power, followed by

either MEEL or GMM, depending on the scenario, although the powers of the latter two

procedures were in any case always very close to each other. The differences in power

dissipated substantially for the higher sample sizes, and when n = 250, there was

effectively no difference in power between any of the procedures, with all procedures

achieving the ideal power of 1. It is also interesting to note that for the last 4 MC

scenarios of the intermediate sample size n = 100 case, which are characterized by higher

levels of correlation between the group of instruments and the endogenous explanatory

variable of the structural model, there was also effectively no difference in power

performance among any of the EL and traditional inference procedures.
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Figure 8.  Empirical Power for Ho: B2=0
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5. Some Final Remarks

In statistical models consisting of linear structural equations, the 2SLS and GMM

estimators have long been the estimator of choice when the number of moment

conditions-IV variables exceeded the number of unknown response parameters in the

equation in question.  The 2SLS estimator solves the problem of over-identification by

taking a particular rank-k linear combination of the instruments.  In contrast the

nontraditional EL type estimator transforms the overdetermined moments problem into a

set of equations that is solvable for the model parameters by imposing a functional

dependence on the moment equations through the choice of sample observation weights.

Although both the traditional and EL type estimators perform well in terms of first order

asymptotics, questions persist as to their small sample bias and variance performance in

estimation, and their coverage, interval width and power characteristics in terms of
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inference. Furthermore, in line with sampling processes often found in practice, there are

questions concerning the possible estimation and inference impacts of IV�s that are only

weakly correlated with right hand side endogenous variables so that response parameters

are only weakly identified or determined.

Given these questions and corresponding conjectures that appear in the literature,

in this paper we attempt to provide some empirical evidence concerning 2SLS, GMM and

EL type estimator performance by simulating a range of sampling processes and

observing empirical repeated sampling behavior of the estimation procedures. While MC

sampling results are never definitive, we feel that the base results presented in this paper

provide important insights into the relative sampling performance of the different types of

general moment based estimators for a range of data sampling processes.  Some distinct

and interesting patterns have emerged from the MC results in this study and may bear

emphasizing here:

i)  The entire suite of EL type estimators tend to exhibit less bias than the

traditional estimators.

ii)  The EL type estimators tend to exhibit more variance than the traditional

estimators.

iii)  In terms of MSE the 2SLS estimator wins almost all competitions.  Around a

sample size of 100 the estimators exhibit similar performances.

iv)  In terms of accurate size of moment tests, the EL-type inference methods are

superior, based on the average moment (or Wald) statistics, across all sample

sizes.  For sample sizes of 100 or more the LM tests also do reasonably well,
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especially in the case of MEEL and MLEL, and for a sample size of 250 all of

the moment tests are in the neighborhood of the correct size.

v)  On confidence interval coverage, the traditional estimators perform somewhat

erratically across differing data sampling processes until the highest sample

size is reached.  The EL-type methods are similar to each other in interval

coverage performance, and exhibit a more orderly convergence to the correct

coverage.

vi)  Test power for significance tests is very high for a sample size of 100 and is

essentially 1 and ideal across all significance tests for sample size 250.

vii) A combination of concentrating out Lagrangian multipliers via numerical

nonlinear equation solving algorithms, and then optimizing the concentrated

optimization problem based on a direct search polytope (Nelder-Meade) type

optimization algorithm appears to be a tractable and  computationally efficient

method for calculating solutions to EL-type problems in the IV-based moment

constraint setting.

Looking towards future research, there are several ways to extend the empirical

evidence concerning the performance of EL type estimators in recovering unknown

response parameters in structural equations.  We and others have noted that confidence

regions generated by EL-type distance measures using 2χ  calibrations consistently under

cover.  Baggerly (2001) has suggested forming empirical regions through the use of a

studentization of the moment constraints.  Studentizing can permit an escape from the
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convex hull of the moment data observations and possibly yield more accurate inferences

in small samples.

It would be interesting to extend performance questions to data sampling processes

that involve non-normal, non-symmetric distributions.  Here the EL-types may tend to

have improved performance because the moment information obtained from the non-

symmetric and/ or improperly centered distributions may be better accommodated by the

differential data weights available within the EL framework   However, the answer is not

clear because EL may generally obtain smaller levels of bias, but at the expense of

increased variance.

Finally, in pursuit of achieving finite sample reductions in mean squared error, it is

useful to consider, in a Stein-type of way, a mixture estimator that combines a consistent

estimator having questionable finite properties, with an estimator that is inconsistent but

has small finite sample variability.  Such an estimator, which utlizes EL-type moments,

has been proposed by Mittelhammer and Judge (2000) and is currently under evaluation.
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7. Appendix

Table A.1.  Empirical Parameter Estimation MSE Results

MC N 2SLS MEEL MEL MLEL GMM(I)
1 50 0.3069 0.3733 0.3978 0.4268 0.3332
2 50 0.2284 0.2629 0.2746 0.2920 0.2396
3 50 0.3034 0.3387 0.3546 0.3800 0.3193
4 50 0.2161 0.2514 0.2681 0.2843 0.2304
5 50 0.2664 0.2633 0.2773 0.2975 0.2874
6 50 0.2048 0.2403 0.2628 0.2879 0.2277
7 50 0.1805 0.1973 0.2006 0.2130 0.1921
8 50 0.1772 0.1931 0.1988 0.2082 0.1886
9 50 0.1658 0.1749 0.1787 0.1886 0.1738

10 50 0.3328 0.3467 0.3530 0.3685 0.3455
1 100 0.1400 0.1553 0.1606 0.1649 0.1452
2 100 0.1084 0.1193 0.1211 0.1236 0.1106
3 100 0.1367 0.1468 0.1530 0.1595 0.1431
4 100 0.1084 0.1212 0.1246 0.1275 0.1114
5 100 0.1366 0.1392 0.1461 0.1523 0.1432
6 100 0.1020 0.1165 0.1213 0.1256 0.1062
7 100 0.0847 0.0891 0.0910 0.0932 0.0877
8 100 0.0819 0.0863 0.0888 0.0905 0.0849
9 100 0.0789 0.0819 0.0838 0.0856 0.0805

10 100 0.1575 0.1597 0.1637 0.1653 0.1610
1 250 0.0561 0.0591 0.0602 0.0607 0.0570
2 250 0.0439 0.0457 0.0460 0.0460 0.0442
3 250 0.0525 0.0546 0.0565 0.0574 0.0532
4 250 0.0419 0.0444 0.0445 0.0447 0.0426
5 250 0.0536 0.0552 0.0577 0.0592 0.0545
6 250 0.0421 0.0451 0.0454 0.0455 0.0428
7 250 0.0333 0.0342 0.0346 0.0347 0.0337
8 250 0.0341 0.0351 0.0355 0.0357 0.0345
9 250 0.0309 0.0315 0.0319 0.0319 0.0313

10 250 0.0616 0.0619 0.0631 0.0641 0.0620
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Table A.2.  Empirical Bias Results for 2�

MC N 2SLS MEEL MEL MLEL GMM(I)
1 50 0.0594 0.0282 0.0207 0.0223 0.0409
2 50 0.0321 -0.0071 -0.0147 -0.0159 0.0141
3 50 0.1171 0.0267 0.0114 0.0084 0.0794
4 50 0.0617 -0.0197 -0.0302 -0.0324 0.0258
5 50 0.1698 0.0107 -0.0082 -0.0178 0.1148
6 50 0.0958 -0.0281 -0.0411 -0.0480 0.0390
7 50 0.0428 -0.0078 -0.0116 -0.0128 0.0148
8 50 0.0424 -0.0121 -0.0181 -0.0188 0.0149
9 50 0.0304 -0.0105 -0.0119 -0.0140 0.0202

10 50 0.0691 -0.0008 -0.0078 -0.0123 0.0486
1 100 0.0284 0.0031 -0.0019 -0.0041 0.0183
2 100 0.0170 -0.0059 -0.0056 -0.0061 0.0073
3 100 0.0550 -0.0048 -0.0138 -0.0188 0.0347
4 100 0.0304 -0.0155 -0.0165 -0.0178 0.0114
5 100 0.0774 -0.0136 -0.0232 -0.0300 0.0485
6 100 0.0465 -0.0218 -0.0238 -0.0266 0.0190
7 100 0.0184 -0.0101 -0.0106 -0.0116 0.0045
8 100 0.0223 -0.0076 -0.0086 -0.0100 0.0094
9 100 0.0130 -0.0084 -0.0088 -0.0097 0.0086

10 100 0.0401 0.0021 -0.0021 -0.0063 0.0297
1 250 0.0118 -0.0027 -0.0045 -0.0051 0.0079
2 250 0.0069 -0.0012 -0.0016 -0.0016 0.0034
3 250 0.0233 -0.0047 -0.0078 -0.0090 0.0156
4 250 0.0122 -0.0058 -0.0060 -0.0063 0.0047
5 250 0.0330 -0.0084 -0.0126 -0.0141 0.0215
6 250 0.0179 -0.0088 -0.0088 -0.0093 0.0068
7 250 0.0088 -0.0028 -0.0029 -0.0030 0.0032
8 250 0.0068 -0.0054 -0.0055 -0.0058 0.0015
9 250 0.0054 -0.0038 -0.0038 -0.0039 0.0038

10 250 0.0154 0.0004 -0.0035 -0.0047 0.0115
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Table A.3.  Empirical Variance Results for 2�

MC N 2SLS MEEL MEL MLEL GMM(I)
1 50 0.1115 0.1601 0.1765 0.1945 0.1245
2 50 0.0624 0.0817 0.0880 0.0967 0.0674
3 50 0.1079 0.1445 0.1564 0.1728 0.1210
4 50 0.0597 0.0765 0.0841 0.0923 0.0659
5 50 0.0880 0.1082 0.1184 0.1309 0.1071
6 50 0.0526 0.0667 0.0755 0.0850 0.0620
7 50 0.0397 0.0481 0.0504 0.0549 0.0432
8 50 0.0417 0.0509 0.0541 0.0585 0.0453
9 50 0.0314 0.0362 0.0381 0.0411 0.0336

10 50 0.0736 0.0840 0.0876 0.0940 0.0799
1 100 0.0537 0.0668 0.0699 0.0725 0.0567
2 100 0.0302 0.0360 0.0367 0.0378 0.0310
3 100 0.0509 0.0617 0.0657 0.0693 0.0549
4 100 0.0303 0.0362 0.0376 0.0387 0.0318
5 100 0.0491 0.0559 0.0601 0.0633 0.0547
6 100 0.0287 0.0351 0.0372 0.0387 0.0306
7 100 0.0189 0.0214 0.0221 0.0224 0.0197
8 100 0.0201 0.0230 0.0236 0.0240 0.0209
9 100 0.0153 0.0169 0.0173 0.0175 0.0157

10 100 0.0360 0.0393 0.0405 0.0411 0.0379
1 250 0.0220 0.0244 0.0249 0.0252 0.0225
2 250 0.0124 0.0134 0.0134 0.0134 0.0126
3 250 0.0199 0.0221 0.0229 0.0233 0.0204
4 250 0.0120 0.0132 0.0133 0.0133 0.0123
5 250 0.0202 0.0222 0.0232 0.0237 0.0209
6 250 0.0118 0.0131 0.0132 0.0131 0.0121
7 250 0.0078 0.0082 0.0083 0.0083 0.0079
8 250 0.0081 0.0087 0.0087 0.0088 0.0083
9 250 0.0061 0.0064 0.0065 0.0064 0.0062

10 250 0.0142 0.0147 0.0150 0.0152 0.0144
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Table A.4.  Empirical Prediction MSE Results

MC N 2SLS EEL EL LEL GMM(I)
1 50 25.3711 26.7912 27.2195 27.6333 25.8216
2 50 24.5685 25.4681 25.6882 25.9214 24.8738
3 50 23.3399 26.0771 26.6747 27.1182 24.3737
4 50 23.3814 25.6191 26.0293 26.2682 24.2960
5 50 20.1322 25.7492 26.6360 27.2895 22.1142
6 50 21.4563 26.0143 26.6508 27.1324 23.4958
7 50 23.5054 24.8829 25.0167 25.1715 24.2043
8 50 23.4265 24.9287 25.1363 25.2913 24.1202
9 50 23.5492 24.6442 24.7104 24.8565 23.8231

10 50 23.1224 24.9378 25.1512 25.3976 23.6654
1 100 25.1621 25.7622 25.8901 25.9828 25.3478
2 100 24.6662 25.0789 25.0917 25.1266 24.8021
3 100 24.1506 25.8104 26.1145 26.3232 24.6914
4 100 24.1844 25.4131 25.4704 25.5314 24.6612
5 100 22.6019 25.9494 26.3881 26.7099 23.6837
6 100 23.2755 25.8698 25.9859 26.1217 24.2817
7 100 24.2388 24.9887 25.0155 25.0530 24.5864
8 100 24.2069 24.9946 25.0336 25.0823 24.5284
9 100 24.3158 24.8716 24.8928 24.9247 24.4327

10 100 23.9480 24.9240 25.0467 25.1615 24.2238
1 250 25.0682 25.3038 25.3380 25.3526 25.1257
2 250 24.9025 25.0238 25.0303 25.0309 24.9504
3 250 24.6480 25.3859 25.4801 25.5173 24.8473
4 250 24.7101 25.1814 25.1880 25.1967 24.8981
5 250 23.9566 25.5121 25.6899 25.7578 24.3817
6 250 24.3023 25.3108 25.3166 25.3314 24.7117
7 250 24.6558 24.9541 24.9595 24.9622 24.7952
8 250 24.7162 25.0270 25.0314 25.0393 24.8486
9 250 24.7242 24.9576 24.9606 24.9627 24.7660

10 250 24.6250 25.0057 25.1045 25.1404 24.7242
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Table A.5.  Empirical Size of Moment Validity Tests, Target Size = .05

MC N W2SLS WEEL LREEL LMEEL WEL LREL LMEL WLEL=LRLEL LMLEL WGMM
1 50 0.046 0.0278 0.0834 0.0514 0.0282 0.0884 0.1032 0.0204 0.0144 0.049
2 50 0.054 0.036 0.0962 0.0606 0.0344 0.1036 0.1198 0.0284 0.02 0.055
3 50 0.0654 0.0334 0.101 0.0592 0.034 0.1084 0.1222 0.0252 0.0184 0.0646
4 50 0.0616 0.039 0.1062 0.0658 0.0388 0.1142 0.1326 0.0296 0.0224 0.0586
5 50 0.1026 0.0414 0.1202 0.0736 0.0424 0.1254 0.14 0.0322 0.0284 0.088
6 50 0.101 0.0562 0.1314 0.0862 0.0546 0.1378 0.1574 0.0448 0.0426 0.084
7 50 0.0608 0.0382 0.1106 0.0694 0.04 0.1202 0.1384 0.032 0.0294 0.0556
8 50 0.0598 0.039 0.1048 0.0658 0.0414 0.1114 0.1288 0.0312 0.027 0.0574
9 50 0.065 0.0464 0.1136 0.071 0.0498 0.124 0.1414 0.0392 0.031 0.0672
10 50 0.069 0.0424 0.1118 0.0706 0.0454 0.1194 0.1382 0.0344 0.022 0.0702
1 100 0.048 0.0376 0.0704 0.0454 0.0384 0.0702 0.0694 0.0336 0.0288 0.0488
2 100 0.0466 0.0376 0.0688 0.0416 0.0394 0.068 0.0668 0.0366 0.0332 0.0482
3 100 0.0628 0.0452 0.0772 0.049 0.045 0.0756 0.0746 0.041 0.0336 0.0632
4 100 0.0606 0.0446 0.0758 0.0496 0.0456 0.0758 0.0788 0.0408 0.0374 0.0586
5 100 0.09 0.0506 0.0898 0.059 0.0504 0.086 0.0872 0.0454 0.0364 0.08
6 100 0.0752 0.0478 0.0808 0.0536 0.0482 0.081 0.0862 0.045 0.0384 0.066
7 100 0.061 0.0458 0.084 0.0522 0.0486 0.0846 0.0852 0.0438 0.0416 0.0586
8 100 0.0598 0.049 0.0824 0.0536 0.0494 0.082 0.0846 0.0452 0.042 0.0594
9 100 0.0566 0.0428 0.0812 0.0512 0.0436 0.0816 0.0826 0.0402 0.0348 0.0558
10 100 0.061 0.045 0.0802 0.05 0.0464 0.0808 0.0834 0.0424 0.0364 0.06
1 250 0.0522 0.0492 0.0634 0.0458 0.0488 0.0618 0.0574 0.0484 0.0462 0.0538
2 250 0.0498 0.0454 0.0576 0.0422 0.0456 0.0562 0.0528 0.0454 0.0436 0.049
3 250 0.0554 0.0468 0.057 0.044 0.0466 0.055 0.0514 0.0454 0.0402 0.0542
4 250 0.0546 0.0474 0.0614 0.0442 0.048 0.0578 0.055 0.047 0.0454 0.0528
5 250 0.065 0.0492 0.0618 0.0478 0.0484 0.058 0.0566 0.0478 0.0402 0.0614
6 250 0.0608 0.0502 0.0624 0.0434 0.0504 0.0598 0.0558 0.0494 0.045 0.0568
7 250 0.0536 0.049 0.0604 0.042 0.049 0.06 0.0548 0.0482 0.047 0.0528
8 250 0.0508 0.046 0.057 0.0422 0.0466 0.0548 0.053 0.0458 0.045 0.0498
9 250 0.0538 0.049 0.0624 0.0446 0.0498 0.0598 0.0572 0.0486 0.047 0.0546
10 250 0.0522 0.0466 0.058 0.0432 0.0466 0.0554 0.0534 0.0458 0.0434 0.0516
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A6. Empirical Confidence Interval Coverage Probability for B2, Target = .99

MC N 2SLS EEL EL LEL GMM(I)
1 50 0.9896 0.955 0.9568 0.9604 0.9926
2 50 0.9888 0.9548 0.9586 0.9592 0.9922
3 50 0.958 0.9214 0.9266 0.9276 0.9654
4 50 0.9624 0.9432 0.9464 0.9456 0.9716
5 50 0.8824 0.9122 0.9176 0.915 0.9046
6 50 0.9234 0.9418 0.9462 0.9402 0.9468
7 50 0.972 0.956 0.958 0.9596 0.9776
8 50 0.9722 0.9504 0.9546 0.9544 0.9784
9 50 0.972 0.956 0.956 0.9576 0.9758

10 50 0.9576 0.9422 0.9482 0.9466 0.9628
1 100 0.9902 0.9762 0.9764 0.976 0.9902
2 100 0.9886 0.9724 0.9724 0.9734 0.9894
3 100 0.9664 0.9578 0.9604 0.962 0.9728
4 100 0.9768 0.972 0.972 0.9726 0.9808
5 100 0.9356 0.9564 0.9596 0.9598 0.9482
6 100 0.953 0.9642 0.966 0.9662 0.9658
7 100 0.9798 0.9754 0.9746 0.9764 0.9852
8 100 0.9818 0.978 0.9776 0.9786 0.9854
9 100 0.9808 0.9724 0.9738 0.9746 0.9834

10 100 0.9712 0.9686 0.9698 0.9722 0.9728
1 250 0.9894 0.9856 0.9858 0.9866 0.9896
2 250 0.9902 0.9862 0.9864 0.988 0.9914
3 250 0.9812 0.9832 0.983 0.9834 0.9826
4 250 0.9844 0.984 0.9838 0.9842 0.9856
5 250 0.9662 0.9782 0.9788 0.9792 0.9708
6 250 0.9748 0.9838 0.9826 0.9844 0.9792
7 250 0.9832 0.9842 0.9846 0.9846 0.986
8 250 0.989 0.9874 0.9872 0.9874 0.99
9 250 0.9842 0.9844 0.9842 0.9842 0.9858

10 250 0.9796 0.98 0.9814 0.981 0.9814
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Table A.7. Empirical Expected Confidence Interval Length for B2

MC N 2SLS EEL EL LEL GMM(I)
1 50 1.7359 1.5771 1.6270 1.6857 1.8332
2 50 1.3059 1.1732 1.2051 1.2362 1.3490
3 50 1.6847 1.5748 1.6372 1.6954 1.8023
4 50 1.2722 1.1956 1.2365 1.2479 1.3319
5 50 1.5741 1.6160 1.7016 1.7150 1.7205
6 50 1.2255 1.2453 1.2990 1.2848 1.3170
7 50 1.0390 0.9536 0.9760 0.9906 1.0756
8 50 1.0689 0.9875 1.0141 1.0277 1.1081
9 50 0.9195 0.8364 0.8539 0.8691 0.9463

10 50 1.4002 1.2912 1.3257 1.3548 1.4514
1 100 1.2108 1.1526 1.1694 1.1798 1.2428
2 100 0.8988 0.8552 0.8643 0.8704 0.9130
3 100 1.1828 1.1583 1.1836 1.1859 1.2237
4 100 0.8928 0.8730 0.8842 0.8834 0.9135
5 100 1.1592 1.1934 1.2264 1.2105 1.2124
6 100 0.8818 0.8969 0.9103 0.8988 0.9123
7 100 0.7274 0.6987 0.7072 0.7086 0.7398
8 100 0.7459 0.7169 0.7256 0.7279 0.7586
9 100 0.6413 0.6121 0.6189 0.6219 0.6505

10 100 0.9785 0.9436 0.9581 0.9627 0.9969
1 250 0.7580 0.7441 0.7487 0.7494 0.7656
2 250 0.5645 0.5523 0.5552 0.5558 0.5679
3 250 0.7506 0.7487 0.7552 0.7518 0.7601
4 250 0.5622 0.5567 0.5596 0.5583 0.5672
5 250 0.7431 0.7583 0.7674 0.7577 0.7560
6 250 0.5590 0.5628 0.5657 0.5615 0.5665
7 250 0.4555 0.4490 0.4513 0.4509 0.4585
8 250 0.4705 0.4631 0.4655 0.4652 0.4738
9 250 0.4016 0.3942 0.3962 0.3961 0.4039

10 250 0.6182 0.6098 0.6152 0.6143 0.6227
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A.8.  Empirical Power for Testing Ho: B2 = 0

MC N 2SLS EEL EL LEL GMM(I)
1 50 0.967 0.9656 0.9576 0.9508 0.9566
2 50 0.995 0.9932 0.9898 0.9878 0.9934
3 50 0.9588 0.9506 0.9402 0.9304 0.9444
4 50 0.9888 0.9844 0.9794 0.9768 0.9834
5 50 0.9592 0.9456 0.9258 0.9168 0.9408
6 50 0.9872 0.9772 0.9708 0.9664 0.9778
7 50 0.9984 0.9982 0.9976 0.9972 0.9976
8 50 0.9978 0.9958 0.9938 0.993 0.9964
9 50 0.9998 0.9996 0.9996 0.9996 0.9998

10 50 0.985 0.9836 0.9802 0.9752 0.9818
1 100 0.9968 0.9966 0.9962 0.9954 0.9958
2 100 1 1 1 1 1
3 100 0.9938 0.991 0.987 0.9866 0.99
4 100 1 0.9996 0.9996 0.9996 1
5 100 0.9902 0.9852 0.982 0.9806 0.985
6 100 0.999 0.9982 0.9978 0.9978 0.9988
7 100 1 1 1 1 1
8 100 1 1 1 1 1
9 100 1 1 1 1 1

10 100 0.9992 0.9994 0.9994 0.9992 0.999
1 250 1 1 1 1 1
2 250 1 1 1 1 1
3 250 1 1 1 1 1
4 250 1 1 1 1 1
5 250 1 0.9998 0.9998 0.9998 1
6 250 1 1 1 1 1
7 250 1 1 1 1 1
8 250 1 1 1 1 1
9 250 1 1 1 1 1

10 250 1 1 1 1 1


