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Abstract

We investigate the performance of a class of semiparametric estimators of the treatment
effect via asymptotic expansions. We derive approximations to the first three moments of the
estimator that are valid to ‘second order’. We use these approximations to define a method of
bandwidth selection. We also propose a degrees of freedom like bias correction that improves
the second order properties of the estimator but without requiring estimation of higher order
derivatives of the unknown propensity score. We provide some numerical calibrations of the

results.
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1 Introduction

In a series of classic papers Tom [Rothenberg (1984,1985,1986)] introduced Edgeworth expansions
to a broad audience. His treatment of the generalized least squares estimator (1984) in particular
was immensely important because it dealt with an estimator of central important and the analysis
was both deep and precise, but comprehensible. This is in contrast with some of the more frenzied
publications about Edgeworth expansions that had hitherto appeared in econometrics journals. The
use of Basu’s theorem in that paper to establish the independence of the correction terms from the
leading term is well known. The review paper (1984) was also very influential and highly cited.

It is our purpose here to present asymptotic expansions for a class of semiparametric estimators
used in the treatment effects literature. We have argued elsewhere, Linton (1991,1995), that the
first-order asymptotics of semiparametric procedures can be misleading and unhelpful. The limiting
variance matrix of the semiparametric procedure Y does not depend on the specific details of how
the nonparametric function estimator g is constructed, and thus sheds no light on how to implement
this important part of the procedure. Specifically, bandwidth choice cannot be addressed by using
the first-order theory alone. Also, the relative merits of alternative first-order equivalent implemen-
tations, e.g., one-step procedures, cannot be determined by the first-order theory alone. Finally, to
show when bootstrap methods can provide asymptotic refinements for asymptotically pivotal sta-
tistics requires some knowledge of higher-order properties — see Horowitz (1995). This motivates
the study of higher-order expansions. Carroll & Hérdle (1989) was to our knowledge the first pub-
lished paper that developed second-order mean squared error expansions for a semiparametric, i.e.,
smoothing-based but root-n consistent, procedure, in the context of a heteroskedastic linear regres-
sion. Hérdle, Hart, Marron, & Tsybakov (1992) developed expansions for scalar average derivatives
which was extended to the multivariate case, actually only the simpler situation of density-weighted
average derivatives, by Hérdle & Tsybakov (1993); these papers used the expansions to develop au-
tomatic bandwidth selection routines. This work was extended to the slightly more general case of
density-weighted averages by Powell & Stoker (1996). In my PhD thesis [Linton (1991)] I developed
expansions for a variety of semiparametric regression models including the partially linear model and
the heteroskedastic linear regression model; some of this work was later published in Linton (1995,
1996a). The Linton (1995) paper work also provided some results on the optimality of the bandwidth
selection procedures proposed therein. Xiao & Phillips (1996) worked out the same approximations
for a time series regression model with serial correlation of unknown form; Xiao & Linton (1997)
give the analysis for Bickel’s (1982) adaptive estimator in the linear regression model; Linton & Xiao
(1997) works out the approximations for the nonlinear least squares and profile likelihood estimators

in a semiparametric binary choice model. Nishiyama & Robinson (2000) proved the validity of an



Edgeworth approximation to the distribution of the density weighted average derivative estimator.
Linton (2000) derived an Edgeworth approximation to the distribution of the standardized estimator
and a Wald statistic in a semiparametric instrumental variables model.

In this paper, we develop asymptotic expansions for an estimator of the treatment effect recently
proposed in Hirano, Imbens, & Ridder (2000), henceforth HIR. Propensity Score matching is a
nonexperimental method for estimating the average effect of social programs.! The method compares
average outcomes of participants and nonparticipants conditioning on the propensity score value.
When averaged over the propensity score, the average measures the average impact of a program
if the conditioning on the observable variables makes the choice of the program conditionally mean
independent from the potential outcomes. This methodology has received much attention recently
in econometrics. While the method used often in practice uses the nearest match in either regressors
or estimated propensity score to compare the treatment and the comparison groups, the asymptotic
distribution theory for these methods have not been developed. The asymptotic distribution theory
has been developed by Heckman, Ichimura & Todd (1998) for the kernel based matching method.
HIR considers reweighting estimator that estimates the treatment effect as well. Both methods
require choosing smoothing parameters but optimal methods to choosing the smoothing parameter
have not been discussed. In this paper we consider optimal bandwidth selection for the reweighting

estimator.

2 The Model and Estimator

We investigate a class of estimators for the treatment effect, studied by HIR. For each individual we

observe Z; = (y;, t;, X;), where y; = yy; - t; + yoi; - (1 — t;) and

; _{ 1 if treated

0 if untreated,

while y;; and yo; are potential outcome for each individual ¢ with and without the treatment and
X, is a vector of covariates. Actually, for convenience we will take X to be a scalar and to have a
continuous density f bounded away from zero on its compact support. We will also assume that y;

possesses many finite moments. Define the propensity score
p(x) = Prft; = 1|X; = 2] = E(4;| X; = x),

and marginal regressions m;(z) = Elyy;|X; = z] and mo(z) = Elye:|X; = z].

!See Cochran (1968), Rosenbaum & Rubin (1983), and Heckman, Ichimura, & Todd (1998).



Identifying assumptions of the estimator are:
Ely| Xty = 1] = Elyi|X;, ti = 0]
Elyo| Xi, ti = 1] = Elyo|Xi, ti = 0]
with probability one in X;. Clearly under these assumptions E[y;|X;,t; = 1] = my (X;) and
Elyo:| Xi, t; = 0] = myg (X;). Under these identifying assumptions,
gi(z) = Ely; - t|X; = 2] =mi(x) - p(z), and
g(x) = Elyi- (1-4)]X; =a]=mo(z)- (1 -p(z)).

The average treatment effect parameter, 6y, is defined thusly

0o = E(yu)— E(yoi) = Elmi (Xi)] — E[mo (X;)]
(X)) ] 9(Xi) | _ L [Ewi-tlX)] o [Ewi-(1-t)]X)
b lp(Xi) } b [1 - p(XiJ b l p(X) } b l 1 —p(Xi)

We consider the estimator 0 of 0, that solves

2= 3 UZ0.5(X) = Oyfn™), &

where
~ yi-ti vy (1-1)
p(Xi) 1 —p(X;)
and p(X;) = Z?’:l w;;t;, where w;; are smoothing weights that only depend on the covariates
Xi,...,X,. HIR used series estimates. The bias correction method we propose below can also

be applied to series estimates and indeed any linear smoother, but discussion of smoothing bias
terms requires that we use kernel or local polynomial estimators. We will also adopt the leave-one-
out paradigm that is used in many semiparametric estimates. To be specific then we shall take the

following weights:

(2 .
— 1
Sisy K(F5) 77
Wy 1#£1
0 J =1,

where K is a probability density function symmetric about zero with support [—1, 1], while h = h(n) is

a positive bandwidth sequence. We have taken the fixed bandwidth leave-one-out Nadaraya-Watson
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kernel smoother as our estimator of the regression function. This is rather the Morris Minor of the
smoothing world and possesses some not so attractive properties [Fan and Gijbels (1996)]. However,

it is very convenient to work with technically.

3 Main Results

Define the standardized estimator T = \/5(5— o). We derive a stochastic expansion for T by Taylor
expanding V(Z;, 0, p(X;)) around ¥ (Z;, 0, p(X;)), thus obtaining a representation for 7" in terms of
p(X;) —p(X;) and the derivatives of ¥ with respect to p, which we denote by ¥,,, ¥,,, etc. We thereby

obtain
T=T"+R, (3)

where T* contains the leading terms of the expansion, and R is a remainder term that is o,(n™?)
in probability for some a > 0. The magnitude o,(n~%) is determined to ensure that our results in
Theorems 1 and 2 below are sensible. The random variable 7™ has finite moments to various orders
and indeed it is a polynomial function of certain U-statistics. We shall calculate the moments of
T* and interpret them as if they were the moments of T'. This methodology has a long tradition of
application in econometrics following Nagar (1959). When sup,, E[T?] < oo, we might reasonably
expect that E[T? = E[T*?] + o(n™%), but see Srinavasan (1970) for a cautionary tale in this regard.
Unfortunately, in our case T" does not necessarily have uniformly bounded moments. In this case,
some additional justification for examining the moments of the truncated statistic must be given.
With some additional work and regularity conditions it is possible to establish the stronger regularity

a

that T" and T™ have the same distribution to order n~%, which requires some restrictions on the tails

of R, see the discussion in Rothenberg (1984). In this case our moment approximations can be
interpreted as the moments of the approximating distribution.

HIR showed that \/n (5 — 6p) is asymptotically normal with finite variance
vo = B [(¥(Z5; 00, p(X3)) + sp(Xi)er) ] (4)
where ¢; = t; — p(X;) and
5p(x) = B0 (Zi: 60, p(X0))| X, = o) = — | 2l0) , _ 00l)

p*(z) (1 —p(z))?

They also established that this estimator is semiparametrically efficient, i.e., it has the smallest

asymptotic variance amongst the class of all feasible estimators.



We investigate the next order terms in the expansion of 6. The two largest second order terms

in T* are both biases and are
Op(h*y/n) + Op(nY2h 1), (5)

There are also mean zero random variables of order k% and order n~/2h~'/2. However, according to
the criterion of mean squared error, these stochastic terms are dominated by the bias terms, and
the optimal thing to do is to minimize the size of (5) by choosing h appropriately. The optimal
bandwidth is of order A =< n~'/3 in which case both terms in (5) are the same magnitude, and indeed
of order n~'/¢. Thus, the second order terms are very large and are mostly bias related. This suggests
that the usual asymptotic approximation may not be very well located. We shall next assume that
a bandwidth of the optimal order h =< n~'/3 has been chosen so as to simplify the discussion of the
results. Define the function

(p- f)'(x) — p(zx)f"(x)

f(@)

Blx) =

and let

o) = EWp(Zis 80, p(X))| X, = o] = | L) __90l2)

p(x)* (1 —p(x))?

THEOREM 1. Under some regularity conditions, as n — oo, R = 0,(n~Y/3) in (3) and:

1

Vnh
var(T*) =~ wvg+ O(h?) +O(n*h™Y) 4+ o(n=1/3),

E(T*) ~ /nh®b; + by + o(n~1/?3)

where

p(Xi)(1 — p(X;))
2f(X;)

b= (K)E [s(X)B(X)] 5 b2 = |K[]" E |5(X5)

and p15(K) = [w?K (u)du/2 and |K|* = [ K(u)*du.

The smoothing bias term b; can take either sign, since it depends on the covariance between the
smoothing bias quantity 3(X) and the conditional expectation s,(X). The term b, can also take
either sign depending on the sign of s,,(x). The correction term in the variance is clearly of smaller
order than the squared bias no matter what bandwidth is chosen. If we define optimal bandwidth
hopt @s one that minimizes the asymptotic mean squared error of the estimator, then the above result
indicates that it suffices to minimize the size of the bias. Note that if the biases have opposite signs

then the optimal bandwidth is going to set \/nh?b; + ﬁbQ = (0 and this second order bias will then



be of smaller order. Otherwise, the optimal bandwidth will minimize this second order bias and there

will be an interior solution to the optimization problem that can be found by calculus. Therefore,

1/3
(2_1;2) n~'3 if sign(by) # sign(b;)

hopt =
1/3
<2bT21) n=1/3 if Sign(bg> = Sign(bl)‘

In some semiparametric estimators it has been shown that by using leave-one-out estimators
and other devices one can eliminate the degrees of freedom bias terms of order n~'/2h~1, see for
example Linton (1995). Indeed, we have used leave-one-out estimator here. Unfortunately, it has
not completely eliminated the degrees of freedom bias. Instead, we define an explicit bias correction
method and show that it does indeed ‘knock’ this term out. Specifically, we define the bias-corrected

estimator
0 =0—0, (6)

where

n n

b # 323 [t ] e ()5

i=1 j=1 ¢

where €; = t; — p(Xj;). This bias correction is similar conceptually to using n — 1 instead of n
in estimating a population variance; significantly, in this context we do not need to estimate higher
derivatives of the unknown functions, and it follows that the sampling properties of this bias estimator
should be relatively good. Can also do this multiplicatively?

The stochastic expansion for gbc is the same as that for 0 except for the additional bias correcting
term b. On computing the moments of the leading terms of this expansion however we find that the
bias term b, has been eliminated; we therefore end up with a better trade-off in the mean squared
error of this estimator. The largest terms are a squared bias of order h*n and a variance of order
n~'h~'. This trade-off leads to an optimal bandwidth h o< n~?/° and mean squared error of n=3/5.

Let
Ci = ¥p(Zi; 00, p(Xi)) — E[Wp(Zi; 0o, p(X5))| Xi].
Let now T = \/ﬁ(gbc — 6p) and obtain "= T* + R as in (3).
THEOREM 2. Under some regularity conditions, as n — oo, R = 0,(n=%/%) in (3) and:

E(T*) ~ /nh®b; + o(n=3/%)

1
var(T*) =~ wvg+ U + o(n=%/?),
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where

_ 2 B(£51X5)E(G1X)) E%(e;¢;1X))
o= K {E f(X;5) wr [ f(X;) }}
2 Spp(X5) B2 (71 X5)
+ || K * K|| XE{ (X)) ]
12K, K+ K)x E |:SPP(XJ) (S}L))z))E(ng’XJ)] 7
where (K x K)(t) = [ K(t)K(t — u)du is the convolution of K with itself and (f,g) = [ f(t)

This shows that the bias correction can lead to improved mean squared error propertles.2 The

" 1/5
_ —2/5
o= ()"

since b7, v; are both non-negative. This bandwidth is smaller in magnitude than is optimal for the

optimal bandwidth is now

raw estimator 0.
We have just presented results concerning the moments of the estimators, but this can also be
extended to distributional approximations. In fact, to the relevant order 0 is normally distributed,

ie.,

Pr [\/77(5 —tp) < x} = (m — VhTh sz) + o(n71/3).

Vo

~b
The approximation for \/n(6 ‘ 0o) is more complicated because if we require an error rate consistent
with our mean squared error [i.e., of order n~3/°] then we will have to include the skewness terms of

order n~1/2 3

in this case the approximate distribution is not normal in general but can be expressed
in terms of the Edgeworth signed measures and the first three cumulant approximations. See Linton
(2000) for a computation of this type.

Finally, we remark that the standard errors also depend on p(-) and there are similar concerns

about the small sample properties of these quantities. These standard errors also suffer from a

2We are happy to report that this finding is in agreement with Rothenberg (1984, p909)

“This suggests that correction for bias may be more important than second order efficiency consideration

when choosing among estimators”

31n fact,

E{T* — BE(T*)}*] ~ O(n™/?).



degrees of freedom bias problem, which can be corrected in the same way as we have done for the

estimator of 6.

4 Some Numerical Results

For comparison we present the optimal rates associated with a variety of semiparametric models that
have been studied before. These are all for the univariate case with second order kernels or similar
method.

TABLE 1
Rates of Convergence for Bandwidth and Mean Squared Error Correction
Model Optimal Bandwidth Optimal MSE Correction
1. Average Derivative n~=27 n~ Y7
2. Variance Estimation n~1/° n=3/°
3. Partially Linear Model n=2/? n~7/9
4. Heteroskedastic Linear Regression n~1/5 n~—4/5
5. Variance a Function of Mean n—2/1 n /11
6. Symmetric Location n~ Y7 n~47
7. HIR n~1/3 n~43
8. HIR with Bias Correction n=2/5 n~3/°

Notes. Models 2-6 are given in Linton (1991, Chapter 3). The result for Model 1 is taken from Hérdle, Hart, Marron, & Tsybakov (1992).

The optimal bandwidth for nonparametric regression is of order n~'/® and has a consequent MSE
of order n=%/°. Table 1 shows that there is quite a variety of magnitudes for the optimal bandwidth
in semiparametric estimation problems; sometimes the optimal bandwidth is bigger but usually it is
smaller than the optimal rates for nonparametric estimation. These different rates reflect different
magnitudes for bias and variance in these semiparametric functionals.

We next investigate the magnitudes of the second order effects in Theorems 1 and 2 and the

optimal bandwidth size.



Design 1

X ~ U[-0.5,0.5]

= oo+ ox

= T+ mo(x)

yo = mol(z)+n, n~ N0,07)

Yy = Yo+T

t = 1(By+Biz+6>0), §~ N(0,03).

We find that

5 Conclusions and some not so deep thoughts

Our asymptotic expansions revealed some important facts about the HIR estimator. The main thing
is that its properties are dominated by bias: one bias term is related to the curvature of the function
p and the covariate density f [smoothing bias], and the second bias term is what we have called a
degrees of freedom bias. The magnitude of the bias terms can be quite large and their signs are
unknown in general. We proposed a simple bias correction that eliminates the degrees of freedom
bias term, thereby permitting a smaller bandwidth and consequently a better mean squared error

correction.

6 Appendix

We derive the stochastic expansion for the more general case where the estimator is only implicitly
defined and where there may be multiple functional components. Therefore, we adopt a slightly
different notation. Suppose that we observe data {Z;}!, partitioned as Z; = (Y;, X;), where the
dependent variables are Y; and the regressors are X;. Suppose for simplicity that 6y is a scalar
unknown parameter. We define our estimator 9 to be any approximate zero of an estimated moment

condition, i.e., any sequence that satisfies
1 — ~ .
% ; U (Z;;0,9(Xi)) = Op(n™), (7)

where U is a given score function possessing various regularity conditions drawn on below, while
g is a nonparametric estimate of the unknown function g, where ¢ is a regression function, hazard

function, density function or similar object. This is a standard class of semiparametric estimators.
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We will use subscripts to denote derivatives, so that Wy(z,0, g) is the derivative of ¥(z, 6, g) with
respect to 6 and ¥, is the derivative of ¥(z, 6, g) with respect to the scalar g. We will suppose that it
has already been shown that 0 — 0o = O,(n1/2), and that the derivatives of W satisfy the following:

%Zw(zi;eo,ﬁ(xi)) = 0,(1) ; %Z%(Zi;eo,g(xi)):op(l) :

1 & N 1 & N
= Wp(Zi;600,§(X:)) = Op(1)  sup =Y Woap(Zi;6,5(X0))| = Op(1).
n =1 ‘9—90|§C/\/ﬁ n i=1

Sufficient conditions for these results can be found in numerous places for a variety of estimators
g and functions . See for example Andrews (1994), Newey & McFadden (1994), Bickel, Klaassen,
Ritov, & Wellner (1993) etc. Linton (1996) develops higher order asymptotic expansions for similar
semiparametric estimators for a specific class of nonparametric estimators. We requires some further
assumptions regarding the properties of the nonparametric estimator and on the derivatives of ¥ with
respect to g. We will assume at least that we have a uniform rate of convergence on g. Specifically,
we suppose that

15— gllo = sup_[g(z) — g(z)| = op(n"*). (8)
z€int(X)

Sufficient conditions for this can be found in Masry (1996). We also suppose that

sup  |Wggege(Zis 00, 1),  sup  |Woguee(Zs; 00,1)| < d(Z)

[t—g(Xi)[<e [t—g(Xi)|<e

with Ed(Z;) < .
Let A = n_1/2 Z?:l \IJ(Z“ 90, @\(Xl)), B = Tl_l Z?:l W@(Zl, 90, /g\(Xl)), and
C=n"1>"  Y(Zi;0,9(X;)). Then by a Taylor series expansion it follows that

1« -~ 7 1 n 2 -1
0= 7 ; U(Z:50,9(X:)) = A+ By/n(6 — 60) + mC[\/ﬁ(ﬁ —00)]" + Op(n™").

Using standard techniques [Bhattacharya & Ghosh (1978)] we can invert this expansion to obtain

B3CA?
2v/n

This expresses the standardized estimator as a simple function of sample averages of the parameter

Vil —6y) =—B'A— +0,(n7Y).

derivatives of the moment condition, i.e., \/ﬁ(/@\ —6y) ~r(A, B,C) for the given function r.

11



By a Taylor expansion in g, we have:

- fzqf Zi 00,91 fzxv (Z:60,9(X))@(X) — 9(X))
*m;%Zﬁeo,g(&))@(&)—g(Xz->>2+m;%xz;emg(&))(a&)—g<X@->>3

TG > (700 9(X0) 30 — g LX)+ 0307

4
= Z + 0p(n 3/4 ) (9)
3=0

B = EVy(Z;00,9(X;)) + % Z 0(Zi; 00, 9(X:)) — EVy(Zs; 60, 9( X))
e S W0y (350, G XD GX0) — 90X0) + 5= D Va2 0, g (XD FX0) — 9(X0)* + 0,0
= Z Bj + Op<n73/4). (10)
Similarly,
C=0C+ Op(n_1/4), (11)

where Cy = EVgy(Z;;00,9(X;)). It follows from the uniform rate on g that Ay = o,(1), A3 =

op(n
Ap =

U4 Ay = 0,(nY2), By = 0,(n"Y*) and Bz = 0,(n"/?). By standard arguments By = O(1),

0,(1), and By = O,(n~/2). There is also a well known argument that shows

A = % S0, (200, 9(X))F(X0) — 9(X0) = Opl1) + bias term.

See for example Newey (1995). Provided the bias term is made small, 4y = O,(1). We should

also point out that in some cases some of these terms disappear. For example, it can happen that

E[U

4(Zi3:60,9(X;))|Xi] = 0, in which case A; is of smaller order. Other terms can also drop out as

we will see.

We will now combine the information we have acquired about the individual terms in the expan-

sion to simplify it further. We have shown that

T=T"+ Op(n_3/4>a

12



where

- 5" (ZA) + 1, (Z Bj) (Z Aj) ~ By Ay (Z Bj> SBOE

In fact, some of these terms are clearly redundant like B;*Bs (Zj‘::; Aj> etc. Furthermore, we will
typically only be interested in retaining terms that contribute most to the mean squared error, which
would entail dropping many further terms.

We now turn to the specific case of this paper, in which Wy(Z;, 0, p(X;)) = —1 and so Ygy(Z;, 0, p(X;))
etc. and Wy,(Z;,0,p(X;)) etc. are all identically zero, i.e., the expansion terminates. Therefore, the

full expansion in our case is
V- - = Z V(25 00, p(X0) + = 3 050, p(X)) (LX) — p(X)
NG Z W (23300, p(X) (LX) — p(X0))?
5 Z Wy Zi5 B0, (X)) (LX) — p(X)?

+ﬁ é Wopp( Zi3 00, p(X2)) (B(X3) — p(X0))* + 0p(n*").
Define

& = Wpp(Zi; 00, p(Xi)) — E[Wpp(Zi; b0, p(X5))| Xi],
which are i.i.d. error terms that are conditional mean zero given X;. We have

. _ Yi - i yi- (1= ti)
U, (Zs; 00, p(Xi)) = (X2 1= p(X))]?

yioti oy (1-t)

\ijp(Zi; 907P(Xi)) = 2

Then, we can write

V0 —00) = == W(Zi00,p(X0) + == 3 sp(X0) (B(X) — p(Xi)



We use the decomposition

PX)) = p(Xs) = D wijej + Ba(Xy),
j#i

where w;; are the smoothing weights that just depend on the covariates X;,... , X, while
Bn(Xi) = E[p(Xi)| X1, ..., Xa] — p(X)

is the conditional smoothing bias that also just depends on the covariates X1, ..., X,.
We then write

7= 3 5, (X)PLX) - p(X0)

= % Zsp(Xj)ej + % Zej [Z wisp(X;) — sp(Xj)

i#]

NP

where the first term is O,(1) and jointly asymptotically normal with the leading term
ﬁ Yo U(Z;;00,p(X;)), the second term is mean zero and has variance of the same magnitude as
B> wijsp(X;) — sp(X;)]*, this we expect to be O(h*). In fact, we have

S wisp(Xo) — 5p(X;) = ihZK(X@;Xj> ACONE

i#£j " i#] Ef(Xi)
~ X=X e 0 LX) v o ix
= [ (F5) w0 ax - sx)
= O(h?).

The third term in (13) is a bias term with magnitude h?\/n and variance also h*.

We next turn to the term

L ZQ‘ (P(X3) — p(X3)) = L ZQ Zwijé?j + L ZCiﬁn(Xi)u
v v v

J#i
where the first term is a second order degenerate U-statistic that has mean zero and variance of order

n~th™!; it is also uncorrelated with the leading term. The second term is mean zero and O,(h?).

14



We next turn our attention to the term

% Z Spp(Xz>(ﬁ(XZ> — p(XZ>>2 — % Z Spp(Xi)(Z W;5E€ + Op(h2>>2

JF#i

12

T2 D) S uh EEIX)

i
1 n
+% D (X)) wile; - E(€31X;)]
=1

J#i

—1-% ; Spp(Xi)J # lz Zwijwilé?jé?l-

[T
The first term is not mean zero and is of order n~'/2A~! in probability and is the dominant term:;

the second term is mean zero and of order n=*h~! in probability. The third term is mean zero and

actually O,(n"1/2h=1/2). We can rewrite this term

% ; Spp(Xi)j # ZZ Zwu‘wiﬁﬁl = J# ZZZ (% ; Spp(Xi>wijwil> €j€l

A 1
1 . Xj — Xi\ spp(X))
i AL ) (25 )f(Xj)gjgl.

12

Finally, it is easy to see that
1 — R o
57 2 & (LX) = (X)) = Oyl + '),
i=1

Specifically, we can suppose without loss of generality that £, is independent of (; and so this term

is mean zero and has variance

i=1
which has the order as stated.
Let

Ma(X:) = E[(p(X:) = p(Xi)*| X1, ..., X,

15



In conclusion we have

Vi@ ) = %Zw;eo, (X)) +5(X)e: = O,(1)]

€j wijsp(X sp(Xj) [: Op(hz)}
fz 2

+i # jz Zson Zi, Z;)  [= Op(n'2h712)]
\/_ Z Sp [: Op<h2\/ﬁ)}

+3 \/_ Z Sop( X)) Mo (Xi)  [= Op(h*Vn) + Op(n 2R 1],

where
1 1 Xi—X; 1 X, —X;
on(Zi, Z5) = N 9) [K ( ) Gigj + 5 (K * K) (TJ) Spp(Xi)SiSj] :
Clearly, El¢,(Z;, Z;)|Zi] = Elp,(Zi, Z;)|Z;] = 0. The first three lines contains mean zero and indeed
asymptotically normal terms, while the fourth and fifth lines contain non-mean zero biases. [ |

Define the quantity

= #03 [ts ~ i oe (F)

i=1 j=1

whose expectation E(E) is approximately equal to bs/nh. Then it can be shown that

Z—E(g) B logn
—E(Z) = O0,(\| —— - + h*).

VA" = 80) = VD = 00) = (14 0,1/ <5+ 1))

This means that
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