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Abstract

This paper uses insights from the literature on estimation of nonlinear panel data models
to construct estimators of a number of semiparametric models with a partially linear index,
including the partially linear logit model, the partially linear censored regression model, and
the censored regression model with selection.. We develop the relevant asymptotic theory for
these estimators and we apply the theory to derive the asymptotic distribution of the estimator
for the partially linear logit model. We evaluate the finite sample behavior of this estimator

using a Monte Carlo study.
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“I have had my solutions for a long time, but I do not yet know how I am to arrive
at them.” (Carl Friedrich Gauss)

1 Introduction.

For the linear panel data regression model with fixed effects,
Yit = @ + Tt + €it, (1)

in which the individual-specific intercept (“fixed effect”) a; can be arbitrarily related to the regres-
sors xjt, a standard estimation approach is based upon “pairwise differencing” of the dependent

variable y;; across time for a given individual to eliminate the fixed effect:
Yit — Yis = (it — T4s) B + (it — €is),

a form which eliminates the nuisance parameters {a;} and is amenable to the usual estimation
methods for linear regression models under suitable conditions on the error terms {e;}. For non-
linear models — i.e., models which are not additively-separable in the fixed effect a; — this pairwise
differencing approach is generally not applicable, and identification and consistent estimation of
the G coeflicients is problematic at best. Still, for certain nonlinear panel data models, variations
of the “pairwise comparison” or “matching” approach can be used to construct estimators which
circumvent the incidental-parameters problem caused by the presence of fixed effects; such models
include the binary logit model (Rasch 1960, Chamberlain 1984), the censored regression model
(Honoré 1992), and the Poisson regression model (Hausman, Hall and Griliches 1984).

Powell (1987, 2000) and Ahn and Powell (1993) exploited an analogy between the linear
panel data model (1) and semiparametric linear selection models for cross-section data to derive
consistent estimators for the latter. These estimators treat the additive “selection correction
term” as analogous to the fixed effect in the linear panel data model, and eliminate selectivity
bias by differencing observations with approximately-equal selection correction terms. The object
of this paper is to extend this analogy between linear panel data models and linear selection
models to those nonlinear panel data models, cited above, for which pairwise comparisons can
be used to eliminate the fixed effects. This extension will yield consistent and asymptotically
normal estimators for the linear regression coefficients in binary logit, censored regression, and
Poisson regression models with additively-separable nonparametric components — i.e., nonlinear
extensions of the “semilinear regression model” — and also for the censored regression model with
sample selection.

In the next section, more details of the analogy between linear panel data models and semi-

parametric regression and selection models are provided, and the resulting pairwise difference



estimators for the various nonlinear models are precisely defined. These estimators are all defined
as minimizers of “kernel-weighted U-statistics”; some general results for consistency and asymp-
totic normality of such estimators are provided in Section 3. One novel feature of the general
asymptotic theory is a “generalized jackknife” method for direct bias reduction for the estima-
tor, which is a computationally-convenient alternative to the usual requirement that the kernel
weights be of “higher-order bias-reducing” form. The paper then specializes these general results
to the pairwise-difference estimator for the partially linear logit model, and presents the results

of a Monte Carlo study to evaluate the finite-sample performance of this estimator.

2 Motivation for the Proposed Estimators.

In order to motivate the estimation approach proposed here, it is useful to first consider the
partially linear model!

where (y;, zi,w;) are observed, (3 is the parameter of interest and g(-) is an unknown function
which is assumed to be “sufficiently smooth”. A number of estimators of § have been proposed
for this model.? The term g(w;) in (2) can represent “true nonlinearity” or may be the result
of sample selection. For example, in the sample selection model (Type 2 Tobit model, in the

terminology of Amemiya (1985)), the data is generated from

yi = xif+e (3)
di = Hwyy+n; >0} (4)

and the data consists of y; = d;yf, d;, x; and w;. If it is assumed that (g;,7;) is independent of

(x4, w;), then we can write
yi = i+ g(wy) +vi,  Elvilai,wi,di =1] =0

where g(w;y) = Elg;|lwiy +n; > 0] and v; = g; — g(w;y).

Powell (1987, 2000) proposed estimation of (3) (and implicitly also of (2)) which is based on
the idea that if w;y equals w;y then for observations i and j the terms g(w;y) and g(w;7y) are
like a fixed effect which can be differenced away. Since 7 is typically unknown, and w;v typically
continuously distributed, a feasible version of this idea uses all pairs of observations and gives
bigger weight to pairs for which w;% is close to w;9, where 4 is an estimator of . The weights are
chosen in such a way that asymptotically, only pairs with w;y —w;v in a shrinking neighborhood

of 0, will matter.

! This model is also called the semiparametric regression model and the semilinear regression model.

2References.



The insight in this paper is to observe that this pairwise difference idea can be applied to any
model for which it is possible to “difference out” a fixed effect. Below we outline some examples

of models in which the idea can be used.

2.1 Partially Linear Logit Model.

The logit model with fixed effects is given by
yit = oy + 248 + e > 0} t=12:=1,...,n

where {e;; : t =1,2;4 = 1,...,n} are ii.d. logistically distributed random variables. In this model,
Rasch (1960) observed that 3 can be estimated by maximizing the conditional log-likelihood (see
also Chamberlain (1984), page 1274)

L= Z —yi11n (1 4 exp((zi2 — ©i1)b)) — yio In (1 + exp((zi1 — zi2)b)) .
1:Yi1 £ Y2

Now consider the partially linear logit model
yi ={zif+g(wi)) +e, >0y i=1,....,n (5)

For observations with w; close to wj, the terms g (w;) and g (w;) are almost like fixed effects,

provided that g is smooth. This suggests estimating 3 by maximizing

L,(b) = (;L) hiL Z -K (U}ZTHJ) (yi In(14+exp((xj—x;)b))+y; In(1+exp((z;—z;)b))). (6)

noi<
YiFY;

where K (+) is a kernel which gives the appropriate weight to the pair (7, j), and h,, is a bandwidth

n
2

>~ will ensure that the objective function converges to a nondegenerate function under appropriate

which shrinks as n increases. L denotes the dimensionality of w; and the term ( )71}%,“ in front of

regularity conditions. The asymptotic theory will require that K(-) is chosen so that a number

of regularity conditions, such as K(u) — 0 as |u| — oo, are satisfied. The effect of the term

K wi,; Wi ) is to give more weight to comparisons of observations (i, j) for which z; is close to z;.

2.2 Partially Linear Tobit Models.

The fixed effects censored regression model is given by

yir = max{0, a; + x40 + it}



Honoré (1992) showed that with two observations for each individual, and with the error terms

being i.i.d. for a given individual?,

p = arg mbinE[Q(yih Yiz, (zi1 — Ti2b)] (™)

where .

(1) — (y2 + 6)&(y1) if &<~y

(y1 —y2 = 6) if —ya <6<y

(=y2) = (6 —y1)&(—y2) If 1 <6

and Z(d) is given by* either Z(d) = |d| or Z(d) = d*. The estimators for the fixed effect censored

regression model presented in Honoré (1992) are based on sample analogs of (7):

1
-~ > a(yin, via, (ir — wi2)b)

Q(yl) Y2, 6) =

[1]1 [1] [1]

Applying the logic above, this suggests estimating 3 in the partially linear censored regression

model
yi = max{0,x;0 + g(w;) + &},
by minimization
-1
5.0 = () 7 K (M5 ) oo o~ 0
i<j
Honoré (1992) also proposed estimators of the truncated regression model with fixed effects.
In the simplest version of the truncated regression model, (y,x) is observed only when y > 0,
where y = 28 + €.
The idea in Honoré¢ (1992) is that if y;; = o + x4 + €ir and if ;; satisfies certain regularity
conditions, then
Elr(yiv, yiz, (win — zi2b)) [y > 0,412 > 0] (8)

is uniquely minimized at b = 3, where

=(y1) if 0 < —yo;
r(y1,y2,0) =< E(y1 —y2—0) if —y2 < <uyn:
E(~y2) if 4y <6;

and Z () is as above.
This suggests that the partially linear truncated regression model, y; = x;0 + g(w;) + €; with

(yi, x;, w;) observed only when y; > 0, can be estimated by minimizing

1 = (3) e A (M) o o )

3The assumption on the error terms made in Honoré (1992) allowed for very general serial correlation. However,

for the discussion in this paper we will restrict ourselves to the i.i.d. assumption.

*Other convex loss functions, = (), could be used as well.
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2.3 Partially Linear Poisson Regression Models.

As a third example, consider the Poisson regression model with fixed effects:
Yit ~ po (exp(ay + xi3)) t=1,2+:=1,...,n.

This model can be estimated by maximizing (see, for example, Hausman, Hall and Griliches
(1984)):
L= Z —yi1In (1 4 exp((zi2 — wi1)b)) — yie In (1 + exp((z51 — zi2)b))

)

A partially linear Poisson regression model

yi ~ po (exp(z;8 + g(w;))) t=12i=1,...,n

can then be estimated by maximizing

L= (Z)lh% 5 (L) (ot (1 (s — ) — 3y (0 e — 55)0)

n i<y
2.4 Partially Linear Duration Models.

Finally, Chamberlain (1985) has shown how to estimate a variety of duration models with fixed
effects. Using the objective functions that he suggested, one can derive objective functions, the
minimization of which will result in estimators of the linear part of partially linear versions of the

same models.

2.5 Tobit Models with Selection.

As mentioned above, the nonlinear term can sometimes to caused by sample selection. Consider
for example a modification of the model defined by (3) and (4), in which y} is censored. One
example of this would be a model of earnings. Here, the variable of interest is often censored
from above by topcoding at some observable constant c¢;, as well as subject to sample selection,

because not everybody works. This model can be written as

y* = min{z;8+ ¢, ¢} (10)
di = U wyy+mn; >0} (11)

where (g;,7;) is independent of (z;,w;) and the data consists of y; = d;yF, d;, x; and w;. As
usual, we can translate this model, which has right-censoring at ¢;, to the Tobit framework with
left-censoring at zero by taking ¢; = d;c; — y; as the dependent variable and Z; = —x; as the

regressor.



For the observations for which d; = 1, the distribution of ¢; is conditional on n; > —w;7y. For
two observations, ¢ and j with w;y = w;v and d; = d; = 1, ¢; and ¢; will be independent and

identically distributed (conditionally on (x;, z;,w;, w;)). Therefore
B = argmin Blq(gi, g, (i — 25)b)lds = dj = 1, wiy = wy].

This suggests estimating 0 by minimization of

= (}) > ¢ (M i 5 20, (12)

’L<J
d;=d;

where 4 is an estimator of 7 in (11) (numerous estimators of 4 have been considered in the
literature), and L denotes the dimensionality of w;~. If there is no censoring, and if quadratic loss
(2(d) = d?) is used, then the minimizer of (12) is the estimator suggested by Powell (1989).

The estimator of the truncated regression model defined in (9) requires that the error, &; has
a log—concave density. Whether it is possible to define an estimator for the truncated regression

model with selection by

ro=(3) 7 X K (U e 20 (13

i<j
d;=dj=1

depends on whether one is willing to assume that the conditional density of ¢; given n; > k is
log—concave for all k. The estimators for the partially linear logit and partially linear Poisson
regression models do not generalize in a straightforward manner to the case of selection, because

the error—terms after selection will have non—logistic and non—Poisson distributions.

3 Asymptotic Properties of Estimators defined by Minimizing
Kernel-Weighted U—Statistics.

The estimators defined in the previous section are all defined by minimizing objective functions

@Gt = (3) Ltz (19

1<J

of the form

with

1 w; — Ww;) 7y
qn (2i, 2537, b) = o <(h7])) s (vi, vj; b) (15)
n n

zi = (yi, x5, w;), and v; = (y;,x;). Note that for the estimators of the partially linear models,
v = I (the identity matrix). Let 6 = (v/, ﬁ')/ and L = dim(w~). In the next two subsections we

give conditions under which such estimators are consistent, and asymptotically normal around



some pseudo—true value. The third subsection will then show how to “jackknife” in such a way
that the estimator is asymptotically normal around the true value. Finally, the last subsection
will show how to consistently estimate the asymptotic variance of the estimator.

Throughout, we define Aw;; = w; — w;.

3.1 Consistency.

We will present two sets of assumptions under which the estimators defined by minimization of
(14) are consistent. One set of assumptions will require a compact parameter space, whereas the
other will assume a convex objective function. In both cases we will use the theorems found in
Newey and McFadden (1994) to prove consistency.

Let m be a function of z;, z; and b. It is useful to define two function k,, and /¢, by
km (a1,a2,b) = E [m (2i,2550) 2z = al,w;ﬁo = ag]

and
U (a1, a2,b) = B [m (2, 23 b)| 21 = a1, wiyg = az] fury, (a2)
When m depends only on z;, z; and b, we will write

km (a1, a2,0) = E [m (2, zj; b)| vi = a1, wjyy = az]

and

Uy (a1,a2,b) = FE [m (vi,v5;0)| v = al,w;-’yo = az] fwho (a2) .
Assumption 1. All of the following assumptions are made on the distribution of the data
1. E [s (vi,vj;b)ﬂ < 00;
2. £ [||Awij||2} < o0; and

3. w7 is continuously distributed with bounded density, fy.., (+), and ks () defined above

exists and is a continuous function of each of its arguments

4. for all b, MS (a1, ag, b)‘ S kl (al, b) with F [kl (’Ui, b)] < oQ.
Assumption 2. One of the following assumptions is made on the bandwidth

1. hn > O, hn = 0(1) and h;l = O(n1/2L);
2. hy, >0, hy, = 0(1) and hT_L1 —0 (n1/2(L+1))

Assumption 3. K is bounded, differentiable with bounded derivative K’, and of bounded vari-
ation. Furthermore, [ K (u)du =1, [|K (u)|du < oo and [ |K (n)|||n||dn < cc.



The assumptions made on the kernel are satisfied for many commonly used kernels.

In some of the example v will be estimated.

Assumption 4. One of the following assumptions is made on ¥

Ly=7
2. QZWO‘FOp(ﬁ)

The following additional assumption will be made in the case where the objective function is

not convex.

Assumption 5. |s (v;,v;;b1) — s (v, vj;b2)| < Bjj |b1 — ba|® for some o > 0, where E [B%} < 0.

3.1.1 Limiting Objective Function.

Consistency of extremum estimators is usually proved by studying the limiting objective function
and the exact manner in which the objective function approaches its limit. In this case the limiting

objective function is
Q(’Y[]a b) =K [gs (/Ui’ wéfyoa b)]

which exists under Assumption 1.

3.1.2 Pointwise Convergence to Limiting Objective Function.

In this section we will state conditions under which the objective function converges pointwise to
its limit. It is useful to distinguish between the case with and with out a preliminary estimator
(i.e., between Assumptions 4(1) and 4(2)).

In the case of no preliminary estimator, we have
Bl ) = B[ (M) )
1 (wive — Wiy ,
= F [E [EK (h—n) ks (vi,wjyo,b)‘wi,w”
= //K vl, - hnn,b) dndF (w;,w;)
— Q70,0

by dominated convergence. Note that the first expectation exists because of Assumptions 1(1)
and 3.
Under Assumptions 1, 2(1) and 3



E = O(n)

1 Nwi;y 2
{ﬁK (h—JO) s (vi, vy b)}

and therefore (Ahn and Powell (1993), Lemma A.3)

Qn (707 b) - B [Qn (’707 b)] =0p (1)

Combining,
Qn (707 b) I Q(’YO7 b)

In the case where 7 = vy + O), (ﬁ) , we have

Qn (’/7\7 b) = (Qn (77\’ b) - Qn (’707 b)) + Qn (’707 b)

Pointwise convergence of @, (7,b) to Q(7g,b) then follows from

-1 —~
n 1 YANTIF Y ANwiivy

E — (k=291 ) g (==2/0 Ui
2) 0 ‘hL( < hn ) ( hn ))S(Uﬂjj/b)

n) Z LK’ (c5;) Awi; (¥ ’70)8 (03, v b)

Qn (377 b) - Qn ('707 b) =

(YIS L e gy 12wl I = voll
< > o7 K ()] s (03,051 )|
2 — hy hn
1<)
~ 1 n\ !
< H’Y*%HWC 5 > l[Awis |s (w3, vj;b)]

1<j

1
= 0 (i)

= op(1)

where the last equality follows from Assumption 2(2).

3.1.3 Uniform Convergence to Limiting Objective Function.

With a convex objective function, the pointwise convergence suffices. This covers the cases where
v is estimated. Without convex objective functions, uniform convergence is the key ingredient in
the proof of consistency of extremum estimators. Invoking Assumption la, uniform convergence
follows from Lemma 2.9 of Newey and McFadden (1994) as follows.



With no preliminary estimation of v we have

|Qn (/777 bl) —Qn (37 b2)’ - ’Qn (707 bl) —Qn (707 b2)‘

n\ ¢ 1 Aw;jvg
- 0 ﬁK . (s (vi,v5;01) — s (v, v5; b2))
i<j ™ "
1
n 1 Awi‘ o
- () Bk
n n

When ~ is estimated,

‘Qn (;Y\) bl) —Qn (/777 b2)|
< 1@n (70, b1) — @n (70, 02)[ + [(@n (7, b1) — Qn (7, b2)) — (@n (70, b1) — @n (70, b2))]

and

[(Qn (7, 01) — Qn (7,02)) — (Qn (70, 01) — Qn (70, b2))]

_ (Z)_lzé (K (A;Zﬁ) K (A‘Z_;VO)) (s (vi,v:b1) — 5 (v5, vj: ba))

i<
-1
n Aw;
= (3) S e =0 i) = s i)
i<j n
L s n\ " o o
< WH’Y—%H 5 > K (cf)| | Awis || Bij by — bl
n

1<j

1 o
= 0 ()10 -

3.1.4 Identification.

The limiting objective function is uniquely minimized at 3, provided that

Assumption 6. E[s (v;,v;;b) | (w; — w;) 7o = 0] is uniquely minimized at b = (.

3.1.5 Consistency Theorem.

Combining these results, and referring to Newey and McFadden (1994) Theorem 2.7 and to

Theorem 2.1 and Lemma 2.9, respectively, we have
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Theorem 1 If K (W) 5 (vi,v5;b) is a continuous and convex function of b and the param-
eter space for 3 is a convex set with the true value, (3, it its interior, then the minimizer of (14)

over the parameter space is consistent under random sampling and assumptions 1, 3, 6 and either

2(1) and (4(1) or 2(2) and 4(2).

Theorem 2 If K (W) s (vi,v5;b) is a continuous function of b and the parameter space
for B is compact and includes the true value, B, then the minimizer of (14) over the parameter
space is consistent under random sampling and assumptions 1, 3, 5, 6 and either 2(1) and (4(1)
or 2(2) and 4(2).

3.2 Asymptotic Normality.

In this section we derive the asymptotic distribution of the estimator defined by minimizing (14).

Specifically, we will derive the limiting distribution of \/n (B -0 h) where (3}, is the minimizer of
E [}%LK (%) s (vi,vj; ﬁ)} Note that the argument that lead to consistency ofB implies

that 8, — By.Also note that [3;, is non-stochastic. In section 3.3 we will discuss conditions under
which »
B =Bo+ > _bih +o(h?).

=1
In this case, the estimator will have an asymptotic bias term, which we will eliminate via a
jackknife approach. The advantage of the approach taken in this case is that it is not necessary
to employ a bias-reducing kernel. This means that if s in equation (14) is convex, then so is
the objective function @, in (15). At first sight, is seems that the disadvantage is that it is
necessary to calculate the estimator a number of times. However, as we will see in section 3.3, it
is often possible to do the optimization only once. Estimators that are asymptotically equivalent
to the remaining estimators can then be defined as the result of performing a finite number of
Newton Raphson steps from the original estimator.

The following assumption is standard.
Assumption 7. The true parameter, 3y, is an interior point of the parameter space

In all the applications considered here, the objective function will be left— and right— differen-
tiable. We therefore define

~1
—~ n —~
Gn(’y”@) = (2) E pn(zlazj7’}/7ﬁ)
1<]
where

1 w; —w;)
Pn (20, 2537, 8) = oK <(zh—JM) t (vi,vj; 8)
n n

11



and ¢ (v;,v;; 8) is a convex combination of the left— and right derivatives of s (v;, vj; 3).

It is useful to define

pin (27, 6) = Elpn (2,257, 0) |2 — E [pn (21, 2557, 8))]
pon (V,8) = Elpn (i, 257, 0)]

where the Assumption 8 below will guarantee that the expectations exist. We can then write

—1 n
(;L) > o (20,2537, 8) = Pon(%ﬁ)+%2mn(zi;%ﬁ) (16)

1<j
n -1
+(2) Zp2n (Zi,Zj;’Y, ﬁ)

1<j
where pi1, and pa, are P-degenerate (with P denoting the distribution of z;). pa, is defined
implicitly by (16).

We will assume
Assumption 8. {t(-,-; ) : 8 € B} is Euclidean for an envelope F, i.e.

sup [ (zi, 25 B)| < F (2, 25) 5
n?ﬁ
satisfying F [F 2] < 00. B need not be the whole parameter space, but could be some other

set with (3, in its interior.

Assumption 8 is satisfied for all of the examples considered in section 2. Assumptions 3
and 8 imply that hﬁpn is Euclidean (for some envelope C'F' with E [(C’F )2} < 00). This, in
turn, implies that hﬁpgn is Euclidean for an envelope with finite second moments (see Sherman
(1994b), Lemma 6). This will be important for the derivation below,because it allows us to ignore
the “error” when we approximate the U-statistic, (g)_l > <jPn (zi, 25;7, B), by its projection,
pon (7, B8) + 2 311 pin (2357, ).

We also define

5” (Zia v, ﬁ) = Pon (77 ﬁ) + 2p1n (Zl~ v, ﬁ)

Note that this implies that py, (zi, Vg, Bn) = 201n (2i, 70, Bp)- It is convenient to assume:
Assumption 9.

1. Pn (2i,7,0) is continuously differentiable in (v, 3) with a derivative p,, (2;,7,3) with
the property that for any sequence (v*,3*) that converges in probability to (vg, ),
P (zi,7*, B%) converges to a matrix pj, (g, 5g), the lower part of which (i.e., the part

that corresponds to differentiation with respect to 3) is non—singular.
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2. for some function pr (2370, 0o) with B [|[pr (21570, 60) 2] < o0

1 - 1 &
% ;pn (25705 Bp) — % ;pn (2i370, Bo) = Op (1).

In the next subsection, we give result that are useful for verifying Assumption 9.

We can write

Gt = (3) Soneozin )

1<j
-1
n
= pon (1, 0) + Zmn 257, 8) + (2) > pon (20,257, 0)
1<)
1 ~ n
= Ean (237, 8) + (2) ;mn (2i, 2537, 8)
[ 1<J

1 . 1
_ (E;ﬁ” (zi;O*)) ( ngfl ) +Ezi:pn (2130, Bn)
1
+<g) > b2 (21,257, 5)

1<j
where, as usual, p, (z;; 0*) should be interpreted as the derivative of py, (z;; -) evaluated at a point
(which may be different for different rows of p])) between (v, 3) and (v, 5,)-

Since {pan (2i,2;7,0)} is Euclidean, Sherman (1994), Theorem 3, can be applied to the
function h¥pay, (2i, 245 g,b) with ©,, = {0 : ||0 — 0|| < ¢} for some constant ¢, v, = 1 (and noting

that k = 2) to get
-1
n 1
sup (2) > W pon (21,253 9,0) = Oy (g)

On i<j
or

-1
n 1
sup (2) > pon (21, 2j39,b) = Op (m) :

On i<j

where the assumption on the envelope guarantee that F [sup@n Don (2, 2537, 5)2} < oo (this is
condition (ii) for Sherman’s Theorem)
This yields

w(@-m) = ()

+% Zpln (217707611 OP <hL\/_> \/ﬁGn (775)]

(% ))ﬁﬁ—w

We therefore have
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Theorem 3 If B is a consistent estimator of B8, Gy (ﬁ, B) = 0p (nil/z), 1/hy = op (nl/QL),
V(A —79) = =31 wi+ o0y, (1) and Assumptions 7, 8 and 9 are satisfied, then

n

ﬁ(ﬁﬁh)z%ﬁiwop(l)
i=1

where

;= —Pg (70750)_1]98 (Yo, Bo) wi — 2p€ (70750)_11?1 (24570, Bo)

3.2.1 Verifying some of the conditions.

Theorem 3 makes some high level assumptions. In this section we will present some results which
will be useful in verifying these assumptions.
The following Lemma, which follows immediately from Lemma 1 in Honoré and Powell (1994),

is useful for verifying that G,, (fy\, B) =0 <ﬁ)

Lemma 4 If the true parameter value, B, is an interior point in the parameter space, and

1. s(vi,vj; B) is left and right differentiable in each component of B in some open neighborhood

of the true parameter (3

2. in an open neighborhood By of 3,

Y (Al |

3. in an open neighborhood of (3

'58(%%‘;5) 07 (vi,v0)
9B, 9B,

' < h(vi,v5)

for some function h with E [h (vy, vj)Hé} < oo for some §.
and if K is bounded, then
G, (3, B) = op <n72+2/(1+6)h;L> _

We next turn to some assumptions under which the conditions of Assumption 9 are satisfied.
Recall that by definition of k,, and £,

kt (Zi7a> b) = FE [t (Ui,’Uj, b)| Zis w;% = a]
gt (Zi,CL, b) = F [t ('Ui,’l)j, b)| Zi, w;’YO = CL] fw;.'yo (CL)
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In addition, define
tl (Zi) 27, ﬁ) = (wl - w]) t (Ui, Vj, /3)
then k¢, and ¢;,, evaluated at 8 = 3,, become
ke, (zi, a2, B) = E [ (wi — w;) t (vi,v5, Bo)| 21, wiyy = ag]
Cy, (21,02, 80) = B [ (wi — w;j) t (vi,v5, Bo)| 21, wivg = az] fury, (a2) -
The following assumptions will be made.

Assumption 10.

1. 4 is differentiable with respect to its third argument, and there is a function g with
3
Blg (2)] < oo, such that [ (v, wivg = hn, Bo)| < g ().
2. 4y, is differentiable with respect to its second argument, and there is a function g with

E [g (zi)2] < 00, such that ‘ng) (ziy Wiy — hn,ﬁo)‘ < g (z;). Furthermore,

K () 6 (20, wing — hm, Bg) — 0 as 1 — 0.

Finally E [(w; — wj)t (v;, v, 8)] < .
3. 4, is differentiable with respect to its second argument, and there is a function g with

E g ()] < oo, such that ’E?) (vs, Wiryy — hn,ﬁo)‘ < g(z).

A number of results can be used to verify the convergence in Assumption 9.1. For example,
Amemiya (1984), Theorem 4.1.4 gives conditions that can be used to verify that pl, (z;,v*, 5%)
converges to lim P/, (2i,7q, Bg) The following two lemmata give the expressions for the pj that

appear in Assumption 9.1 and in Theorem 3.

Lemma 5 Let
o (v0: B0) = B [69 (vi, wl, o) |
Then under assumptions 3 and 10(1)

pgn ('707 50) - Pg (707 /30)

Lemma 6 Let
P (0, 60) = =B [2) (=1, w0, Bo) |

Then under assumptions 8 and 10(2)

pgn (707 60) - pg (707 ﬁO)
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Combined, the next two lemmata will give conditions under which Assumption 9.2 is satisfied.

Lemma 7 Suppose that pin (2i;7g, ) i continuously differentiable in a neighborhood, N (3,) of
Bo, and that there is a function h(z;) with E [||h(zz)||2} < 00, such that ||pin (2i;70,0)|| < h(2i)
for allb in N (By). Then

1
% me (2570, Brn) — Pin (2i5 70, Bo) = 0p(1)
Lemma 8 If

p1 (2570, Bo) = E [t (vi, v55 B)] vi, wi, wiryg = wyg] fut g (wivo)
=y (2, wivo, Bo)

then under assumptions 3 and 10.3
1 < 1 &
% ;Pm (21570, Bo) — % ;pn (21570, Bo) = Op (1).

3.3 Bias-reduction.

In this section, we will discuss conditions under which it is possible to get a Taylor series expansion
of (), arond 3, as a function of h. To see why such a taylor series expansion is useful, suppose

that one could write

p
Bn = Bo+ D bih! + 0 (n72) (17)
=1
Now let c1,¢2,...cp41 be any sequence of positive numbers, and choose a1, ag, ...ap4+1 such that
11 -1 a1 1
cl Cp - Cp+1 as 0
oo 0§+1 Gp+1 0
or .
ay 11 -1 B 1
a2 c1 C2 - Cpl 0
Ap+1 oo C§+1 0

Consider p+1 estimators based on bandwidths ¢;-h, ca-h, ... cpy1-h with corresponding pseudo—

true values 8. 5, 8 . .ﬁcp .1k, then the Taylor series expression in(17) implies that

cohs

p+1

Z akﬁckh = ,60 “+ o0 (nilﬂ) (18)
k=1
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Indeed, we will see later that if [ wK (u)du = 0, then by in (17) equals 0. In that case, the first
order bias is 0 no matter what convex combination is chosen, and it therefore suffices to choose

a1, as, ...ap such that

1 1 1 ay 1
3 cg az 0
A oo ap 0
or )
aq 1 1 B 1
az | e 0129 0
ap a ¢ o 0
in order to get
p+1
Z agBe.n = B+ o0 (n_1/2) (19)
k=1
and hence
p+1 R 1 n
Zakﬁckh = o + - Z%’ + 0p (n_1/2> (20)
k=1 i=1

This line of argument assumes that (17) holds. To see why this is the case, note that with
“enough differentiability” (defined below), (3, is defined by the relationship

Pon (’Yo,ﬁh |:/K ft (U,,w Yo — hn, ﬁ) =0

Since pg, depends on n only through A, this could be written as

F(h,5)) difE[/K ) £y (vi,w —hn,ﬁh)dn-zo
By differentiation of implicit functions we then have
s, _ (aF (mm))l OF (h, By)
dh By, oh
- B [/K(n) ¢ (03, wirg — I, By,) dn]lE [/ K () 6% (vi, wing — hn, B),) dn}
Evaluated at h = 0 (and hence (3;, = ), we have
ds,

-1
= E [ / K (1) 6% (vi, wirvg, Br) dn] E [ / K (1) 6 (vi, wing, Br) dn}
-1
= kK [/K(U) 43) (Ui,who,ﬁh) dﬁ] E [43) (Uz‘aw;ﬁo,ﬁh)} /UK (77) dn
0

dh |9
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4 Asymptotic Properties of Partially Linear Logit Estimator.

In this section we discuss how the general results of section 3 might be used to derive the asymp-
totic properties of one of the estimators defined in section 2, the partially linear logit model. For
this model, the terms in the objective function (6) are convex if K is positive. We can therefore

use Theorem 1 to prove consistency. With the notation in section 3,, and with A (n) = li’g&%),

we have

s (Wi, o), (5, 25):0) = =1{yi # y;} (yiln A (s — 25)'b) + y; In A (= (25 — 25)'D))

and ¥ = I. Also
t((yir @), (yj,25);0) = 1{ys # v} (wilh (— (25 — 25)'b) — y; A (2 — 25)'b)) (2 — ;)

Theorem 9 Assume a random sample {(y;, x;, w;) iy from (5) €; logistically distributed. The
estimator defined by minimizing (6) where h;' = o (n*L/z) and K satisfies Assumptions , 3, is

consistent and asymptotically normal with
vn (B _ 5h) SN 0,407V
with
V=V [T (yi’ L, wl)}

where

~exp((@i — z5)'0) T — s
1+ exp((z; — xj)’ﬁ)) i)

r(Yi, vi,w;) = E [1 {vi # v} (yi

Yir Ti, Wi, W5 = wi} Jw (w;)
and

exp (i — x;)'0)
(1 +exp ((z; — 2;)'8))

I'=F|F l{yi;éyj}

(2 — xj)(xi — x5)'

Yir Tiy Wi, Wy = wi] fuw; (wi)]
provided that

1. E [||a:7,||2] < o0.

2. wj s continuously distributed with a bounded density, f,,. Also E [le\ﬂ < 00.
3. El||zi|| |lwi = a] fw, (a) is a bounded function of a.

4. (x; — xj) has full rank conditional on z; = z;.
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PRrOOF: First note that |log A (n)| < log(2) + |n|. Therefore |s ((vi,x:), (y;,2;);b)| < log(2) +
|(x; — 2;)'b] < log(2) 4+ (||| + llx;]]) [|6]]. Assumptions 1.1, 1.2 and 1.3 are therefore satis-
fied. To verify 1.4, let ay = (a¥,a}) |E[s(a1,v,b)|w; = as]| < E[|s(a1,v;,0)||wj =as] <
Elog (2) + ([|aT|l + ||lz;|) [|b]]] wj = a2], from which 1.4 follows. Assumption 6 then follows from
consistency of the maximizer of the conditional likelihood for logit models with fixed effects. The
remaining assumptions for consistency follow by assumption.

The asymptotic normality of the jackknifed estimator follows:

Corollary 10 Under the assumptions of Theorem 9, the jackknifed estimator is consistent and

asymptotically normal
Jn (E; _ 50> =N (0,4r'vr 1)
with V' and I' defined as in Theorem 9.

5 A Monte Carlo Illustration.

To get an idea about the small sample properties of the estimators of the partially linear models
described above, we have performed a Monte Carlo investigation for the partially linear logit
model for a particular design. The design is chosen to illustrate the method and is not meant to

mimic a design that one would expect in a particular data set.. The model is
yi = 1By + 2282 + 9(2z) + &y i=1,2,...,n, (21)

where (31, 85) = (1,1), g(2) = 2% — 2, x9; has a discrete distribution with P(zg; = —1) = P(z9; =
1) = %, z; ~ N(0,1) and x4 = v; + 22 where v; ~ N(0,1). With this design, P(y; = 1) ~ 0.44.
With the design used here, ignoring the non—linearity of g(z) is expected to result in a bias in
the estimators of both Gjand 35, although we expect the bias to be bigger for 3,, because g(z;)
is uncorrelated with x1;.

For each replication of the model, we calculate a number of estimators. First, we calculate
the logit maximum likelihood estimator using a constant, x1;, x2; and g(z;) as regressors. This
estimator would be asymptotically efficient if one knew ¢ (-); comparing the estimators proposed
here to that estimator will therefore give a measure of the cost of not knowing ¢ (and using the
estimators proposed here). Secondly, we calculate three estimators, Bl, BQ, and ,53, based on (6)
with K being the biweight (quartic)® kernel and h,, = cxstd(z)*n~1/ where c takes the values 0.3,
0.9 and 2.7. These bandwidths are somewhat arbitrary. the middle one is motivated to the rule of
thumb suggested by Silverman (1986, page 48) for estimation of densities (using normal kernel).

That bandwidth is supposed to illustrate what happens if one uses a “reasonable” bandwidth. The

> Throughout, the kernel was normalized to have mean 0 and variance 1.
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two other bandwidths are supposed to be “small” and “big”. We also calculate four jackknifed
estimators. The first, 3123 combines the three estimators according to (18). This ignores the fact
that [uK (u)du = 0, and we therefore also consider the three jack—knifed estimators based on
combining two of the three estimators according to (20). These three estimators are denoted 312,
3137 and 323-

The results from 1000 replications with sample sized 100, 200, 400, 800, 1600 and 3200 are
given in Table 1A through 1F. In addition to the true parameter values, each table also reports
bias, standard deviation and root mean square error of the estimator, as well as the corresponding
robust measures, the median bias, the median absolute deviation from the median and the median
absolute error. Since all the estimators discussed here are likely to have fat tails (they are not
even finite with probability 1), the discussion below will focus on these robust measures. The
sample sizes are not chosen because we think that they are realistic given the small number of
explanatory variables, but rather because we want to confirm that for large samples the estimator
behaves as predicted by the asymptotic theory. As expected, the (correctly specified) maximum
likelihood estimator that uses x1;, x9; and g(z;) as regressors outperforms the semiparametric
estimators. However, the jackknifed estimators perform almost as well. For example, the median
absolute error of the estimator based on jack-knifing using 32 and 53 is within 10% of the median
absolute error of the maximum likelihood estimator (and often closer).

The patterns of the bias and the dispersion of the three estimators based on (6) are the
expected — lower values of the bandwidth, h, give less bias but higher dispersion.

The proposed jack-knife procedure generally succeed in removing the bias of the proposed
estimators. For example, focusing on the coefficient on z1; (which has the bigger bias), the
estimator that removes bias by comparing BQ and 33 has lower bias than either 32 or B3 for all
sample sizes. Finally, for the largest sample sizes, there is almost no difference between the four
bias reduced estimators, which corresponds to the predictions of the asymptotic theory.

Table 2 presents evidence about the effect of the bias term (as the bias reduction) on the
performance of the test—statistics calculated on the basis of the estimators discussed here. For
each sample and for each of the semiparametric estimators, we calculated 80, 90 and 95 percent
confidence intervals. In order to do this, we estimated the (asymptotic variance) of the three
non—-bias reduced estimators by 4f,;117kf,;1 where k£ = 1,2, 3, denotes the estimator and fk is

the sample variance of rf defined by
exp ((xZ — mj)'g)
1+exp <(a:1 — :cj)’B>

1 W; — Wy

1 G 3 e K () [

(z; — z5)

!/

5 (wi — xj) (2 — x5)

~ 2 w; — W xp ((xi _xj)/@
Vk_m;l{yﬁw}'ff( I ) (Hexp ((mi—a:j)@))
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The estimated variance of any of the three estimators could be used to estimate the asymp-
totic variance of the jack—knifed estimators. However, in order to avoid arbitrarily choosing one

~1 o~ ~1\
variance estimator over an other, we estimated the joint asymptotic distribution of (51, Ba, ﬁg)

by AT -1V~ where T is the sample variance of (ri! r2 ¥ )/ and

rr o o0
=1 0 T2 O
0 0 I

Table 2 gives the fraction of the replications for which these confidence intervals covered the
true parameter.. Because the biases are more dramatic for 3;, we only present the results for
that parameter. For all three sample sizes we see that the confidence interval that is based on
the estimator, Bl, that is based on a very small bandwidth, has coverage probabilities that are
close the 80, 90 and 95 percent, whereas the coverage probabilities are smaller for the two other
non-bias reduced estimators, BQ and 33. While the discrepancies are not enormous (except for
33 in large samples), it is interesting to note that all the bias corrected estimators perform better
that both BQ and Bg for all sample sizes.

The sample sizes discussed so far are unrealitically large relative to the number of parameters,
and there is little reason to think that the design mimics designs that one might encounter in
applications. In order to investigate whether the good performance of the proposed estimators is
an artifact of the very simple Monte Carlo design, we performed an additional experiment using
the labor force participation data given in Berndt (1991, see also Mroz, 1987). Using a constant,
log hourly earnings®, number of kids under 6, number of kids between 6 and 18, age, age-squared,
age—cubed, education, local unemployment rate, a dummy variable for whether the person lived
in a large city, and other family income as explanatory variables, we estimated a logit for whether
a woman worked in 1975. The sample size was 753 (of whom 428 worked). Using the original
753 vectors of explanatory variables, we generated 1000 data sets from this model. We then
estimated the parameters using the correctly specified logit maximum likelihood estimator and
the semiparametric estimator that treats the functional form for the effect of age as unknown.

We calculate the bandwidths as for design 1, and the results are presented in Table 3.

6 Extensions and Future Research.

Ahn and Powell (1990) extended the model given in (3) and (4) by allowing the z7y part to be an

unknown function p(z). Making the same extension in (10) and (11) leads to an estimator that

8This variable was imputed for the individuals who did not work.
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minimizes a function of the form

i<j
di=dj=1

The estimator proposed by Ahn and Powell (1990) minimizes @, in (22), if there is no censoring
and if quadratic loss (2(d) = d?) is used. In a companion paper in progress, Honoré and Powell
(2002), we investigate the properties of the estimator defined by (22). That paper also presents

the results of an empirical example.
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8 Appendix: The Most Dull Derivations.

PROOF OF LEMMA 5:

— W} 570
Pon (707/8) = F )t qujvﬂil
Y

w U]
(”0 0\ g vz,vj,muvi,wi),w;vo}]

i )7
- E: (w% O)kt vi, Wiy, )}
- o[ fx (5=2)

= FE /K Oz (Ui,who - hn,ﬁ) dﬁ}

kt Uszﬂfw'y( ) :|

By assumption 10.1, we can differentiate under the expectation and integral (see e.g., Cramér
(1946, page 68)):

pgn (v0,80) = FE [/K(U) 43 U%v hnﬁo) dﬁ}
— B Mg) (%who,ﬁo)}

where the limit follows from dominated convergence.ll
PRrROOF OF LEMMA 6: Recall that

i (3:) = B | 7K (S ) 0y )

By assumptions 3 and 10.2, we can differentiate under the expectation:

1 wiy = Wi\ wi — w;
i (0:8) = B | (P ) e (0|
Evaluation this at(vyg, 8y), we get

1 wivo — wiYo | wi — w;
pgn(’YOv/BO) = F ﬁKI( A : ) h Jt(’l)i,vj,ﬁo):|

i 1 w' —w A
= E E |:E |:—K/( zfyo h nyo) Wi hw]t(vi,vj,ﬁo)

o]
o]

!
hL viawiawjfy[]:l

[ 1 wivy — Wivg
_ E[hLHK'( 00N B [(wi — )t (o4, 04 Bo) i, i, )

with the definitions of k¢, and ¢, and using integration by parts, we have

1 Yo —
Pgn (70)50) = b |:/ BL+1 K' (wlv% w) kt1 (ZiawyﬁO) fw;'yo (w) dw:|
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1 Wiy —w
- [ (M52
1
= F |:/ EK/ (77) gtl (Z’L‘)w;;’}/[) - hn’/BO) dn:|
— [/K () 62 (24, wirvo — b, Bo) dﬂ}

~ -E [df) (=i, wivo, 50)]

where the limit follows from dominated convergence.ll
Proor or LEMMA 8: Write

Pin (Zﬁ Yo> /30) =Tn (zl) - F [Tﬂ (Z,)]

and
p1 (2i) =l (2, Wiy, Bo) — E [ (25, wive, Bo) ]

where
m(zi) = Elpn (2270, 80)| 2]
= /hLLK (mh_uj) ly (viy w, By) dw
= /K (n) 6 (vi, wiyg — hn,ﬁo) dn

and E [ly (z;, wivg, By)] = 0. With 6, (2i) = 1 (2:) — b (2, Wiryg, Bg), we then have

% S pin (265790, o) — % S b (2670, B) = % S8 () — B [6n (22)
i=1 i=1 i=1
The right hand side has mean 0 and variance
14 \/iﬁ Z bn (2i) = E[6n (Zz‘)}] = Vlbn () — Eon (2)]]
< B [on ()]
= F {rn (z;) — 4 (zi,who,ﬁo)}ﬂ

r 2
= FE {/K (1) €¢ (vi, wiryg — b, By) dn — £y (Ziywhoaﬁo)} ]

. -{/K(n) (€ (vis wivo = T, Bo) = s (21, wivo: o)) dnﬂ
< Blyre { [ ||77Hd77}2]

= O0(h?*) —0.
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where ¢ is the function in Assumption 10.3.H
PROOF OF LEMMA 7: For the duration of this proof, let pi, denote one of the elements of
P1n. By definition of p1, and by random sampling, the mean of the left hand side is 0, while the

variance is

2 8 o |2 2
E |(pin (25705 Br) — p1n (2i3 70, B0)) ] <k [len (2570, B7) ’ } 185, — Boll

where [ is between (;, and (3, but may depend on z; (hence the subscript 7). The result now
follows from 3;, — G,.1
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TABLE 1A: Design 1. Sample size=100.

value bias st.dev. RMSE m.bias MAD MAE

Logit MLE using constant, x1;, x9; and g(z;) as regressors

61
B2

1.000 0.138 0.406 0.428 0.083 0.253 0.245
1.000 0.107 0376  0.390 0.063 0.222 0.213

The estimator based on (6) with h,, = 0.3 - std(z) -n~1/5

B
B2

1.000 0.175 0.450 0482 0.103 0.279 0.271
1.000 0.117 0.500 0.513  0.047 0.241 0.246

The estimator based on (6) with h,, = 0.9 - std(z) - n~'/5

51
B2

1.000 0.249 0402 0473 0.198 0.248 0.251
1.000 0.065 0.372 0377 0.026 0.228 0.223

The estimator based on (6) with h,, = 2.7 - std(z) - n=/°

61
B2

Ba

61
Ba

1.000 0.427 0.370 0.565 0373 0.233 0.373
1.000 0.010 0333 0.333 -0.021 0.202 0.206

Jack-knife using Bl, §2 and BQ

1.000 0.136 0.504  0.521  0.057 0.309 0.307
1.000 0.150  0.621  0.638 0.071 0.265 0.271

Jack-knife using Bl and 32

1.000 0.166 0.459  0.488 0.091 0.283 0.275
1.000 0.124 0.521  0.535 0.049 0.247 0.251

Jack-knife using Bl and B3

1.000 0.172 0.451 0483 0.099 0.281 0.272
1.000 0.119 0.503 0.516  0.049 0.243 0.246

Jack-knife using 32 and 33

1.000 0.227  0.408 0466 0.172 0.255 0.247
1.000 0.072 0.379 038  0.033 0.227 0.226
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TABLE 1B: Design 1. Sample size=200.
value bias st.dev. RMSE m.bias MAD MAE
Logit MLE using constant, x1;, x9; and g(z;) as regressors

B, 1.000 0.038 0.253 0.256 0.016 0.161 0.157
By 1.000 0.034 0.238 0.241  0.012 0.157 0.158

The estimator based on (6) with h, = 0.3 - std(z) -n~'/5

B, 1.000 0.050 0.276  0.280 0.013 0.177 0.174
By 1.000 0.031 0.264 0.265 0.019 0.176 0.174

The estimator based on (6) with h, = 0.9 - std(z) - n~'/5

By 1.000 0.132 0.257 0.288  0.098 0.163 0.166
By 1.000 0.008 0.243 0.243 -0.001 0.153 0.154

The estimator based on (6) with h,, = 2.7 - std(z) - n~/?

B, 1.000 0.324 0.235 0400 0.290 0.146 0.290
By 1.000 -0.041  0.227  0.230 -0.050 0.145 0.153

Jack-knife using @1, B2 and ﬁg

By 1.000 0.005 0.296 0.296 -0.021 0.191 0.193
By 1.000 0.043 0.285 0.288  0.031 0.186 0.189

Jack-knife using El and BQ

By 1.000 0.039 0.279 0.282  0.006 0.179 0.180
By 1.000 0.033 0.268 0.269 0.024 0.178 0.176

Jack-knife using @1 and 33

By 1.000 0.046 0.276  0.280 0.010 0.177 0.177
By 1.000 0.031 0.265 0.266  0.020 0.177 0.175

Jack-knife using 32 and 33

B, 1.000 0.108 0.260 0.282 0.074 0.168 0.161
By 1.000 0.014 0.246 0.246 0.004 0.159 0.157
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TABLE 1C: Design 1. Sample size=400.
value bias st.dev. RMSE m.bias MAD MAE
Logit MLE using constant, x1;, x9; and g(z;) as regressors

B, 1.000 0.018 0.164 0.165 0.012 0.115 0.110
By 1.000 0.020 0.158  0.159  0.015 0.101 0.102

The estimator based on (6) with h, = 0.3 - std(z) -n~'/5

£; 1.000 0.030 0.181 0.184 0.024 0.123 0.122
B, 1.000 0.017 0.170  0.170  0.005 0.109 0.110

The estimator based on (6) with h, = 0.9 - std(z) - n~'/5

B, 1.000 0.090 0.172 0.194 0.078 0.115 0.126
By 1.000 0.000 0.162 0.162 -0.008 0.106 0.107

The estimator based on (6) with h,, = 2.7 - std(z) - n~/?

B, 1.000 0.279 0.156 0319 0.265 0.104 0.265
By 1.000 -0.041  0.151  0.157 -0.043 0.097 0.105

Jack-knife using @1, B2 and ﬁg

B, 1.000 0.001 0.190 0.189 -0.006 0.129 0.130
B, 1.000 0.026 0.176  0.178  0.017 0.112 0.117

Jack-knife using El and BQ

B; 1.000 0.023 0.183 0.184 0.016 0.125 0.124
By 1.000 0.019 0.171  0.172  0.006 0.110 0.111

Jack-knife using @1 and 33

By 1.000 0.027 0.182 0.184 0.022 0.123 0.123
B, 1.000 0.018 0.170  0.171  0.006 0.109 0.110

Jack-knife using 32 and 33

B, 1.000 0.066 0.175 0.187 0.0568 0.118 0.120
By 1.000 0.006 0.164 0.164 -0.002 0.106 0.107
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TABLE 1D: Design 1. Sample size=800.
value bias st.dev. RMSE m.bias MAD MAE
Logit MLE using constant, x1;, x9; and g(z;) as regressors

B, 1.000 0.010 0.123 0.124 0.004 0.082 0.084
By 1.000 0.014 0.114 0.115 0.012 0.075 0.075

The estimator based on (6) with h, = 0.3 - std(z) -n~'/5

£; 1.000 0.019 0.131 0.132 0.012 0.088 0.088
By 1.000 0.012 0.123 0.124  0.006 0.082 0.082

The estimator based on (6) with h, = 0.9 - std(z) - n~'/5

B, 1.000 0.067 0.128 0.144 0.063 0.089 0.092
B, 1.000 0.001  0.120 0.120 -0.002 0.079 0.078

The estimator based on (6) with h,, = 2.7 - std(z) - n~/?

B, 1.000 0.246 0.118 0.273 0.241 0.083 0.241
By 1.000 -0.039 0.113  0.120 -0.041 0.076 0.082

Jack-knife using @1, B2 and ﬁg

B, 1.000 -0.002 0.134 0.134 -0.008 0.088 0.088
B, 1.000 0.018 0.126 0.127 0.012 0.085 0.085

Jack-knife using El and BQ

By 1.000 0.014 0.132 0.132  0.007 0.088 0.088
B, 1.000 0.014 0.124 0.124  0.009 0.082 0.082

Jack-knife using @1 and 33

By 1.000 0.017 0.131  0.132  0.009 0.088 0.088
By 1.000 0.013 0.123 0.124 0.007 0.083 0.082

Jack-knife using 32 and 33

B, 1.000 0.045 0.129 0.137 0.040 0.089 0.090
By 1.000 0.006 0.121  0.121  0.003 0.080 0.080
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TABLE 1E: Design 1. Sample size=1600.
value bias st.dev. RMSE m.bias MAD MAE
Logit MLE using constant, x1;, x9; and g(z;) as regressors

B, 1.000 0.004 0.078 0.079 0.005 0.053 0.053
By 1.000 0.006 0.079  0.079  0.009 0.052 0.053

The estimator based on (6) with h, = 0.3 - std(z) -n~'/5

B; 1.000 0.010 0.085 0.085 0.009 0.056 0.058
By 1.000 0.005 0.083 0.084 0.007 0.0564 0.054

The estimator based on (6) with h, = 0.9 - std(z) - n~'/5

By 1.000 0.048 0.082  0.095 0.047 0.055 0.067
By 1.000 -0.004 0.081  0.081 -0.003 0.053 0.053

The estimator based on (6) with h,, = 2.7 - std(z) - n~/?

/; 1.000 0.213 0.076 0.226 0.214 0.051 0.214
By 1.000 -0.040 0.077  0.087 -0.038 0.051 0.057

Jack-knife using @1, B2 and ﬁg

By 1.000 -0.005 0.086  0.086 -0.006 0.057 0.057
By 1.000 0.009 0.085 0.085 0.010 0.055 0.056

Jack-knife using El and BQ

B; 1.000 0.006 0.085  0.085 0.005 0.056 0.057
By 1.000 0.006 0.084 0.084 0.008 0.0563 0.054

Jack-knife using @1 and 33

By 1.000 0.008 0.085 0.085 0.007 0.056 0.057
By 1.000 0.006 0.084 0.084 0.007 0.0564 0.054

Jack-knife using 32 and 33

B, 1.000 0.027 0.084 0.088  0.027 0.056 0.060
By 1.000 0.001 0.082 0.082 0.001 0.053 0.053
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TABLE 1F: Design 1. Sample size=3200.
value bias st.dev. RMSE m.bias MAD MAE
Logit MLE using constant, x1;, x9; and g(z;) as regressors

B, 1.000 0.002 0.059 0.059 0.003 0.040 0.040
By 1.000 0.002 0.055 0.055 0.003 0.037 0.038

The estimator based on (6) with h, = 0.3 - std(z) -n~'/5

B; 1.000 0.006 0.063 0.063 0.006 0.040 0.041
By 1.000 -0.000  0.059  0.059 -0.004 0.040 0.041

The estimator based on (6) with h, = 0.9 - std(z) - n~'/5

B, 1.000 0.035 0.062 0.071  0.035 0.040 0.048
By 1.000 -0.007  0.059  0.059 -0.011 0.040 0.040

The estimator based on (6) with h,, = 2.7 - std(z) - n~/?

B, 1.000 0.182 0.068 0.191 0.183 0.037 0.183
By 1.000 -0.039 0.056  0.068 -0.042 0.039 0.051

Jack-knife using @1, B2 and ﬁg

By 1.000 -0.004 0.063  0.063 -0.005 0.041 0.041
By 1.000 0.002  0.060 0.060 -0.000 0.040 0.041

Jack-knife using El and BQ

By 1.000 0.003 0.063 0.063 0.002 0.040 0.040
By 1.000 0.001  0.060  0.060 -0.002 0.040 0.041

Jack-knife using @1 and 33

By 1.000 0.004 0.063 0.063 0.004 0.040 0.041
By 1.000 0.000 0.060  0.060 -0.003 0.040 0.041

Jack-knife using 32 and 33

B, 1.000 0.017 0.062 0.064 0.017 0.041 0.041
By 1.000 -0.003  0.059  0.059 -0.006 0.040 0.041
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TABLE 2: Design 1. Coverage Probabilities.

95% Confidence Interval

n=100 n =200 n =400

0.948
0.905
0.801
0.968
0.950
0.948
0.910

n = 100
0.894
0.849
0.684
0.925
0.903
0.896
0.860

n =100
0.782
0.732
0.526
0.827
0.791
0.784
0.740

0.938
0.927
0.726
0.943
0.937
0.938
0.932

90% Confidence Interval

0.962
0.927
0.573
0.957
0.965
0.963
0.945

n =800 n=1600 n = 3200

0.933
0.917
0.391
0.931
0.934
0.933
0.929

0.958
0.931
0.202
0.960
0.961
0.961
0.948

n=200 n=400 n =800 n =1600

0.888
0.850
0.624
0.897
0.889
0.887
0.866

80% Confidence Interval

0.907
0.864
0.465
0.918
0.908
0.906
0.884

n =200 n =400

0.786
0.744
0.453
0.800
0.789
0.787
0.757

0.785
0.751
0.303
0.814
0.801
0.789
0.773

0.885
0.841
0.290
0.897
0.885
0.886
0.866

0.915
0.866
0.123
0.909
0.914
0.913
0.903

n =800 n = 1600

0.786
0.712
0.174
0.803
0.794
0.789
0.746
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0.817
0.758
0.059
0.810
0.810
0.814
0.805

0.940
0.912
0.080
0.940
0.940
0.941
0.940

n = 3200
0.898
0.856
0.044
0.892
0.899
0.901
0.885

n = 3200
0.798
0.740
0.023
0.808
0.799
0.796
0.794



TABLE 3: Monte Carlo Based on Real Data.

Median Absolute error relative to MLE

31 32 g?) 3123 BlQ Bl?; /323

Wage rate 1.0229 1.0161 0.9796 1.0531 1.0228 1.0260 1.0206
Kids less than 6 1.0342 0.9860 1.1623 1.0443 1.0273 1.0352 1.0065
Kids between 6 and 18 1.0372 0.9928 1.7117 1.0560 1.0358 1.0416 1.0346
Education 1.0648 1.0303 1.0156 1.0711 1.0625 1.0640 1.0354
Local Unemployment 1.05611 1.0439 1.0386 1.0876 1.0643 1.0518 1.0467
City 1.0454 1.0016 0.9609 1.0371 1.0336 1.0439 0.9909
Other Income 1.0423 1.0181 1.0243 1.0207 1.0395 1.0432 1.0149

Coverage Probability for 80% Confidence Interval

El BZ BZ& 3123 Bl2 Bl?; /823

Wage rate 0.786 0.778 0.78 0.792 0.786  0.786  0.777
Kids less than 6 0.808 0.799 0.715 0.817 0.807 0.809 0.802
Kids between 6 and 18  0.795  0.780 0.480 0.801 0.802 0.798  0.790
Education 0.780 0778 0.770 0.788  0.781  0.779  0.775
Local Unemployment 0.802 0.793 0.800 0.807 0.806 0.802 0.794
City 0.825 0.816 0.817 0.822 0.822 0.822 0.815
Other Income 0.790 0.781 0.778 0.797 0.789  0.790 0.784

Coverage Probability for 90% Confidence Interval

Bl BZ 33 3123 612 ﬁli’) ﬁ23

Wage rate 0.889 0.886 0.883 0.893 0.889 0.889 0.887
Kids less than 6 0.900 0904 0.832 0909 0908 0.901  0.900
Kids between 6 and 18  0.885  0.877 0.624 0.897 0.887 0.885  0.885
Education 0.889 0.890 0.883 0.890 0.891 0.890  0.890
Local Unemployment 0.894 0.895 0.889 0.900 0.896 0.894 0.893
City 0912 0912 0909 0918 0916 0913 0911
Other Income 0.899 0905 0.899 0.903 0.898 0.898 0.901

Coverage Probability for 95% Confidence Interval

Bl BQ /BS 3123 B12 /613 /623

Wage rate 0.947 0946 0.943 0.946 0.948 0.947  0.946
Kids less than 6 0.960 0.956 0.902 0.959 0.959  0.960 0.959
Kids between 6 and 18  0.942 0.934 0.740 0.950 0.944 0.943 0.944
Education 0.944 0936 0.935 0945 0.943 0.944 0.942
Local Unemployment 0.941 0.938 0943 0.943 0.942 0941 0.937
City 0.963 0.962 0.954 0.963 0.964 0.964 0.964
Other Income 0.953 0.955 0.958 0.959 0.954 0.952 0.954
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