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1 Introduction

In an effort to improve the small sample properties of GMM, a number of alternative
estimators have been suggested. These include the empirical likelihood (EL) estimator
of Owen (1988), Qin and Lawless (1994), and Imbens (1997), the continuous updating
estimator (CUE) of Hansen, Heaton, and Yaron (1996), and the exponential tilting (ET)
estimator of Kitamura and Stutzer (1997) and Imbens, Spady and Johnson (1998). As
shown by Smith (1997), EL and ET share a common structure, being members of a class
of generalized empirical likelihood (GEL) estimators. We show that the CUE is also
a member of this class. All of these estimators and GMM have the same asymptotic
distribution but different higher-order asymptotic properites. We use the GEL structure,
which helps simplify calculations and comparsions, to analyze higher order properties
like those of Nagar (1959). We derive and compare the (higher order) asymptotic bias
for all of these estimators. We also derive bias-corrected GMM and GEL estimators and
consider their higher-order efficiency.

We find that EL has two theoretical advantages. First, its asymptotic bias does not
grow with the number of moment restrictions, while the bias of the others often does.
Consequently, for large numbers of moment conditions the bias of EL will be less than
the bias of the other estimators. This property is important in econometrics, where
many moment conditions are often used. For example, Hansen and Singleton (1982),
Holtz-Eakin, Newey, and Rosen (1988), and Abowd and Card (1989), all use quite large
numbers of moment conditions in their empirical work. The relatively low asymptotic
bias of EL indicates that it is an important alternative to GMM in such applications.
Furthermore, we show that under a symmetry condition, which may be satisfied in some
instrumental variable settings, all the GEL estimators inherit the small bias property of
EL. This result may help explain Monte Carlo findings of Hansen, Heaton, and Yaron
(1996) and Imbens, Spady, and Johnson (1998).

We provide intuition for the bias results by interpreting EL as a GMM estimator where

the linear combination coefficients are efficiently estimated. Because of their efficiency
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these coeflicients are asymptotically uncorrelated with the moment conditions, removing
the primary source of asymptotic bias.

The second theoretical advantage of EL is that after it is bias corrected, using prob-
abilities obtained from EL, it is higher efficient relative to the other estimators. This
property has a simple explanation. When the data are discrete, having finite support,
EL is equal to the maximum likelihood estimator (MLE). Furthermore, the bias correc-
tion based on EL probabilities is identical to the discrete data bias correction for the
MLE. Consequently, for discrete data EL inherits the well known higher order efficiency
of MLE (e.g. see Rao, 1963 and Pfanzagl and Wefelmeyer, 1978). Then, because dis-
crete distributions can be used to approximate moments of a continuous distribution the
efficiency of EL for the discrete case leads to efficiency in general. This explanation is a
higher-order version of Chamberlain’s (1987) result on first-order efficiency of GMM.

Although the small bias property of EL is nice, there are methods of removing all of
the asymptotic bias from GMM estimators. These include the bootstrap, as in Horowitz
(1998) for GMM, the jacknife, as in Kezdi, Hahn, and Solon (2001) for minimum distance,
and analytical methods, as in Hahn, Hausman, and Kuersteiner (2001) for dynamic panel
data. Here we give general analytical bias corrected versions of GMM and GEL. The
higher-order efficiency of bias corrected EL gives it a theoretical advantage over all the
other bias corrected estimators.

There are some important econometric models where GMM has no asymptotic bias.
One of these is heteroskedasticity improved estimation as considered in Amemiya (1983),
Chamberlain (1982), and Cragg (1982), with symmetric disturbances. Here it is interest-
ing to compare the estimators without any bias corrections. We carry out a higher-order
variance comparision for GMM and EL and find that with large numbers of moments
the estimator that is best depends on conditional kurtosis. In the Gaussian case they
have the same higher-order variance, EL is better with thin-tailed errors, and GMM with
thick tailed errors.

Some previous work on higher order properties of these estimators has been done.

Koenker et. al. (1992) and Rilstone, Srivastavaa, and Ullah (1996) give some higher-
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order variance and bias calculations for special cases of GMM. Corcoran (1998) showed
that in a class of minimum discrepancy estimators, EL has the only objective function
that is Bartlett correctable. Rothenberg (1999) showed that for a single equation of a
homoskedastic linear simultaneous equations model the asymptotic bias of EL is the same
as the limited information maximum likelihood estimator. Imbens (2000) showed that
a canonical example of GMM has mean-square error that grows at the same rate as the
square of the number of moment restrictions. We obtain bias formulae and corrections
for fully general GMM and GEL estimators and show EL has relatively small bias and
is higher-order efficient after bias correction.

The outline of the paper is as follows. In Section 2 the model and estimators are
described, and new interpretations of some of the estimators are given. Section 3 gives
the asymptotic expansions on which the results are based, including a new consistency
result for GEL. Section 4 presents the results on asymptotic bias. Bias corrected versions
of GMM and GEL are given in Section 5. Section 6 presents the results on higher-order

efficiency. Section 7 concludes. Proofs are given in the Appendix.

2 The Model and Estimators

The model we consider is one with a finite number of moment restrictions. To describe
it, let z;, (¢ = 1,...,n), be i.i.d. observations on a data vector z. Also, let 3 be a p x 1
parameter vector and g(z,/3) be an m x 1 vector of functions of the data observation
z and the parameter, where m > p. The model has a true parameter (3, satisfying the

moment condition
E[g(Z, ﬁO)] = 07

where E/[.] denotes expectation taken with respect to the distribution of z;.

An important estimator of 3 is the two-step GMM estimator of Hansen (1982). To
describe it, let g;(8) = g(z;, ), §(8) = n' Tty 9:(B), and Q(B) = n~" Sy gi(8)g:(8)-
Also, let 3 be some preliminary estimator, given by 3 = arg mingeg §(5)’ W‘lg(ﬁ) where

B denotes the parameter space, and W is a random matrix with properties to be specified
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below. The GMM estimator we consider is

Banie = arg %gg@(ﬂ)/ﬂ(g)_lg(ﬁ% (2.1)
where B denotes the parameter space. We will compare the properties of this estimator
to a class of alternative estimators.

The alternatives to GMM we consider are generalized empirical likelihood (GEL)
estimators, as in Smith (1997). To describe GEL let p(v) be a function of a scalar v that
is concave on its domain, an open interval V containing zero. Let A(8) = {\: Ng:(3) €
V,i=1,...,n}. The estimator is the solution to a saddle point problem

Bopr = arg min sup Zp()\’gi(ﬂ)). (2.2)

PEB \eA(B) i1

The empirical likelihood (EL) estimator is a special case with p(v) = In(1 — v) and
VY = (—o00,1), as shown by Qin and Lawless (1994) and Smith (1997). The exponential

tilting estimator is a special case with p(v) = —e”

(1997) and Smith (1997).

, as shown by Kitamura and Stutzer

It will be convenient to impose a normalization on p(v). Let p;(v) = 8/p(v)/0v’ and
p; = p;(0), ( =0,1,2,...). We normalize so that p; = po = —1. As long as p; # 0 and
p2 < 0, which we will assume to be true, this normalization can always be imposed by
replacing p(v) by [—p2/p?]p([p1/p2]v), which replacement does not affect the estimator
of §. It is satisfied by the p(v) we have given for EL and ET.

We can show that that the continuous updating estimator (CUE) of Hansen, Heaton,
and Yaron (1996) is also a GEL estimator. The CUE is analogous to GMM except that

the objective function is simultaneously minimized over [ in Q(ﬁ)_l. It is given by

Bovr = argmin 5(8)'8)4(8), (2:3)

where A~ denotes any generalized inverse of a matrix A, satisfying AA~A = A. The

followng result shows that this estimator is a GEL estimator for quadratic p(v).
Theorem 2.1: If p(v) is quadratic then Bapr = Bovn.
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Associated with each GEL estimator are empirical probabilities for the observations.
Because these probabilities are important for our analysis we give a brief description. For

a given function p(v), an associated GEL estimator 3, and §; = ¢;(3) they are
Ti=pi(NG)/ D> pm(Ngy), (i =1,..,n). (2.4)
=1

These 7; sum to one by construction, satisfy the sample moment condition >=" ; 7;g; = 0
when the first-order condtions for hold, and are positive when Y g; is small uniformly
in 7. For EL they were given by Owen (1988), for ET by Kitamura and Stutzer (1997),
for quadratic p(v) by Back and Brown (1993), and for the general case by Brown and
Newey (1992). For any function a(z, ) and GEL estimator (3 these can be used to form
an efficient estimator Y7, #:a(z;, 8) of Ela(z, 5)], as in Brown and Newey (1998).

2.1 Duality for GEL

Comparing GEL with another type of estimator provides useful insights. Let h(w) be a
convex function of a scalar 7, and consider the estimator
ﬁ—argmmZh i), S.t. ngz ) =0, Zmzl. (2.5)
i=1 i=1

This general class of minimum discrepancy (MD) estimators was formulated by Corcoran
(1998). Like GEL, this class also includes as special cases EL and ET, where h(r) is
—In(7) and 7 In(m) respectively.

For each MD estimator there is a dual GEL estimator when () is a member of the
Cressie and Read (1984) family of discrepancies where h(m) = [y(y+1)] " ![(n7)"™ —1]/n.
To describe this result, note that the Lagrangean for MD is

Z SO ]/ — o' Y mgi(B) + p(l - Y m).

Yy+1)im ™ i=1 i=1

where « is an m-vector of Lagrange multipliers associated with the first constraint and u
a scalar multiplier for the second constraint. Let 7;, @, and iz denote the solutions to the

MD optimization problem, along with 3. We interpret expressions as limits for v = 0 or

v=—1.



Theorem 2.2: If g(z,3) is continuously differentiable in [3, for some scalar
p(v) = —(1+70)0FV7/(y + 1), (2.6)

the solutions to equation (2.5) and (2.2) occur in the interior of B, X exists, and 37, pa(N'§:) i),
is nonsingular, then the first-order conditions for GEL and MD coincide for B =B,
Fi=7,(G=1,...,n), and A\ = a/(y@) for v #0 and A = & for v = 0.

The following Table summarizes the relationships between MD and GEL for EL, ET,
and CUE, with h(m) corresponding to a linear transformation of that given above. Let

B denote the estimator corresponding to each row of the table and ¢; = gz(ﬁA)

| Table 1 ‘

” Estimator H v H p(v) H h(m) H u H A ‘
EL —1| In(1—v) |[—In(m) | (1-Ng)t/sr,(1-Ng) ' | —a/n
ET 0 —e? 7 In(r) exp(Ng:)/ X7, exp(Ng;) a
CUE 1 [ —(1+0v)?/2| =2 (L+Ngo)/ X (L+ Ng;) a/fi

The duality between MD and GEL estimators is known for EL (Qin and Lawless,
1994) and for ET (Kitamura and Stutzer, 1997), but is new for the CUE as well as for
all the other members of the Cressie and Read (1984) family. Duality is useful because
it shows that the computationally complicated MD maximization can be replaced by a
simpler GEL one. Also, duality justifies the 7; in equation (2.4) as MD estimates. We
conjecture that for h(m) outside the Cressie and Read (1984) family, or p(v) outside the
family of Theorem 2.2, an explicit dual relationship between MD and GEL does not exist,

due to non-homogeneity of h(m) and p(v).

2.2 The First-Order Conditions

Some interpretations of the first-order conditions are useful for understanding our asymp-

totic bias results. The GMM first order conditions imply

n

" GiBanann) /n)UB) " §(Baniar) = 0. (2.7)

i=1



Also, for #°UF equal the CUE #; given in Table 1, as shown in Donald and Newey (2000),
the first order conditions for CUE imply

n

Z ﬁCUE)] Q(BCUE)AQ(BCUE) = 0.
i=1

Indeed, we show in the proof of Theorem 2.2 in the appendix that each GEL estimator

involves an analogous estimator of the Jacobian term, using corresponding probabilities

~

;.

The EL estimator first-order conditions have a special interpretation:

Theorem 2.3: For 7% = (1—Xg;)~'/ X0, (1— X g;) " the EL first-order conditions
imply

n

[i 7AT2' ﬁEL Z ﬁEL gz(ﬁEL) N 1§(BEL) = 0.

i=1 i=1

In comparing the GMM, CUE, and EL first order conditions, we see that each can be
viewed as setting a linear combination of () equal to zero, but the linear combination
coefficients are estimated in different ways. GMM uses sample averages, CUE (and other
GEL estimators) use an efficient esimator of the Jacobian term, and EL uses an efficient
estimator of both the Jacobian and second moment terms. An important property of
efficient moment estimators is that they are asymptotically uncorrelated with the (),
eliminating correlations between corresponding terms in the first-order conditions which
are an important source of nonzero expectation for the first-order conditions, and hence
of bias. Consequently, as we will show, for the CUE there will be no asymptotic bias from
estimation of the Jacobian and for EL there will be no asymptotic bias from estimating

either the Jacobian or the second moments.

3 Stochastic Expansion

We find the asymptotic bias and higher-order variance using a stochastic expansions
for each estimator. Let F' denote the distribution of z, 1(z, F') a function of z and F'

with E[1)(z, Fp)] = 0, and ¢ = S0, (2, Fy)/+/n. Also define a(z, F), @, b(z, F), and b

[7]



analogously. For each estimator we derive an expansion

V(B = Bo) =¥+ Qi(v, &, Fy)/v/n + Qa(vh,d, b, Fy) /n + Ry, (3.1)

where (), is quadratic in its first two arguments, ()5 is cubic in its first three arguments,
and R, = O,(n™3/?). As discussed in Rothenberg (1984), valid higher-order bias and
variance calculations can be based on the expectation and variance of the sum of the first
three terms in this expansion. Under certain regularity conditions, including continuous
distributions, this bias and variance will coincide with that of an Edgeworth approxi-
mation to the distribution. Furthermore, even when the data are discrete, so that an
Edgeworth approximation is not valid, these calculations can be used for higher-order
efficiency comparisons, as in Pfanzagl and Wefelmeyer (1978). We also note that in the
Appendix we give a corresponding expansion for 5\, which may be of interest for the
analysis of overidentifying tests these tests, as in Imbens, Spady, and Johnson (1998).
Consistency and asymptotic normality are important prerequisites for stochastic ex-
pansions, so we first briefly consider these properties. We make use of the following

identification and regularity conditon. Let Q = E[g;(50)g:(50)’]-

Assumption 1: (a) 3y € B is the unique solution to E[g(z, 5)] = 0; (b) B is compact;
(c) g(z,B) is continuous at each 5 € B with probability one; (d) F [supﬂeg llg(z, ﬁ)Ha] <
oo for some a > 2; (e) 2 is nonsingular; (f) p(v) is twice continuously differentiable in

a neighborhood of zero.

This assumption requires existence of a slightly higher moments than consistency for

two-step efficient GMM, in Hansen (1982), but otherwise is the same.

Theorem 3.1: If Assumption 1 is satisfied then B 2 By, Q(B) = 0,(n%?), A =

arg max, ;3 2i—1 p(N'gi(B))/n exists with probability approaching one, and A\ = O,(n~1/?).

This result is new in making no auxiliary assumption about B or \. Also, the proof is
based directly on the global concavity of p(v) and saddle point form of GEL. Additional
conditions are needed for asymptotic normality. Let G = E[0g;(5,)/00].
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Assumption 2: (a) fy € int(B); (b) g(z,3) is continuously differentiable in a
neighborhood N of 3y and E[supscy [|09:(8)/03'||] < oo; (c) rank(G) = p.

Let ¥ = (G'Q7'G) and P = Q7! — Q7 IGEG'Q7.

Theorem 3.2: If Assumptions 1 and 2 are satisfied then

n

Vi (T3] 0. diag ) 2003 oV 5) 1 0] S )

This result shows asymptotic normality of the GEL estimators, and that, properly
normalized, the saddle-point objective function has a limiting chi-squared distribution.
This is an overidentification test statistic that was formulated by Smith (1997). It is
included here because we thought that this test statistic might have independent interest.

Additional smoothness and moment conditions are needed for the stochastic expan-

sion. Let V7 denote a vector of all distinct partial derivatives with respect to 3 of order
J-

Assumption 3: There is b(z) with E[b(2;)°] < oo such that for 0 < j < 4, Vig(z, )
exists on a neighborhood N of f§y, supscy [[V7g(2, B)|| < b(2), and for each § € N,
IV%g(2, 8) = Vig(z, Bo)ll < b(2)[18 — Bol-

Also, for the GMM estimator we need to specify conditions concerning the initial

weighting matrix W,

Assumption 4: There is W and ¢*(z;) such that W = W+ 4*(z)/n+0,(n1),
W is positive definite E[t)*(z;)] = 0, and E[||¢*(2)||°] < oo.

We derive the stochastic expansion for GMM using an auxiliary parameter S\GMM
that is analogous to that for GEL. Specifically, we consider GMM first order conditions
of the form

~1>"Gi(Banin) /) A = 0, —3(Baninr) — UB) Aaarnr = 0.

i=1

[9]



This formulation simplifies calculations, because it removes the inverse matrix from the
first-order conditions. A different way to do this was proposed by Rilstone et. al. (1996).

The next result shows that GMM has a stochastic expansion.

Theorem 3.3: If Assumptions 1 - j are satisfied then equation (3.1) is satisfied for
the GMM estimator.

Expressions for each of the terms in the expansion are given in the proof of this result
because they are quite complicated. Implicit in this result is that the expansion for GMM
depends only on the limit W and influence function ¢ (z;). For example, this means that
iterating the GMM estimator two or more times results in the same expansion, where
W = Q(B) and [ is itself an efficient GMM estimator.

The final result of this Section is the stochastic expansion for GEL.

Theorem 3.4: If Assumptions 1 - 3 are satisfied then for the GEL estimator equation
(3.1) is satisfied.

4 Asymptotic Bias

The asymptotic (higher-order) bias formula is given by

~

BZCLS(ﬁ) = E[Ql(@bz, a;, Fo)]/n, (41)
with other terms in the expansion being O,(n~%). To describe the precise form of the
bias we need some additional notation. Let H = XG'Q !, Hy = (G'W 1G) 1G'W 1,
Qg, = E[0{9:(0)9:(50)'}/0p), and a be an m-vector such that

a; = tr(SE[02,(50)/0B0F)) 2. (j = 1, ..om). (4.2)

where g;;(/3) denotes the jth element of g;(/3). For GMM we have the following result:

Theorem 4.1: If Assumptions 1 - 4 are satisfied then

BiCLS(BG]V[]V[) = B[ + BG + BQ + Bw, B[ = H(—a + E[Gzng])/n, BG = —EE[G;PQZ]/??,

p
Bqa = HE|gg;Pgil/n,Bw = HY Qs (Hw — H)'e;. (4.3)

=1

[10]



Each of the terms has an interesting intrepretation. The first term B; is precisely the
asymptotic bias for a GMM estimator with the optimal (asymptotic variance minimizing,
Hansen, 1982) linear combination G’Q7'¢(z,3). The term B arises from estimation of
G. If G; is constant B = 0, but B¢ is generally nonzero when there is endogeneity.
Similarly the term Bq, arises from estimation of the second moment matrix 2. It is zero
if third moments are zero, but is generally nonzero. Both Bs and Bg will be zero with
exact identification, where m = p, because P is zero in that case. The term By, arises
from the choice of first step estimator. It is zero if W is a scalar muptiple of €. This
result is consistent with the Monte Carlo example of Hansen, Heaton, and Yaron (1996),
where multiple iterations on ﬁ~ had little effect on bias.

We now turn to the bias formula for GEL. Let p3 = 8p(0)/dv3.
Theorem 4.2: If Assumptions 1 - 3 are satisfied then

Bias(Barr) = By + (1 + %)BQ

In comparison with the GMM bias, we find that Bg and By, drop out, i.e. there
is no asymptotic bias from estimation of the Jacobian or from the first step estimator.
The absence of any bias from the first step is to be expected from the one step nature of
the estimator. Also, as noted in Section 2, the absence of bias from Jacobian estimation
can be explained by the presence of an efficient estimator of the Jacobian in the first-
order conditions. In addition, as noted in Section 2, EL uses an efficient second moment

estimator, leading to the following result.
Corollary 4.3: If Assumptions 1 - 3 are satisfied then
Bias(fBg1) = By. (4.4)
Thus, for EL the bias is exactly the same as for an estimator with moment functions

G’ 'g(z, 8). This same property would be shared by any GEL estimator with p3 = —2.

It will also be shared by any GEL estimator when third moments are zero.
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Corollary 4.4: If Assumptions 1 - 3 are satisfied and Elg;g;g:;;] = 0,(j = 1,...,m),
then

Bias(Bgpr) = Bias(fp) = By. (4.5)

This third moment condition will hold in an IV setting, when disturbances are sym-
metrically distributed. When it does hold one can actually show something slightly
stronger, that Bapr — Ber = O, (n=3/2).

It is well known that, in overidentified linear models, estimation of the optimal linear
combination coefficients is an important source of bias in IV estimators. Because the
GMM bias includes such effects but EL does not, we expect that EL will have relatively
small bias in IV settings. Also, from Altonji and Segal (1996) we know that, in covariance
parameter models, estimation of €2 can be an important source of bias in GMM. Given
that the EL bias does not include this effect we expect that it will also have relatively

small bias for minimum distance. We can verify this intution in some specific models.

4.1 Homoskedastic Linear Instrumental Variables

The first model we consider is a homoskedastic linear model. Let y denote a scalar
endogenous variable, w a p x 1 vector of variables that may be endogenous, and x an
m X 1 vector of instrumental variables. The model is

y =w'B + ¢, Elg|r] = 0,var(e|x) = 02, Elew|x] = 0.y, E[e*|2] = 3. (4.6)

Consider moment conditions where g(z, 5) = z(y — w’3). Here the GMM and GEL esti-
mators have the same asymptotic distribution as two-stage least squares. The following
result gives the asymptotic bias formulae. Let § = Yo.,/0? where ¥ is the asymptotic

variance:
Theorem 4.5: If Assumptions 1 - 4 and equation (4.6) are satisfied then
Bias(fpL) = —6/n.
Bias(Bopr) = —6/n+(1+ %)BQ, Bq = usXG'Q B2, Px) /n,
Bias(Beyn) = (m—p—1)8/n+ Bq.

[12]



When p3 = 0 the asymptotic bias of all the GEL estimators is the same, and is equal
to that of limited information maximum likelihood. For EL this result was shown by
Rothenberg (1999). Also, the asymptotic bias of GMM is the same as two stage least
squares, as given in Nagar (1959), and so grows linearly with the number of overiden-
tifying restrictions. Thus, for 2 or more overidentifying restrictions, the bias of GMM
exceeds that of EL in magnitude. For ug # 0, except for EL there is an additional bias

term from estimation of €.

4.2 Conditional Moment Restrictions

The second example is a well known generalization of the linear model that allows for
nonlinearity and/or heteroskedasticty. Let u(z,3) be a scalar residual satisfying the

conditional moment restriction
Elu(z, Bo)|x:] = 0. (4.7)

Consider moment conditions where g(z, 3) = q(x)u(z, ) and ¢(z) is a vector of m x 1
instrumental variables. To derive the bias, let u; = u(z;, 8y), ug; = Ou(z:;, o) /083, o =

E[uf]mz], and ¢; = q(x;). Also, for 02> 0,let d; = E[um]mi]/af, ki = —Elugiu|z],

d; = G'V ', H; = E[0%u(z;, $0) /0B i), psi = Elu|2:], 8 = S (ki + dipisi) [0}

Theorem 4.6: If Assumptions 1 - 4 and equation (4.7) are satisfied,

Bias(Bpy) = X(—E[ditr(SH;)]/2 + Eld;d'Sk;))/n,

2

BiCLS(BGEL) = BiaS(BEL) + (1+ %)BQ: B = S E[d;p3:q. Pgi] /n,

Bias(BGMM) = BZ'CLS(ﬁAEL) + YN E[kiq.Pg;]/n + Ba,

Also, if E[|H;||*/c?] < oo, Elo?||d;||!] < oo, and ki/c? is bounded, there are constants

Cy and Cy such that for all q(z)

| Bias(Ber)|| < C1l|E|*/n. €, Bias(Bann) — €;Bias(Bpr) > Ca(m — p) inf{e}6;}/n.

[13]



Here inf{e}6;} = sup{C : Pr(e}6; > C) = 1}. Similarly to the previous model, we
find that the asymptotic bias of GMM grows linearly with the number of overidentifying
restrictions when inf{e}&i} > 0, while the bias of EL is bounded. In this case the bias
of GMM will exceed the bias of EL in magnitude when the number of overidentifying
restrictions is large enough. We can also show this result when sup{e}éi} < 0. This
condition should be interpreted as a sign restriction on a conditional version of the IV
bias. For example, note that if u3; = 0 then §; = —XE[ug;u;|x;]/c?, which is analogous

to the term 6 that enters the bias for IV.

4.3 Minimum Distance Estimation

The third model is one that leads to optimal minimum distance estimation. Consider
moment conditions where g(z,3) = r(z) — h((), for r(z) a vector of functions of the
data and h(3) a vector of functions of the unknown parameters. Here G = —0h(,)/003,
Q =Var(r(z)), and a; = —tr(X0%h;(5)/0893') /2. We can derive a bound on the bias
of # that only depends on X, analogous to that for the second example, when h(3) can
be thought of as the expectation with respect to the pdf for some model. The following

assumption imposes this condition along with some smoothness.

Assumption 5: There is a family of densities f(z|3) such that for any r(z), h(B) =
[r(2)f(z|B)dz. Also, f(z|B) is twice continuously differentiable in a neighborhood N of

Bo, J(1+]Ir(2)|]) supgen 10£(218)/08|ldz < oo, [(1+[|r(2)I]) supgen 10°f (218) /0805 || dz <
oo, and for s; = 0ln f(2]5o) /08 and F; = 8*In f(2i|0)/0B03 + s:s., we have E|||s;||*] <

o0, and E[||F||?] < .
Theorem 4.7: If Assumptions 1 - 4 are satisfied and g(z,3) = r(z) — h((3) then

Bias(fpL) = —XG'Qta/n,
Bias(Bopr) = Bias(BEL)+(1+%)EG’Q’1E[g¢g;Pg¢]/n,

Bias(ﬁAGMM) = Bias(BCUE) = Bias(BEL) + ZG’Q_IE[gig;Pgi]/n.
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Also, if h(B) is linear in B then Bias(BEL) = 0. Furthermore, if Assumption 5 is also
satisfied then

| Bias(3s2) | < plIZI2Ells: PIENI F /20,

Here the bias for GMM is identical to that for CUE, which occurs because there is
no asymptotic bias from estimation of the Jacobian. Also, we find that the asymptotic
bias of EL is zero in the special case of a linear h(3) function, and that it does not grow
with the number of overidentifying restrictions.

For optimal minimum distance it seems difficult to give a general result showing how
the bias of GMM grows with the number of moment restrictions, but an example provides
some insight. Suppose that (3 is a scalar, r(z) = (21, ..., zm)’, and h(8) = [e, where e is an
m X 1 vector of ones. Also, suppose that the components of z are mutually independent
and identically distributed. Let 0 = Var(z;;) and pz = E[(z;; — $)®]. Then Q = oI,
and G = e, so that 3 = 0?/m and P = (I, — e¢’/m)/o*. Tt follows that

m—1

Bias(Bp) = 0,Bias(Beyn) = Bias(Beur) = <7> <@> ’

Bt 5 (1) ()

Here the bias of GMM relative to its asymptotic standard error grows with the square
root of the number of overidentifying restrictions. Dividing by /¥ is an appropriate

normalization, since the asymptotic variance is going to zero with 1/m.

5 Bias Corrected GMM and GEL

Although we have established that EL has smaller asymptotic bias than GMM in several
important cases, it is also possible to remove all the asymptotic bias. As mentioned in
the introduction, there are several approaches to bias correction, including the bootstrap,
jacknife, and analytical methods. Here we use an analytical approach, bias correcting
GMM and GEL using the asymptotic bias formulas we have derived. This bias correction
is much simpler computationally than the bootstrap or jacknife methods, particularly in

nonlinear models.
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The basic idea of analytical bias corrections is simple and well known, and consists of
estimating the asymptotic bias and subtracting from ﬁA . Here we use the general formula
of equation (4.1) to construct the bias estimate. For an estimator F of the distribution

of a single observation, the bias corrected estimator is

A

3= - Bias(8), Bias(8) = [ Qi(w(z F).a(z. F). F)F(dz)/n. (5.1)

The distribution estimator F' can be chosen to be the empirical distribution or a
distribution based on the GEL probabilities in equation (2.4). This choice does not
affect the asymptotic bias of the variance but will affect its higher-order variance. We
use the empirical distribution for the GMM bias correction and for GEL we use the
corresponding probabilities. As we discuss in the next Section, the higher order efficiency
of bias corrected EL depends on the use of the EL probabilities in the corresponding bias
correction.

The describe the specific form of the bias correction for GMM and we need to intro-

duce some notation. Let ﬁAGMM denote the GMM estimator and
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Then for the bias formula given in Theorem 4.1, and using the empirical distribution F

to estimate the expectations in this formula, the estimator of the bias term is
. “ " n N R n n R "
Bias(Banmnr) = [H(—a + Z Gii/n) — Z gz/n + Z VigiPgi/n]/n
The bias corrected GMM estimator is then 3%, = Banar — Bias(Ban)-
To form a bias corrected GEL estimator we use analogous formulas, replacing the

empirical distribution F by one based on the GEL probabilities of equation (2.4). Let

Bepr denote the estimator, 7;, (1 =1,...,n) the associated probabilities, and
G = 9i(Barr),Gi = Gi(Bowr), G ZWZG /n,Q = Zﬂ-zgzgzu
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(G'QG) ™ H=%G"0" = —Hg, P =0 - QIGEG'Q,
d]' = t?"(i ZﬁlaQ.ql](BGEL)/aﬁaﬁ/)/Qa (] =1,.., m)a
=1

M
|

Then for the bias formula in Theorem 4.2, the estimator of the GEL asymptotic bias is

Bias(faws) = —H(@a+ Y wGih) — (1+ 5 3 7 P
i=1 i=1
The bias corrected GEL estimator is then BgE 5 = BGE L — B/iES(BGEL).

We can show under the conditions already given that these bias corrected estimators

have expansions with zero asymptotic bias.

Theorem 5.1: If Assumptions 1 - 4 are satisfied then ﬁAgEL and BEMM satisfy equa-

6 Higher Order Efficiency of Empirical Likelihood

Different asymptotically unbiased estimators, such as the bias-corrected GMM and GEL,
can be compared on the basis of their higher-order variance. The higher-order variance

is given by

Var(v/n( —6,)) = S +E/n,
E = lim {Var(Q1) + ER(VnQ: + Q2)] + E[(vVnQ: + Q2)¥']},

n—oo

where Q, = Q1(¥,d, Fy), Q2 = Qa(1, @, b, Fy), and terms that are o,(n!) are dropped.

I variance term for #. Different bias corrected

Here the term Z is the additional, n~
estimators can be compared on the basis of the corresponding = terms, one being higher
order efficient relative to another if its = matrix is no larger, in the positive semidefinite
sense.

It is straightforward to show that bias corrected EL is higher-order efficient relative
to other bias corrected GMM or GEL estimators. This is a consequence of the fact that

bias-corrected EL is equal to the bias corrected maximum likelihood estimator (MLE)

for discrete data, as shown by the following result.
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Theorem 6.1: If Assumptions 1-3 are satisfied and z; has finite support then with
probability approaching one, ﬁA exists and 1s equal to the MLE, and the bias corrected EL

estimator is equal to the bias corrected MLE.

When combined with the higher-order efficiency of MLE, as shown by Pfanzagl and
Wefelmeyer (1978) in general, an immediate consequence of Theorem 6.1 is that, when z;
has finite support, EL is higher-order efficient relative to bias corrected GMM or GEL.
Then, since none of the properties of the estimators are sensitive to the discreteness
of the support, EL will be higher-order efficient in general. More precisely, as shown
by Chamberlain (1987), one can find a discrete distribution that replicates any set of
expectations for the true distribution, including those that make up > and =, so that

higher-order efficiency of EL in the discrete case extends immediately to the general case.

Theorem 6.2: [If Assumptions 1-4 are satisfied then EL is higher-order efficient
relative to GMM and GEL.

The ranking of estimators based on = corresponds to a quadratic loss function. As
shown by Pfanzagl and Wefelmeyer (1978), the higher-order efficiency of MLE also holds
for a wide class of quasi-convex loss functions satisfying certain properties. Consequently,
it can also be shown that EL is higher-order efficient for any such loss function.

The use of the EL probabilities in forming the bias correction is apparently critical
for EL higher-order efficiency. When the data are discrete these probabilities are asymp-
totically equal to the MLE estimates of the probabilities of the outcomes, and hence the
bias correction depends only on the MLE estimator. If sample averages were used instead
in the bias correction then additional terms would be introduced into the higher-order
variance, affecting the efficiency of EL.

Comparisons of estimators that have no asymptotic bias under some auxiliary as-
sumptions, in addition to E[g(z, Fy)] = 0, may also be of interest. There are important
examples of GMM estimators that have no asymptotic bias under a few additional con-

ditions, where it would be interesting to know if EL still improves higher order efficiency.
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Because the higher-order variances are complicated, it is difficult to do many such compar-
isons. We do consider one important example, improved estimators in a heteroskedastic
linear regression model.

Consider the model

yi = ;00 + &4, Elei|xi] = 0.

It is well known that least squares may be inefficient due to heteroskedasticity in this
model. Amemiya (1983), Chamberlain (1982), and Cragg (1982) proposed estimators
with improved asymptotic efficiency. Consider forming moment conditions g(z, ) =
q(z)(y — 2'[), of the form considered above for conditional moment restrictions. Then if
x is included among the elements of ¢(z), the GMM estimator based on g(z, 3) will be
asymptotically no less efficient than least squares, because it uses more moments.

Using the above expansions we can compare the higher-order efficiency of the GMM
and EL estimators for this model. We do this under the conditional moment condition
above and the conditional symmetry condition E[e3|z;] = 0, where the estimators have no
asymptotic bias. For this result let 07 = F[e?|z;], py; = Ele}|zi], and 7, = —G'Q 7 q07 =

Elof(x:/o})g{ Elo}qiqi]} ™ qior

Theorem 6.3: If Assumptions 1-4 are satisfied, the first step estimator for GMM is

optimal, then for the estimators of 3,

Ecum —Eger. = D+ D', D =3%{(ps/2)E[(pa;/ 0} — 3) K%

Furthermore, if o2 is bounded and bounded away from zero, ps is bounded, Elqq] is

nonsingular for each m, and there exists ~,, such that for the support X of x, as m — oo,

ig{q(w)’(ff[qz-qé])’%(w)}2E[Hx¢/0¢2 = mgill] = 0.

then as m — oo,

Ecvn — Bapn — psSE[(pai/ o} — 3)Kizxl]$ — 0.
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This result gives an explicit formula for the difference of the higher-order variance
terms as well as a limit result as the number of moments gets large. The hypothesis for
the limit result combines an approximation property for ¢(x) with a bound on its size.
For example, it follows form Newey (1997) that this condition will hold with splines if
the density is bounded away from zero, the support of X is a rectangle, knots are evenly
spaced, and o(x) is twice differentiable.

The limit form of the difference has a nice interpretation. If the disturbances are
conditionally normal, so that ps; = 30f. Then in the limit the higher-order variances are
equal. Also p3 = 0 for CUE, so that it has the same higher-order variance as GMM in
the limit. For EL and ET, p3 < 0 so that they have smaller higher-order variance than
GMM in the limit when the disturbances are thinner tailed than normal, in the sense
that py; < 30}, and higher when they are thick tailed, in the sense that jy; > 307.

What allows EL to be less higher-order efficient than GMM here in some cases is
that the bias corrections have not been applied. The use of the extra information that
Elgi|z;] = 0 and E[e}|z;] = 0 to avoid bias corrections changes the efficiency properties
of EL relative to GMM. If this extra information were ignored and the bias corrections
from Section 5 were applied then Theorem 6.2 would lead higher-order efficiency of the

bias-corrected EL estimator relative to the bias corrected GMM estimator.

7 Conclusion

The bias results we have derived are consistent with much of the existing Monte Carlo
results for GMM and GEL estimators. Hansen, Heaton, and Yaron (1996) showed that
the CUE has smaller bias for IV estimators of asset pricing models with several overiden-
tifying restrictions, which is consistent with the asymptotic bias of GMM growing with
the moment conditions but that of the CUE not, as is the case under symmetry. Also,
Imbens (1997) gave a Monte Carlo example where the bias of EL is less than that of
GMM, again consistent with our results for large numbers of moment conditions.

One potentially useful implication of our results is that ELL may eliminate the bias
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for minimum distance estimation in panel data. As documented by Altonji and Segal
(1996), the estimation of the optimal weighting matrix can be a large source of bias. We
have shown that to first-order at least, EL eliminates this bias. Thus, EL may prove a
useful alternative to the bootstrap bias correction of Horowitz (1998) or the analytical
bias correction for GMM we have derived.

Little is known about the variability of different bias corrected estimators. It would be
interesting to explore this topic in the future. However, given the large biases that have
been found for GMM, as in other settings (see Rothenberg, 1983, p. 909), the corrections
for bias implicit in EL and the explicit corrections for GMM we have derived may be

more important than second-order variance comparisons for choosing among estimators.

Appendix: Proofs

Throughout the Appendix, C will denote a generic positive constant that may be dif-
ferent in different uses, and CS, M, and T the Cauchy-Schwartz, Markov, and triangle
inequalities respectively. Also, with probability approaching one will be abbreviated as
w.p.a.1l, positive semi-definite as p.s.d., UWL will denote a uniform weak law of large
numbers such as Lemma 2.4 of Newey and McFadden (1994), and CLT will refer to the
Lindbergh-Levy central limit theorem. We let P(3,A) = X" | p(Ng:(8))/n.

Proof of Theorem 2.1: Let A = [g1(0),...,g.(8)]//n and ¢ = (1,...,1) be an
n-vector of units. Thus, §(3) = A't/\/n and Q(3) = A’A. By Rao (1973, 1b.5(vi),(viii)),
A(A’A)~ A’ is invariant to the generalized inverse (ginv) and A’A(A’A)" A’ = A’ for any
ginv.Then the CUE objective function t/A(A’A)~A't/n is invariant to ginv. By p(v)

quadratic, a second-order Taylor expansion is exact, giving
R R 1..»
P(3,X) = po = §(B)A = 5XQ(B)A. (A1)

By concavity of P(3,)) in A, any solution A\(8) to the first-order conditions



will maximize P(3,)) with respect to A holding 3 fixed. Then, Q(3)Q(8) §(8) =
AA(A A A/ /i = §(B), so that A(3) = —Q(8)§(B) solves the first-order conditions.

Since
P(B,AB)) = po + §(B)QUB)"§(B) /2. (A.2)

the GEL objective function P(3,A(3)) is a monotonic increasing transformation of the
CUE objective function, so that the set of GEL estimators coincides with the set of CUE
estimators. Q.E.D.

Proof of Theorem 2.2: We first consider the case where v # 0. The first-order
conditions for 7; are (n7;)"/y — &@g:(8) — i = 0. Solving gives 7; = [y(i + &@'g;)]*/7/n.
The other MD first-order conditions are Y1 ; 7; = 1 and, for G;(3) = 9¢;(3)/00,

Zn:WiGi(ﬁ)'a =0, iﬂigi(ﬁ) = 0. (A.3)

The first-order conditions for A are 3™, p1(Ng:(6))g:(6) = 0. By the implicit func-
tion there is a neighborhood of 3 where the solution A(8) to 7, p1(Ng:i(3))g:(3) = 0
exists and is continuously differentiable. Then by the envelope theorem the first-order

conditions for GEL are

n
N ~

i=1

where 7; = p1(Ngi(8))/ 0y p1(Ng;(B)). Then for X\ = a/(vf), by S, 7i = 1,

i = [(v) 7 /n) (1 + 4N gi(B))Y7 = (144N gi(B) 7/ (1 + N g;(B)
j=1
Noting that p;(v) = —(1 +yv)/7, we see from the respective first order conditions that
the conclusion holds for 7; = 7; and A=\
For the v = 0 case, we note that p(v) = —e” and that under the constraint > ; m; = 1,
1 h(m) =Y In(nm)m; = Yt In(m;)m; + In(n). Then using this objective function

in the Lagrangean, the first-order conditions for 7; are 1+ In(7;) = i + &'gs(3). Solving,
mi=exp(p—1+ o‘/gi(ﬁ)) = exp /Zexp
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where A = @. The conclusion then follows as before. Q.E.D.

Proof of Theorem 2.3: For notational simplicity drop the EL superscript and
subscript, let G; = G;(6) and §; = ¢:(8), and let Y = 1/ 3™, p1(N ;). Note that for EL,
= 7%@;5\ — Y, so by the second part of eq. (A.4),

0= g = wggiA —nY §(B).
i=1 i—1
Solving for \, plugging into the first part of eq. (A.4), and dividing through by nY gives
the result. Q.E.D.

Lemma A1l: If Assumption 1 is satisfied then for any ¢ with 1/a < { < 1/2 and
A, = {2 || < néY SuPﬂeB,AeAn,lgz‘gn|X9i(ﬁ)| 20 and w.p.a.1, A, C A(ﬁ) for all
g e B.

Proof: For b; = supgcp ||9:(8)||, by Assumption 4.1 it follows by M that max; <<, b; =
O,(n*/*). Then by CS,

sup INgi(B8)] <n™" max b; = O,(n" ") L 0,
BeEB,AEA,,1<i<n 1<i<n

giving the first conclusion, so w.p.a.1 Ng;(3) € V for all 8 € B and ||]A]| <n~¢. Q.E.D.

Lemma A2: If Assumption 1 is satisfied, 3 € B, B 2 B, and §(B) = O,(n~/?),
then A = arg max, i g P(B,)\) exists w.p.a.1, A = Oy(n~Y?), and supAGA(B)P(B,)\) <
Po + Op(ﬂfl).

Proof: By LLN Q = Q(5) 2 Q. Then by nonsingularity of € the smallest eigenvalue
of Q) is bounded away from zero w.p.a.1. Let A,, be as defined in Lemma A2. By Lemma
A2 and twice continuous differentiability of p(v) in a neighborhood of zero, P(3,\) is
twice continuously differentiable on A, w.p.a.1. Then A = argmaxyen, P(,\) exists
w.p.a.1. Furthermore, for g; = ¢;(3) and any A on the line joining A and 0, by Lemma
A2 and py = —1, maxj<;<, p2(Ngi) < —1/2 w.p.a.1l. Then by a Taylor expansion around
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A = 0 with Lagrange remainder, there is A on the line joining A and 0 such that for
7 4(8),

A — — o~

po = P(ﬁ,O)sP(ﬁ,A)z oo — Xg+ (DN e (Vggigh/nlh  (A5)
=1
< po— Ng— (L/HNQX < po + [IA[g]] — CIIAI,

Subtracting py — C||A||? from both sides and dividing by ||A|| we find that C||A|| <
3]/, w.p.a.1. By assumption, § = O,(n/2), and hence |\|| = O,(n"1/?) = o,(n ).
Therefore, w.p.a.1 A € int(A,) and hence dP(3;, ) /O = 0, the first-order conditions for
an interior maximum. By Lemma A2, w.p.a.1 A € A(f), so by concavity of P(3, \) and
convexity of A(ﬁo) it follows that P(B, A) = sup \eA(B) P(B ,A), giving the first and second
conclusions with A = . Then by the last inequality of equation (A.5), ||g|| = O,(n~/?),
and ||| = Oy(n=72), we obtain P(3,3) < po-+ Mgl - CIAI2 = po+ Op(n~"). QED.

Lemma A3: If Assumption 1 is satisfied, then ||§(3)|| = Op(n="/?).

~

Proof: Let §; = ¢:(0), § = §(f), and for ¢ in Lemma A2, A = —n<j/||g||. By
Lemma A2, max;<, |Ng;| 2 0 and A € A(3) w.p.a.1. Thus, for any A on the line joining
X and 0, wp.a.l py(Ng) > —C, (i = 1,..,n). Also, by CS and LLN, ¥, 4:4./n <
(3, 62/n)I 2 CI, so that the largest eigenvalue of ¥, §;g;/n is bounded above w.p.a.1.

An expansion then gives

~

P(B.N) = po—Ng+(1/2)A sz N G:)§idl/n]A

> po+nllgll - (1/2)/\'[ Gigi/mI} = po +n”C|g]l — Cn~*.

1

w.p.a.1. By the CLT the hypotheses of Lemma A3 are satisfied by 3 = 3. Noting that
by 3 and being a saddle point, this equation and Lemma A3 give

~

po+n"¢gll —Cn* < P(B,A) < P(B,\) < sup P(Bo,A) < po+0p(n7Y).  (A.6)
XeA(Bo)

Also, by ( <1/2,(—1< —1/2 < —(. Solving for ||g|| then gives, by
111 < Opn~1) + Cn< = 0,(n™). (A7)
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Now, consider any &, — 0. Let A = —&,§. Note that A = 0,(n"¢) by eq. (A.7), so that
A € A, w.p.a.1. Then, as in equation (A.6),

po +eallgll* = Cerllgl* = po — Ng — ClIAI* < po + Op(n71).

Since, for all n large enough, 1—¢,C' is bounded away from zero, it follows that &,||g[|* =
Op(n~1). The conclusion then follows by a standard result from probability theory, that
if e,Y, = Op(n 1) for all &, — 0, then V,, = O,(n~!). Q.E.D.

Proof of Theorem 3.1: Let g(3) = E[g(z,8)]. By Lemma A3, §(3) 2 0, and by
LLN, supgep [|9(8) — 9(8 )| £ 0 and g(B) is continuous. The triangle inequality then
gives g(3) £ 0. Since g(8) = 0 has a unique zero 3y, ||¢(3)|| must be bounded away from
zero outside any neighborhood of 3y. Therefore, 3 must be inside any neighborhood of
By wp.a.l,ie 8L B, giving the first conclusion. Then second conclusion follows by
Lemma A3. Also, note by the first two conclusions the hypotheses of Lemma A2 are

satisfied for 3 = 67 so that the last conclusion follows from Lemma A2. Q.E.D.

Proof of Theorem 3.2: For g; = gi(ﬁA), by Theorem 4.1 and Lemma A1, max;<, ]X’gz\
0. Therefore, the first-order conditions Y~ , pl(j\’ G:)gi = 0 are satisfied w.p.a.1. Also,
Q=" pg(ﬁ\’gi)gig;/n L, 0§ so that € is nonsingular w.p.a.1. Then as in the proof
of Theorem 2.2, the first-order conditions of eq. (A.4) are satisfied w.p.a.1. Then by

a mean-value expansion of the second part of these first order conditions we have, for

0= (3,N) and 6, = (6),0),

0 = ( —g(()ﬁo) ) + (6 — 6o), (A.8)

( 0 Y (V)G ()/n)
S (N9 Gi(B) [n 31y pa(N'Gi)gi(B)gi/n

where 3 and A\ are mean-values that actually differ from row to row of the matrix
M. By A = O,(n""?), it follows as in Lemma Al that max;<, |Ng;| = 0. Therefore,
max;<, |p1(Ng:) + 1| 2 0 and max,<,, [p2(N'G;) + 1| = 0. It then follows from LLN that
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M 2 M, where
_ 0 G 9 - H
(e 9 )or-- (W 7))

Inverting and solving in eq. (A.8) then gives

Vi —00) = —B 0, ~v/ng(Be)) = —M N0, —/mg(B)) + o,(1)  (A.9)
— —(H, PY\/rg(f) + op(1).

The first conclusion follows from this equation and the CLT. The second conclusion

follows similarly. For the third conclusion, note that an expansion and eq. (A.9) give

3(8) = (o) — GHG(Bo) + 0p(n™"1%) = —QA + 0y (n™'/2).

Expanding,

P(B.X) = po—Ng(B) + N[X_ p2(N3)3:g/n])/2 (A.10)

i=1

= po—NG(B) = NQA/2+ 0, (n ") = po + §(B) Q2 3(B) /2 + 0p(n ).

It follows as in Hansen (1982) that ng(3)'Q2~2§(8) % x2(m —p), so the conclusion follows
from eq. (A.10). Q.E.D.

We now give some Lemmas that are used to derive asymptotic expansions. The next
one is like Lemma 3.3 of Rilstone et. al. (1996), except that we expand in a shrinking
neighborhood to allow for X in GEL. For notational simplicity we will suppress the F

argument.

Lemma A4: Suppose that the estimator 0 and vector of functions m(z,0) satisfies

~

a) 0 = 0o+ O,(n~%); b) ¥ m(z,0) = 0 w.p.a.l; ¢) For some ¢ > 2, d(z) with
Eld(2)] < oo, and Ty, = {0 : ||0 — 6o|| < n~Y¢Y}, w.p.a.1 fori =1,...,n, m(z,0) is three

times continuously differentiable on T, and for 6 € T,,

Ha?’m(zi, 9)/89%99&894 — 83m(z2~, 90)/89]89k895“ S d(ZZ)HH — 90”;
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d) E[m(z,60y)] =0 and M = E[0m(z,0)/00] exists and is nonsingular. Let

Mj = E[a (Z 00)/80 819] jk = E[83m(z, 90)/80&89380],
A(z) = 0m(z,00)/00 — M, B;(z) = 8*m(z,0,)/00;00 — M
V(z) = —M 'm(z,00),a(z) = vecA(z),b(z) = vec|Bi(2), ..., By(2)].

Suppose that E[||v(2)]°], E[||A(2)||%], and E[||B;(2)||°] are finite. Then eq. (8.1) is
satisfied for

Ql(d}a d) = _Mil[Ad; + id;ijq;/Q]a Q2(@;7 da B) = _Mil[AQl(@;a d) (A'll)

J=1

+ 3 {0 M;Q1 (¥, a) + Qui (v, &) My + ;B /2 + > b My /6]

j=1 j,k=1

Proof: Let M(0) =n ' S" , dm(z;,0)/90. A Taylor expansion with Lagrange remainder

gives,
0 = rm(bo)+ M(6o)(0 — 6p) +§qj 0,0)[0M (60)/00;)(0 — 60)/2  (A.12)
+. Z 00) (Br — Oro)[0*M (0) /06,06,](6 — 05) /6.

By M, the CLT, and the Lipschitz hypothesis,

1620 (0)/00:00; — Myi|| < ||0*M(0)/00,00; — 0° M (65) /06,00, + 1|0 M (6) /06,005 — My
< D d(z) /]l = Ol + Op(n?) = Oy(n/?).

i=1

It follows then for M = M (6,) that by adding, subtracting, and solving gives
0—0y = v//n— M A0 - 0b) \/_+Ze —0,0)M;(0 —60)/2  (A.13)
#3005 = 0) By V) 0 )/
37 (3= 0300k = 0) Mo = 0)/6] + Oyfn™)
= /v — M A6 - 6) /\F+Ze — 6j0)M; (6 — 60)/2
i Byl 4 S G My 60" 4 Oy(n2).

7,k=1
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Noting that the last five terms are O,(n~!). Then solving this equation for 0 gives
0 — 60y = //n+ O0,(n7Y).

Next, the last three terms in equation (A.13) are O,(n=3/2), and replacing 6 — 6, by ¥//n

in the last third and fourth terms also generates an error that is O,(n=3/2), we obtain

00y = G/~ MO~ M)D/V 4 Sl 2n] 4 0,0 (A1)

J

= p/vn+ Qi(,a)/n + Oy(n~?).

Finally, replacing 6 — 6, in eq. by the expression following the last equality gives the

conclusion. Q.E.D.

Lemma A5: Suppose that Assumptions 1-4 are satisfied and let Sy = (G'W1GQ) 1,
Hy = SwGW™, Py = W™ = WGy, o = —[H{y, Pw]'g:, G = E[0G;(3)/08)],

0o G (0@ o (-Sw H
o= (g wle )= w )= w ),
J| 2, /
M, — _(E[(é;g] E[gz] >’(j§p)7Mp+j:_(E[8 923(58)/(9ﬁ35] 8)’09”)'

Then for A =W 4(5), 0 = (3 XY, & = Tyvs//n, A = Si(Mi— M) /y/n, and Q1(,a)
as in Lemma A/ we have,

6= 6o+ D/ + Qu(8,a) I+ Op(n=?).

Proof: Let 0 = (5, X), Ao = 0, m(z,0) = —(N0g(z,8) /98, g(z,0) +N[W +p" (2)]).
It follows from Theorem 3.4 of Newey and McFadden (1994) that § = 0y + O,(n1/2).
Then for () = 3, m(z,80)/n, by the first order conditions for 3, the definition of X,

and Assumption 4 we have
0= m(0) + [0, ~NW — W =YW (2)/n)] = m(0) + Op(n=*?). (A.15)
Then expanding as in eq. (A.12) and solving as in eq. (A.14) gives the result. Q.E.D.

Lemma A6: Suppose that Assumptions 1-4 are satisfied and let Qiz, = 0[gi(50)9:(50)']/ 05,
Qﬂj = E[Qiﬂj]’ Qﬂj = Zz(Qlﬂy - Qﬂj)/ﬁ) Qﬂjﬂk = E[32{gz(ﬁo)gz(ﬁo)’}/aﬁkﬁﬁ]], ¢zﬂ -
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—Hwgi, ¥ = Y07 /v, ¥ = gigh — Q + Yh Qe P and for Q1(v,a) from the
conclusion of Lemma A5 let
Nﬂ_iﬁ 1,78 pQ / T~ pQ /~ﬂ/~ﬂ2
1= ﬂjejd} +Z ﬂjejQ1(¢7a) + Z ﬂkﬂjejd} ex / :
Jj=1 Jj=1 J,k=1

Then Q(3) = Q + &%/ /n+ Q2 /n + O,(n~3/?).
Proof: Expanding gives

Q) = 430/ + 300 VRN, — ) + D 0,y — )

P - ~
+ Z Qﬂkﬂj (B — Bijo)(Br — Bro) /2 + Op(n—a/z)’

J,k=1

so the conclusion follows by substituting for 3 from Lemma A5. Q.E.D.

Proof of Theorem 3.3: Let m;(0) = —(NGi(8),9:(8) + N(Q + ¥, A(z), M,
M; be as in Lemma A5 with W = Q. Also, let ¢; = —[H', P''g; and ¢ = ¥, ¢ /\/7.

) = —((F9B0905 = B /000 0 ;<

Let A = —Q(6) 1§(f). Then A = O,(n /?), e.g. as shown in Newey and McFadden
(1994). Then the first-order conditions for GMM and Lemma A6 imply

0 = m(0) + [0, =N (Q%/n + Op,(n3/2)]" = m(0) + [0, - NQY + O,(n"3).  (A.16)

Then for Q4 (@E,EL) and Qg(@/;, a, 13) as given in the conclusion of Lemma A4, with ¢, M,
M;, My, A(z), and B(z) as specified here (and in Lemma A5 with W = Q), and for
T =0+ 0//n+ Q1(,d) /n+ Qa(¢), @, b) /n3/?, solving for 6 — b as in the conclusion of

Lemma A4 gives
0=T— M0, -NQY + 0p(n~2) =T + M0, QY] + Op(n~2).
This equation implies that A = [0, I,,,]1 + O, (n2). Substituting we obtain
0 =T + M~ *diag[0, Q%Y + O,(n~?).
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The conclusion follows by adding M 'diag[0, Q%] to Q2(1),a,b) (from Lemma A4) to
obtain the second-order term in the stochastic expansion for GMM, with the first-order

term being Q1 (¢, a) (from Lemma A4). Q.E.D.

Proof of Theorem 3.4: We apply Lemma A4. Let 6 = (3, X', 6y = (3,,0'), 0 be
the GEL estimator, G;() = 0¢;(3)/00, and

m(z:,0) = p1(Ng:(3)) ( Ggf(%))“ ) 0= (3N,

By Theorem 3.2, § = fy 4+ O,(n '/2). Also, as shown in the proof of Theorem 3.2,
>ym(z,0) = 0 wp.al. Let 2 < ¢ <« for @ in Assumption 3.3. Then by Lemma Al,
Assumption 3.3, and p;(v) three times continuously differentiable on a neighborhood of 0,
m(z;,0) is three times continuously differentiable on the 7,, from Lemma A3,i =1, ..., n,

to which we henceforth restrict attention. Let m;(0) = m(z;,6), v;(0) = Ng;(0), and
hi(0) = 9vi(0)/00 = (NG(53),9:(B)")'. Then

Omi(0)/90 = pa(vi(0))hi(0)hi(0) + pr(v;(0))Oi(0) /00, (A.17)
hi(0);hi(0)hi(0)" + pa(vi(6))0hi(0)hi(0)'] /08
(0)/0,00.

))hi(0)

m;(0)/00;00 = ps(v;(0))hi(0)

+p2(vi(0))1i(0);01:(0) /00 + p1 (vi(6))0*h

m;(0)/00,00;00 = pa(vi(0))hi(0)rhi(0) ;i (0)hi(0)" + ps(vi(0))O[hi(0) 1hs(0)1i(0)'] /004
+03(i(0))hi ()01 (0)hi(0)']/96; + p2(vi(0))0*[i(0)hi(9)']/ 00,06
+p3(vi(0))hi(0)hi(0);0hi(0) /06 + pa(vi(0))d[hi(0);0hi(0)/ 06] 06
+p2(v;(6)) i (0),0°hi(0) /060;00 + p1(v:(6))D*hi(0)/06,06;08.

By hypothesis p;(v) is Lipschitz in a neighborhood of zero so that for b; = b(z;),
1p;(vi(0)) = pi| < Cloi(0)] < ClIAll|g:(B)] < C:|6 — bol.

Also, by Assumption 3.3, all of the terms involving h;(f) and its derivatives in the third
derivative for m;(#) are bounded above by Cb} on T,,. Then the norm of the difference of

0°m;(0)/960,,00;00 and the same expression with v;(6) replaced by v;(6p) = 0 is bounded
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above by Cb?||60 — 6p||. Also, it follows by similar reasoning that the difference of each
expression involving h;(6) and its value at 6y is bounded by Cb/||0 — 6,]| for some integer
J < 4. Thus, the Lipschitz hypothesis of Lemma A4 holds by E[b?] < oo.

Next, let ¢; = ¢:(0y) and G; = G;(fy). Note that h;(6y) = (0/,g;), so that by

p1=p2=—1,

0 G (0 @

M is nonsingular, as shown in the proof of Theorem 3.2. Now let G7 = 9%¢;(8,)/03;08,
g = 0gi(Bo)/0B;, t = j — p for j > p, let e; denote the ¢'" unit vector, and a ¢ subscript
denote the ¢ element of a vector. Then evaluate at § = 6 to obtain

0 G7 ,

_( Pla0/0507 Gleg 406\ -
9:€1Gi + 9uGi —p39it9iJ; ’ '

Next, let G* = 9%¢;(60)/06x08;06 and ¢* = 9%¢;(60)/06xDB;. Then for the second

derivatives corresponding to 3, with j < p and k < p,

; 0 G
07ma(60) 060,00 = = ( GI* gl*q+gla¥ +gfgl' + gigl™ ) (4.20)

For the cross-partial between )\, and 3;, with j <p, k > p, and t = k — p,

9*mi(00)/00,00,00 (A.21)
_( Pgu(B)/0B,;0808 - Glegl' + Gleg; + G Gl + guGY
gieqGi + gierGl + GujGi+ gu Gl —ps[Gijgigi + gie(gigi + 9ig1)] )
For the second partial derivatives between \; and \,, with 7 > p, £ > p, t = 7 — p, and
u==Fk— b,
Prmi(0)/00,00,00 — —Giee,Gi — GieueiGi - p3(9uGien + ginGier)y; (A.22)
o S p39i(9i€,Gi + g1 Gi) P19itJiu9iJi '
. gita2gtu(50)/aﬁaﬁ/ + gita29tu(50)/aﬁaﬂ/ —P39itJin G
—p39itgiuGi 0 '

Then by the conclusion of Lemma A4, equation (3.1) is satisfied, for @1, Q2, a(z), and
b(z) as given in the statement of Lemma A4, and m;(f) and its derivatives as given in

this proof. Q.E.D.
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Proof of Theorem 4.1: By Lemma A6 it follows that Assumption 4 is satis-
fied for W = Q and ¢}V = gig; — Q — ¥5_, Qg efHyg;. Note that Ele[Hyg;Pg;] =
PE|g:g)|Hiye; = (Hw — H)'e;. Also, for Sy = E[0%g(80)/0803], the k'" element
of YF_| E[G]]Se;/2 is Y0, €/Sp¥e;/2 = Y8 tr(Xe;e}S)/2 = ap. Also, Then for
A = —Q(B)1§(B) the bias of § = (3, N) can be obtained as the expectation of the

term from Lemma A5 with W = ), giving

Bt = Biowonann = oo & ) (25

B ()3 82

j=1 j=1

_M—l E[G;Pg’l] _ /n.
E|GiHg] — a+ ElgigiPgs) — >i—1 Qp,(Hw — H)'e;

Then [I,,0]M ! = [Z, —H] and the previous equation gives the result. Q.E.D.

Proof of Theorem 4.2: By the proof of Theorem 3.4 6 = (3, N) satisfies eq.
(3.1) with @7 as in the statement of Lemma A4 with ¢(z;)) = —[H', P|g;, for H =
RGO A(zi) = 0mi(0y)/00 — E[0m;(0,)/00) for Om;(0y)/00 from eq. (A.18), and
M; = E[0*m;(00)/00,00] for 8°m;(0y)/00;00 from eq. (A.19). Note that E[y)]] =

diag[%, P] and G} Py
B E|GiPg;
E[A(z)i] = ( E[G;Hg; + gi9,Pgi] ) '

Also, Y70, Pejgi; = X7, Pejelgi = Pg;, and by symmetry of P, 37", Gle;g;Pe; =
ZT:1 Gi-eje}Pgi = G;sz'. Then

Y ME[pable;/2 ="y M;[S,0'e;/2+ > M; [0, P)e;/2}
=1 =1 =1

= 0 _ i E|Gie;gi + 9i,GilPe; /2 ) _ —E[G;Pgi] .
E[G]Se;/2 ) = —psElgi;9:9i] Pe;/2 —a+ psElgigiPgi/2

j=1 ~1
Then by Lemma A4, Bias(f) is the first p elements of

BlQu(s,as, FO)l/n = —M{E[A(zz-m]+§MjE[¢i¢;]ej/2}/n

0
_M{( —a+ E[GiHg| + (1 + ps/2)Elgig; Pgil )}/n. QED.
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Proof of Theorem 4.5: For Q = E[z;z}] we have Q = ¢2Q and G = —E[zw]].

2

Also, note that E[z\Px;] = 0.2E[g.Pg;] = 0.2(m — p). It then follows that

B|G}Pg] = —Bleiwa;Pt;] = —00, Bz Pwi| = —(020/02) (m — p).
Also, since w!XG'Q 1z; is a scalaar,

E[G:XG'Q g = —ElrwXG'Q tre] = — Bz, 'GYwe;]

= —E[z;2))0'GYo., = —G6.

It then follows that

By = YSGO'E[GEG Q1 g] = BG'QH(—Gd)/n = —6/n,

Bg = —XE[G/Pg] = (m —p)é/n, Bq = uzXG'Q " Elx,x, Pxy).
The conclusion then follows by Theorem 4.1 and 4.2. Q.E.D.

Proof of Theorem 4.6: Note that tr(30%g;;(50)/0308') = q;(z;)tr(Sugg), so that

aj = Elgj(zi)tr(Xugsi)]/2 = Elg;(x:)tr(XH;)]/2. Also, note that G; = quj,;, so that
G'O7IG; = Jzu,’gz Then we have

NG e = BG'Q'Elgitr(SH;)] = SE[ditr (X H;)]/2,
SGOTEGEG 0 g] = SE[duSdiw] = SE[didSugu) = SE[ddX6;),
Ba = XElupiqPgu] = Elbiq;Pgi,
Bq = YE[du}q.Pg) = SE[d;ps:q,Pqi).
Note next that d; is the mean-square projection of d; on ¢; for the expectation operator £
given by Ela(x;)] = E[o2a(z;)]/E[0?]. Therefore, it follows that E[c?||d;||?] < E[o?||d;||?].
By standard results for matrix norms, |tr(XH;)| < p||SH;|| < p||Z]|||H;||. Then by CS

|E[dtr(SH))/2] < S| Elolldilll| Hill/oi]/2 < pIEIEloalldill2] Elll Hil1?/0?)/2
SN Eloill il Bl Hil12/02] /2.

Also, we have for A = sup, [|6(z)/0?(2)]|,

IN

1E[d:dzél < (ISNEd:lI6:11] < 1Sl Elo7 [l di]*]A < (2] Eloflld:*]A.

1

33]



By the T and CS we then have

| Bias(Bu.) | < 12120y Eloilldil|2y BN Hill*/02)/2 + Elo?|[di][*)2) /n,

giving the first conclusion. For the second conclusion, note that E[o?¢,Pq;] = E[g.Pg;| =

1

m — p, so that for n; = €/3(6; + dijiz;) /o2,
eg(Bias(BGN[N[) - BiaS(BEL)) = GSEE[(@' + Jz‘#?n‘)qz{P%]/” = E[niafquQQ]-

The second conclusion then follows from o2¢Pq; > 0, so that when 7; > Cs, E[mgfqi Pq)] >
CyEl0%¢,Pg;) = Cy(m — p). QE.D.

Proof of Theorem 4.7: The bias formulae follow immediately from Theorems 4.1

and 4.2, since by G; = G,

To obtain the bound, note that differentiating the equality h(3) = [r(z)f(z|5)dz under
the integral is allowed by the conditions, as is differentiating the identity 1 = [ f(z|5)dz.
Twice differentiating the second gives E[s;] = 0 and E[F;] = 0. Twice differentiating the

first gives each gives

G = —/T(Z)[af(ZWo)/aﬁ]dZ = —E[r(z)si] = —Elgisi],
a; = —tr(E/Tj(z)[02f(z!ﬁo)/3ﬁ3ﬁ']dz)/2 = —E[rj(z)tr(XF)]/2 = —E[gi;tr(3F)]/2.

Stacking the formulae for a; we find that for 7, = tr(XF;), a = —E[¢;7;]/2, so that
Bias(Bu) = —SE[s:9i](Elgigl)) " Elgim]/2n.

Note that 72 < p?||Z||?|| F;||?, so that by CS,

|Bias(3s) | < |5l Bl AE/20 < pll <12 EllIPENEI/20.Q.E.D.

Proof of Theorem 5.1: In the case of GMM, the bias correction takes the form
Bias(ﬁ) =7(3%; dz(ﬁ)/n)/n, where d;(3) = d(z;, 3) is a vector of products of ¢(z, 3) and
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its derivatives to second order and 7 is a function that is twice continuously differentiable

in a neighborhood of dy = E[d;(y)]. Then by Assumption 3 and a standard expansion,
Bias(B) = 7(do) /n + Ta(do) " 0] /n® + Op(n~2), 4] = di(fo) — do — E[0d,(80) /5] Hgs.
Then for ¥, Q1, and Q, from Theorem 3.3,

V(B — Bo) =& + [Q1(,@) — 7(do)}/ v/ + [Q2(D, @, b, Fo) + 7a(do)d7] /n + Op(n~*/?),

giving the conclusion for GMM. The conclusion follows similarly for GEL, with 7 and

d(z,3) corresponding to the bias formula for EL, and

U = di(Bo) — do — E[di(B0)g}]¥ " g: — E[0d(0) /06 H g:.Q.E.D.

Proof of Theorem 6.1: By Theorem 3.1 and Lemma A1, max;<, |\ g:(5)] 2 0,
so that for 7; as in Table 1, #; > 0, (i = 1,...,n). Then the first-order conditions for

maximization over A imply that Y™ | #;g:(3) = 0. Also, for i = — > (1 = Ng;)t

and @ = —[i), the formula implies that #; = —1/[i + @ g:(3)]. Therefore, the first-order
conditions for the Lagrangean are satisfied, and hence by global concavity of the objective
function, 7;, B are a solution to the constrained maximization problem in eq. 7?7 with
h(m) = —Inm. Suppose that the support of z; is {z',...,27}, and let I; = {i : z; = 27}.
Then 7; maximizes the objective functions
J J ' J
Z Z 1n(7T¢)5-tZ(Z mi)g(2’, ) =0, Z(Z ™) = 1.
j=1i€l, j=1 icl; j=1 icl;
For given 77 = Y3, m;, by strict concavity of In, this is maximized at 7; = 77 /n;, i € I,
where n; is equal to the number of elements of I;. Then 7 and B solve the concentrated
maximization problem,
J _ J Jg J
> niIn(r?) = > njln(ng) st> wg(z?,6) =0,/ =1.
j=1 j=1 j=1 j=1
which is precisely the maximum likelihood objective function, showing the first conclu-

sion.
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To show the second, note that E[A,] = 7(E[m(z, f)]) for vectors 7(m) and m(z, 3),
not necessarily of the same dimension, which in the discrete case is 7(37_, mim(27, 5,)).

j=1
Also,

so that the EL bias correction 7(3X%, #:m(z;, 3))/n is equal to the discrete maximum

likelihood bias correction (327, #/m(z, §)). Q.E.D.

j=1

Proof of Theorem 6.2: Consider the case where z; has finite support. It follows
from the smoothness and nonsingularity conditions of Assumptions 1 - 3, similarly to the
proof of Lemma 1 of Chamberlain (1987), that the multinomial likelihood for the discrete
data with fixed support satisfies all the regularity conditions of Pfanzagl and Wefelmeyer
(1978) (PF henceforth). The conclusion for discrete data then follows from Theorem 5.1
and Corollary 1’ of PF, for the case of Remark 3.16 of PF.

To show that the result holds in general, we note that by standard V-statistic results
and the form of ()1 and ()5 derived in the proofs, it follows that for each estimator =
consists of a function of expectations, i.e. it takes the form = = 7(E[d(z, f)]) for some
function 7 that does not depend on the true distribuiton. By Lemma 3 of Chamberlain
(1987), for EL and the bias-corrected or GMM pair of estimators there exists a distri-
bution with finite support satisfying the moment restrictions and Assumptions 1-3 such
that the corresponding expectation vectors E[d(z, 3y)] under the discrete distribution
are equal to those under the true distribution. Then by the efficiency result for discrete
distributions, which implies that = is smaller for EL than for the other estimator, we also

have the same ranking for the true distribution. Q.E.D.

Proof of Theorem 6.3: Let ¢;(3) = ¢:(y — z;3). Note that, by comparing the proof
of Theorems 3.3 and 3.4, the M and ¢; for GMM and GEL are identical. Also, in Lemma
A6, Qg, = E[—2¢;qizie;] = 0, so that ¥f* = g;g} — Q. It then follows that the A(z) in the
statement of Lemma A4 for GMM and GEL are identical to one another. Furthermore,

it is straightforward to show that M; = 0 for both GMM and GEL. Therefore, Q1(¢, @)
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coincides for the two estimators. Let bGMM  pGEL QGMM — QGMM (4, 7 pGMMY QGEL —

GEL (1), &, bFL) denote the second order terms for GMM and GEL respectively. From
the form of = given in Section 5 we see that the difference in higher-order variances for

GMM and GEL estimators of [ is
Eamn — Egpe = D+ D', D = [1,0] lim B(Q5M" — QF"")/][1,, 0]

Thus, it suffices to just calculate the difference of second-order terms. Furthermore,
by A and Q; identical for GMM and GEL, the first term in the formula for Qs in eq.
(A.11) is identical for GMM and GEL. Also, for GEL M; = 0 for all j so that we
only have to calculate the last two terms in Q, for GEL, namely Z‘}:l @Z@Eﬂﬁ/ 2 and
X k=1 b M) /6. For GMM, and B;(z) = 0 and Mj, = 0 (by linearity of m;(6) from
the proof of Theorem 3.3). In addition for GMM, by efﬁciency of 3, ¢ from Lemma A6 is
equal to [I,, 0]¢), so that defining and although Q¢ = Qﬂ] eJ@/J'G—i-Z] k1 8,5, &5&5/2,
we have

E[M ‘diag]o, Z a5, 0505 /2000 = —H Z Qg 5, B[ Ddaily] = O(n2),

7,k=1 7,k=1

where the last equality follows by existence of fourth moments of g; and by 3 and A
having zero asymptotic covariance. Therefore, for M;; and Bj from GEL, we have, by

1, 0)M " = [, —H],

D = D1 +D2,D1 = hm E[Dl] DQ = lim E[DQ]

Dy = [8,-H{Teum + Z ¢ij¢/2}¢,ﬂyTGMM = diag|0, ZQ
j=1 j=1
Dy = [, —HI{ Y dstb; M) /6}.
Gik=1

Consider next D;. Note that for j < p and Qip, = 9[9:(B0)9:(50)']/0B; as defined above,
from eq. (A.19), B; = —diag[0,g;], so that



Note also that for j > 0,

Y L\ g - 0 . ~
jzl¢;Bj+p ( 6) ) ¢ﬂ/2 - _le¢? ( [Qﬂleh "'aQﬂpej] ) ¢ﬂ - _TGMM/Z

Then for ¢ = [0, I,,,]t),

m—+p

Tomn + Y VB2 = Tamm/2+ Z@@Bﬂp@/}ﬂ
j=1 j=1
UL 0\ -~ 25 9:GL//n ~
= 2B A2 = J 22
j;% sl g, |V Z¢ —paTiggig/va )
Then using g; = ¢;g;, G = —q;z}, and letting z; = —G'Q 1¢;02, and K; = ¢/ Pg;, so that
WP = Nze;/02, it follows by E[¢*)?] = 0 and fourth moments bounded that

b = i BE S SRHE ) P

= 22{257[53%7%%}76]’1/}5/] + psE[(e] 0} qijZiq, Pe;zi) } 5 /2

Jj=1

= S{E[Kix@)] + (p3/2)El(nas/ 0} KimiT]} 2.

Next, we have by linearity of g;(5) in 3, eq. (A.22),

UL UL —Glee Gy — Gleyel Gy
Pj My jpik[S,0] = Pj.E e e 5
Z 7k p+]’p+k[ 0 ;1 ik [< p39:(9i1€l,Gi + Gin€,Gi + GitginG:) )]

]7k:1 j7

m —2E[z;7,q:;qik]
= P E 5 T E
> ik [< —3psE[07qix:qi; Qi) |
B —2F[K;x;x!]
- E[< —3psE|0?K,q7l] >]E
P

Also, by eq. (A.21), X7, q;jPe; = Pg;, and 3o} _) we) ¥ = a3,

L 0 ’ L G’e N ++Gi G; ’
S5 b Jeds = -y OGP

st Pt —p3|Girgig; + 9ie(97 9i + 9i9]

= iiE( —2Ezigiaii ])]Peje;E

j=1k=1 3/03E[U QZqquxzk

k=
B —2F[K;x;7}) >
B 3P3E 2K iqiT ’L]
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Note that for j,k < p, for GEL in a linear model the upper left block of Mj; is zero, so
that M;[3,0]' = 0 and hence M, E[1;1;;] = 0. Also, For GEL we also have by standard

V-statistic calculations and M, = My;

m+p mtp >
Dy = [S,—H] lim B[ Y ;o Mypp”]/6 = [S,—H{ Y Bl M, ( 0 )
k=1 Jik=1
m-+p
+2 Y My Bl B[]} /6
Gk=1
m m. P
= [ -H{ ). PiuMjprep ( ) 22> My ( ! )%‘622}/6
k=1 Jj=1k=1

Then summing D; and D, gives the first conclusion. For the second conclusion, note that

K; < ¢iQ7'q; < Cqi(Blaigi]) 'ai < C¢(m)"? for {(m) = {sup,cx q(2)'(Elgig]]) "q(x)}*.
Then since G'Q2™! are the population least squares coefficients from a regression of z;\o?

on q;,
IB[Ki(z; —z)|IIP < B[KZE[|z; — :l*) < OC(m) B0} |G'Q s — :/07 %]
< CLm)EBlof||G'Y g — @i/ 0f|*] < CLm) B0 || ymgs — i/ 07 %] — 0.

It follows similarly that E[K,;z;(z; — z;)'] — 0 and E[(pai/o} — 3)Kizi(Z; — x;)] — 0,

giving the second conclusion. Q.E.D..
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