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ABSTRACT. We calculate higher-order asymptotic biases and mean squared errors (MSE)
for a simple model with a sequence of moment conditions. In this setup, generalized empirical
likelihood (GEL) and infeasible optimal GMM (OGMM) have the same higher-order biases,
with GEL having an MSE that exceeds OGMM’s by an additional term of order (M —1)/N,
i.e. the degree of overidentification divided by sample size. In contrast, any 2-step GMM
estimator has an additional bias relative to OGMM of order (M — 1)/N and an additional
MSE of order (M —1)2/N. Consequently GEL must be expected to dominate 2-step GMM. In
our simple model all GEL’s have equivalent next higher order behavior because generalized
third moments of moment conditions are assumed to be zero; we explore, in further analysis

and simulations, the implications of dropping this assumption.

1. INTRODUCTION

This paper has two parts. In the first part, we calculate higher-order asymptotic biases
and mean squared errors (MSE) for a simple model with a sequence of moment conditions.
In this setup, generalized empirical likelihood (GEL) and infeasible optimal GMM (OGMM)
have the same higher-order biases, with GEL having an MSE that exceeds OGMM’s by an
additional term of order (M — 1)/N, i.e. the degree of overidentification divided by sample
size. In contrast, any 2-step GMM estimator has an additional bias relative to OGMM of
order (M —1)/N and an additional MSE of order (M — 1)?/N. Although these features do
depend on the simple framework we have adopted, we cannot see how a more complicated
framework will rescue 2-step GMM from these fundamental difficulties. Consequently, we
conclude GEL must be expected to dominate 2-step GMM, and our interest shifts to distin-
guishing between variants of GEL and the closely related, (if not dual) empirical discrepancy
(ED) estimators.

In our simple model all GEL’s have equivalent next higher—order behavior because gen-
eralized third moments of moment conditions (i.e. products of the form v;1,1),, where any
or all of j, k, and ¢ may be equal) are assumed to be zero. We explore, in further analysis
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and simulations, the implications of dropping this assumption. We find that when third
moments are important, one variant of GEL/MD, which can be identified with ‘continuously
updated” GMM, is inferior to many other variants, including ‘exponential tilting’ (ET) and
empirical likelihood (EL).

2. FRAMEWORK

Consider a sequence of independent and identically distributed pairs of random vectors
{(v;,w;)}XY,. The dimension of v; and w; is M > 1. We are interested in a scalar parameter
0, satisfying

E[¢(U17wz79)] = 07
fori=1,..., N, where

('Uil ‘I‘l) -Q—wil
Vig - 0 — w;
¢(Ui7wi79) = ('Ui ‘I‘el) -0 —w; = 2 ) 2 ,

Ving - 0 — wipg

and e; is an M —vector with the first element equal to one and the other elements equal to

zZero.

We are interested in the properties of various estimators for 6 as the degree of overiden-
tification (M — 1), increases. Following Donald and Newey (2000) who look at the behavior
of various instrumental variables estimators as the number of instruments increases, and
Newey and Smith (2001) who look at bias of GEL and GMM estimators, we look at the
leading terms in the asymptotic expansion of the estimators and consider the rate at which
the moments of these terms increase with M.

We make the following simplifying assumptions. The pairs (vim, Win) and (vj,, wj,) are
independent if either ¢ # j or n # m (or both), and have the same distribution. Let
ttyp = Evj,, - wh ] denote the moments of this distribution. Moments up to order p + 7 [1 6
are assumed to be finite. Without essential loss of generality, let 117 = 1y, = 0, implying
the true value of 0 is 0" = 0, let uyy = pge = 1, and let p;; = p be the correlation coefficient

of v;,, and w;,,.

Let
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7 1 . /
ww' = o ; w;w;,
denote sample averages, let 7; and w; denote the jth element of 7 and w respectively, and
let ww’;; denote the (i, j)th element of wuw'.
Denote the optimal, infeasible, gmm estimator by
Oopt = €, = 1.

Then,

éopt -0 = OP(N_1/2)7

~

E[eopt] - 9* = 0,
and
E[(Ogpt — 6°)*] = 1/N.

The mean squared error for this estimator does not depend on the number of moments, as

in fact increasing M does not affect the numerical value.

Lemma 1. (EXPANSION OPTIMAL GMM ESTIMATOR)

~

QOpt == El —Elﬁl + 0p(1/N)

Proof: See Appendix.

Define
(¢), Ty = wy,
(’LZ) Rl - _Elgly
so that 9Opt =T, + Ry + 0,(1/N).

Lemma 2. (BIAS OF Op)
The bias of the leading terms is

E[Tl + Rl - 9*] = —p/N

Proof: See Appendix.
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Lemma 3. (MEAN-SQUARED-ERROR OF ;)
The mean-squared-error of the leading terms is

B((Ty + Ry — 6°)°] = /N — 2413, /N* + (1 +20%) /N? + 0,(1/N?).

Proof: See Appendix.
3. Two-sTEP GMM ESTIMATOR

The first estimator we consider is the standard two-step generalized method of moments
estimator (GMM), due to Hansen (1984). Consider a generic gmm estimator, defined as the

minimand of

(% Z¢(Ui,wi,9)> -C- (% Z¢(vi,wi,9)> .

We focus here on the efficient gmm estimator, with the choice for the weight matrix C' equal
to

N 1
(%Zd}(vi?wi?e*) '¢(Ui>wi79*),> = (W)_l'
i=1

Thus the gmm objective function is
155 R 1Z
— . . . , _1 . — . .
(N o ¢(U17wl79)> ('LU'LU) (N : ¢(U1,wl,9)>

zﬁﬁ+qy9—EYmﬂﬂrﬁ(@+qy9—m)
The first order condition for the gmm estimator is
0=2T+e) - (ww) "' (V+er)-0—w),
with the solution for the gmm estimator equal to
Ogmm = (T + 1) - (W)™ (T+er) - (F+er) - (ww)™ ).

The goal is to approximate this estimator up to terms of order O,(1/N) and evaluate the
mean squared error of this approximation. In particular the terms whose moments depend
on M are of interest, and specifically how fast the mean squared error increases with the

number of excess moments.

Lemma 4. (EXPANSION OF )

9gmm =w; — 20w, + (ww'y; — 1) -w; — € (ww’ —IM)E—l— TW + 0,(1/N).
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Proof: See Appendix.
Now define

’LZ), Rl = —2§1E1,

w), Ry = —€} (ww' —In) w,

(
( P
(7i1), Ry = (ww'y; — 1) - w0y,
(
(v), Ry = 7w,

~

ngm = T1 + R1 + R2 + Rg + R4 + 0p(1/N)

(Here, and throughout the paper we use T} for terms of order O,(1/v/N) and R; for terms
of order O,(1/N).) For the bias and mean-squared-error of the GMM estimator we therefore
investigate the moments of S =T + Ry + Ry + R3 + Ry — 0",

Lemma 5. (BIAS OF 0,,,)
The expectation of the leading terms is

E[Tl +R1 +R2+R3+R4—9*] = —p/N—I—p(M— 1)/N

Proof: See Appendix.

Lemma 6. (MEAN-SQUARED-ERROR. OF 0y,)
The mean-squared-error of the leading terms is

E[(Ty+ Ry + Ry + Ry + Ry — 0°)%] = 1/N — 2y, /N? + (1 +2p%) /N?

+p*(M —1)?/N? — p*(M — 1)/N? +2(M — 1)/N? + 0,(1/N?).

Proof: See Appendix.

Note that the difference between the mse for 9gmm and 9Opt is in the last three terms,
pA(M —1)2/N? — p* (M — 1)/N? + 2(M — 1)/N?. All three of these are non-negative. If
M =1, they vanish as the optimal gmm estimator and feasible gmm estimator coincide.

4. GENERALIZED EMPIRICAL LIKELIHOOD ESTIMATORS

In this section we consider alternatives to the standard two-step GMM estimators. The
estimators consider include empirical likelihood (Qin and Lawless, 1984; Imbens, 1997),
exponential tilting (Imbens, Spady and Johnson, 1997; Kitamura and Stutzer, 1997), and
the continuously updating estimator (Hansen, Heaton and Yaron, 1996). The specific class
of estimators we consider is related to that of the Cressie-Read family (e.g., Baggerly (), and
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Corcoran ()), as well to that of the generalized empirical likelihood estimators, introduced
by Smith (1997). For a given function g(a), normalized to satisfy ¢g(0) = 1, ¢'(0) = 1, and
g"(0) = A, the estimator for  is defined through the system of equations

N
0= ZQ/J('UZ','LUZ', 9) : g(t,¢(vi7wi7 9))7
=1

N
0
0= Zt,a—;ﬂ,('[li,wi, 9) . g(t,¢(vi7wi7 9))7

i=1
solved as a function of # and ¢. The leading choices for g(a) are g(a) = 1/(1 — a) (empirical
likelihood), g(a) = exp(a) (exponential tilting), and g(a) = 1 + a (continuously updating).

Under standard conditions, the solution for ¢, denoted by ¢, converges to a vector of zeros,
6, converges to 6*, and

th = Op(l/\/ﬁ),
0, = 0,(1/V'N).

The choice of g(a) does not matter for the standard large sample distribution, and
ta — fx, = 0p(1/VN),

and
Oy — Bope = 0,(1/VN).

Lemma 7. (EXPANSION FOR 0,)

0\ = w, + (ww'y; — 1wy — e} (ww’ — Zy )w

+W'T — 2w, 0, — pww + pw; + 0,(1/N).

Proof: See Appendix.

Note that the choice of A in the family of generalized empirical likelihood estimators does
not matter for the O(1/N?) term. This is special to our case. It relies on the fact that
the first and other moments are independent. In general with a scalar parameter one can
always renormalize the moments in such a way that only the derivative of the first moment
is correlated with the parameters of interest, and that in addition the other moments are
uncorrelated with the first one. This does not make the first and other moments independent,
however, and the equivalence result here depends on the cross moments of the type E[¢,13]

being equal to zero.
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Now define
i), Th =wy,
i1), Ry = —2v w0y,
i), Rg =, (ww'y; — 1),

v), R4:wv

vt ) pwb

(
(
(
(iv), Ry = —w' (ww' — Iy)ey,
(
(
(vii), Rg = —pw'w.

Lemma 8. (BIAS OF 6))
The expectation of the leading terms is

E[Tl + R1 + R2 + Rg + R4 + R5 + Rﬁ - 9*] = —p/N + Op(l/N)

Proof: See Appendix.

Lemma 9. (MEAN-SQUARED-ERROR OF 0))
The mean-squared-error of the leading terms is

E[(Ty + Ry + Ry + Rs + Ry + 75+ Rg — 07)?] = 1/N — 243, /N? + (1 + 2p°) /N?

+p*(M —1)/N? + 2(M —1)/N? + 0,(1/N?).

Proof: See Appendix.

The difference in mse between this estimator and the feasible gmm estimator 9gmm is
pA(M —1)(M — 2). For M =1 and M = 2 the two mse’s agree up to order O(1/N?), but
for higher degrees of over-identification the empirical likelihood estimator dominate in terms
of mse. Note that although the bias of the empirical likelihood estimators does not increase
with the degree of over-identification, the mse does.

3. EMPIRICAL DISCREPANCY THEORY

Having established that generalized empirical likelihood offers ‘asymptotic resistance’ to
the deterioration of estimation efficiency as moment conditions are added, we turn to ana-
lyzing differences between members of this class. To do this, it will be helpful to interpret
these estimators from the point of view of empirical discrepancy (ED, also sometimes called
minimum discrepancy) theory, as found in the statistics literature in Corcoran (1994,1998),
and Baggerly (1998). We modify and extend some of the previous notation in order to deal
with this more general context.
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A random variable z is i.i.d. according to F(-) and we have a sample z1, 29, ..., 2,. In
addition, for unknown 6 of dimension & there is a (known) function 1 (z, 6) such that E ¢(z, 0)
F

=0. ¥(z,0) is of dimension m > k. Empirical discrepancy theory considers choosing 6 and
probabilities py, ..., p, with support on the data such that

u 1
h(p;, —) is minimized subj. to E ,0) =0 and ;= 1
; ) subj. to p¢(z )=0and ) p

where h(-, -) is a measure of the discrepancy between two discrete measures, with the property
that h(2, L) = 0; there are also some technical conditions on h(-,-)’s partial derivative with
respect to its first argument.

Thus empirical discrepancy theory chooses 6 and a reweighting of the data so that the

moment conditions hold and a discrepancy measure is minimized.
n 1 n

(1) QO.p) = > hipis ) + a3~ 1)+ > pi(0)
i=1 =1

Consider the determination of p first:

2Q(0,p)  Oh

2 ———=—+a+t;0) =0
) 08 oo
Dimt {%M} = ap_pi +oa)pi + X pii(0)
oh
= a—p_pi + « + 0

Soa=—-> g—;pi ; substituting into (2):

0Q(6,p)  Oh Oh _
Ton o O =0

Note:
oh
Op;

= —t1),(0) is a solution

Note that t is an m—dimensional Lagrange multiplier of the original problem.
Remaining with the problem of constructing p for given 6, there are three common choices
for h(-,-):
o h(p;, %) = pi(pi — %), or effectively > h(p;, %) = > p?, in which case p; = k(1 + t1,(0))
and t = — (D" ¥,0)) (> 1,); this is often called Euclidean likelihood.

o 1(p;, %) = %{log(%) — logp;}, or effectively — > h(p;, %) = > logp;; pi = km; this
is Owen’s (1988) empirical likelihood (EL).
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o h(pi,2) = pi{log(L) — logpi}, or effectively — 3 h(pi, ) = 3 pilog pis pi = ket~ Vil0);
this is called ‘exponential tilting’ (ET).

Empirical likelihood and exponential tilting exchange the role of the empirical measure
and the measure p that is under construction: ET finds the p to which the empirical measure
is ‘KLIC—closest’, while EL finds the p that is KLIC-closest to the empirical measure. Thus
ET ‘imagines’ that the data generating process is p, (which obeys E(¢)) = 0) while EL
imagines the DGP as a repetition of the observed data, which does not obey the specificed
moment conditions. To us, this suggests ET should be superior to EL; but EL enjoys an
array of higher-order asymptotic properties, such as Bartlett correctability of its likelihood
ratio test (but only when there are no nuisance parameters), which indicate that it may
behave like parametric likelihood.

The preceding three cases are all members of the Cressie-Read family, with
1 Pi -
h iy ) — -1
(pis~) (1 /n)

1 1/(A+1)
p=k(
(rvem)

for A € [-2,1] so that A = —2 is Euclidean likelihood, A = —1 is ET and A = 0 is EL.

Turning now to the problem of estimating #, the minimum discrepancy estimate is ob-
tained by differentiating (1) with respect to 6 to obtain:

aer —ti a¢

a system of equations in k elements of . Thus the entire system of (m + k) equations can
be written simply as:

(3a) E1/1(9) =0 (m equations)
(3b) t- g&g—é) =0 (k equations)

One way to think of these equations is that, having fixed 6 and a formula for p (by choice
of h(-,-)), the first m equations determine ¢. Similarly, for a fixed ¢ and p, the remaining k
equations determine 6.

IThis schema cannot be used to define a simple iterative procedure to compute 6, for in fact the saddlepoint
nature of these equations makes the naive iterative procedure of (1) fix 0; (2) calculate ¢; (3) calculate new
0; unstable in a neighborhood of the solution 6, of 6, — 8(¢(0,)) = 0.
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The duality of GEL and ED is examined in two papers of Newey and Smith (2000,2001),
the latter of which will be presented in this conference. Writing the GEL estimator as:

Oopr = arg min sup - Yg(t-1,(0))
€0 teT

the GEL estimator’s estimating equations coincide with (3a) in cases where the derivative
of g(-), denoted ¢’, can be interpreted as being proportional to a probability. This can
be done for the three cases under consideration here, as well as for all members of the
Cressie-Read family. Newey and Smith (2000, 2001) show that for Euclidean likelihood, that
g(t,) = —th, — (t1);)?/2 and the resulting GEL estimator coincides with the continuously
updated GMM estimator of Hansen, Heaton and Yaron (1996). Consequently we will denote
the three estimators as 9CUE, 0 egr, and 0 EL-

4. A FURTHER CHARACTERIZATION OF ED/GEL ESTIMATORS

Rewriting the first equation of system (3a) as

(4) Zp(t ;(0));(0) =

we can express the probabilities associated with CUE, ET, and EL (after absorbing some
sign changes into k) as:

pilCUE] = keur(l+ty,(0))

plET] = kpp(efi0))
1
plEL] = k‘EL(TW)

Taking a Taylor series expansion of p;[ET| we can define a sequence of p functions:

pilET, 1] = kppa(1+t(0)) = p[CUE]
pilET,2] = kpra(l+t;(0) + ( ¢; ) )
PIETS) = hury(1 + 1 (0) + L2400 (O,

PilET, 00 = kproo(1+t1,(6) + (Wf))Q + (t%ég))g b))

kooel " ¥i(0) = p[ET]
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And similarly for p;[EL] we have

pilEL 1] = kepi(1+t,(0)) = plCUE]
Pi[EL, 2] = k‘EL,2(1 + wi(@) + (W’z(e))Q)
Pl EL3] = kprs(1+t,(0) + (14,(0))* + (14,(0))%)

PilEL, 0] = kpreo(l+ tf}i(g) + (t,(0))* + (t:(6))° + ...)

= k‘EL,oo(TW) = pi[EL]

Thus, all three p functions have the same first-order Taylor series expansion, coinciding
exactly with p[CUE]. Then p[ET|] and p[EL] include higher powers of (¢ - 1,), the former
having factorially declining weights or coefficients and the latter the coefficients {1,1,...1}.
Since t is an O,(n~/2) object, the difference in the treatment of #? terms induces differences
of Op(n™1) in Ocu B 0 eT, and 05, and consequently their MSE behavior differs at O,(n2).
(This will be true for all members of the Cressie-Read family.?)

To see the effect of these differences, let us consider the difference between the first two
elements of the sequence of ET functions for the equation setting the expectation of the j*
component of :

(5) Zp(t¢z(9))¢zg(9) =0

(6) Z k‘ET,l(l + t¢z(9))¢z] @) = 0
(7) Z kpra(1+t,(0) + (wZ'TW)% @ =0

Supressing the i subscript momentarily, the extra terms in (7) (relative to (6)) are of the

form:

5k (g + tothy + ot 2

so that sums of these involve (generalized) third moments of . Consequently, in problems
where generalized third moments are zero, notably those in which 1 is symmetric, these
terms will be converging rapidly to zero and thus have no effect even at O,(n=?).

2The Cressie-Read expansion is: p[CR] = 1+ (t-¢;)/(1+X) + (2+ N (t-¥;)?/20+ X2+ 2+ N3+
2M)(t-1;)3/6(1 + )3 + ...
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5. A DETAILED ANALYSIS OF SOME SIMPLE EXAMPLES

To examine further the relation between the choice of a GEL/ED and the higher order
moments of the underlying data, consider the estimation of the scalar parameter 6 from a
scalar random variable x where it is known that = has mean 6 and variance 26. Thus ¥ (z, 0)
is given by:

(8) x—0 =0

?—60-20 = 0
Writing the second moment condition in the way indicated (rather than (z — 0)% — 20 = 0)
does not change the numerical values of the resulting estimates of 8, but it does simplify %10‘9

N -1
90 | —20—2

Consequently, %102 does not depend on the data so F % does not depend on p. Using (3b)
p

to:

this means 6 can be determined from

9y
E— =
t p 00 0
_tl
= — -1
¢ 2ty

It is apparent that our three estimators will differ, in this special case, only in their choice of
t. For the CUE estimator, t = (¢/1)) "4, i.e. the coefficients of the regression of a column of
1’s on 9, and so 6 is determined by the fixed point of a function of five moment functions of :
the means of the two moment functions (expressed as functions of #) and the corresponding
three variances and covariances. CUE is thus committed to local (to 6) sufficiency of five
statistics, and will ignore, for example, differences in skew between elements of the sample
space. In cases where skew is zero, we can expect the difference between CUE and ET or
EL to be negligible, whereas for non-zero skew, we might expect ET and/or EL to prove
superior to CUE, but only at sample sizes at which O,(n™?) effects are operative.

To demonstrate these effects, we construct several data—generating processes which satisfy
the moment conditions in (8) but have different properties for their higher-order moments.
For each case we compute MSE and bias, and do this for CUE, ET, and EL. In addition,
for ET and EL we compute p according to successive terms in the relevant Taylor series
expansion, so that p;[EL, 1] = kpp1(1 + t¢;(0)) = p|CUE], p:|EL, 3] = kgrs(1 + t,(0) +

(t1,(0))% + (t1);(0))?), etc. In this way we can see whether the advantages, if any, of ET and

EL over CUE set in after taking into account only a relatively small number of additional
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higher moments, and similarly if differences between EL and ET require the full limiting
case of including some information about all higher-order moments.

Our first case takes z to be x?(1), so = has expectation 1 and variance 2. We consider MSE
first. In each of the tables to follow, we report the value of the MSE in 6,000 replications
for CUE, ET, and EL, together with the MSE’s of the estimators based on the Taylor series
expansion of degrees 3,5, and 7, and the simple mean. (CUE corresponds to a Taylor series
expansion of degree 1, ET and EL to degree co). For each entry we report a jackknife estimate
of the standard error.

In Table 1, case 1, based on x*(1) data and n = 50, we see for CUE the effect of adding
an additional moment is to produce an estimator that is worse than the sample mean; the
MSE’s of the estimators at Taylor degrees 3,5, and 7 are about the same as the sample mean;
and that ET and EL are better than their corresponding degree 7 estimators and also the
sample mean; both of these effects are greater for EL than ET.

In Table 1, case 1, n = 100, we now see that CUE has smaller MSE than the sample
average (.0185 vs. .020) while the third and successive powers showed marked improvemnt
over the CUE level: (.0158 or less); full EL shows the best MSE at .01474, slightly better
than E'T’s .01551; both have already reached the apparent asymptotic relative efficiency level
of .75 of the sample mean’s MSE.

At n = 200 the improvement in going from CUE to the degree 3 Taylor expansion is
still discernible; ET, EL, and all the Taylor expansions have MSE’s indistinguishable from
the apparent asymptotic efficiency ratio, with ET showing a slight advantage. At n = 400,
even CUE has reached the asymptotic relative efficiency limit and the performance of all the
two-moment estimators is indistinguishable: second—order effects have been extinguished.

Table 2, case 2 reports results for = distributed N(1,2). These are simple to summarize:
the asymptotic relative efficiency level is already reached at n = 50; there is no significant
difference in the performance of any of the estimators. At each sample size, there is a very
slight advantage in ET /EL over the previous estimators in the Taylor sequence: there seems
to be no disadvantage at these sample sizes in taking higher—order moments into account.

So far, these results are in agreement with our expectations: in situations where skewness
is present, estimators that can take this into account do better; where skewness is absent,
the performance of the estimators is indistinguishable.

Case 3 moves from normality to symmetry, by taking a symmetric mixture of normals
(.bN(0,1), .5N(2,1)) at sample sizes n = 25,50, 100. The results here mirror those of case
2: the apparent asymptotic relative efficiency level of about .45 of the MSE of the sample
mean is basically achieved by all the estimators at the smallest sample size.
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A final example, case 4, takes an asymmetric mixture of normals, (.25N(—1,2/3),.75N(5/3,2/3)).
Here the knowledge that the variance is twice the mean is very informatiove: MSE is reduced
to 25% of that of the simple mean. This is achieved at n = 50; there is some indication that
CUE is inferior to the other estimators; otherwise, they are indistinguishable.

In Table 2, we present biases for the same cases as considered in Table 1. Quite notably,
in no case does the bias make a substantial difference to the MSE. This could perhaps be
expected from the fact that the correlation between 1) and % is zero in this example, because
the latter does not depend on x. This suggests that all of the (sometimes erratic) effects seen
in Table 2 are O(n~2) or higher.

6. SUMMARY

Higher—order asymptotic arguments suggest that GEL/ED/‘one-step efficient’ estimates
of overidentified moment models will prove unambiguously superior to two—step GMM. Con-
sequently interest shifts to distinguishing between elements of this family on the basis of
estimation performance. With a simple argument and a simple example, it appears that
the simplest GEL variant, the continuously updated or Euclidean likelihood estimator, is
dominated by the more elaborate ET and EL estimators. The difference between these two
variants can be seen to lie in their treatment of third and higher-order moments of moment
conditions, with EL weighing these more heavily than ET.
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Table 1: MSE for Estimators of ¢ when E(x)=6=1 and
V(x)=26=2; 6,000 replications

case 1: x*(1) n=50

ET sequence
MSE

s.e.

EL sequence
MSE

S.e.

1=CUE
0.0477737
0.0010239
1=CUE
0.0477737
0.0010239

3
0.0412037
0.0009177

3
0.0417046

0.000948

case 1: x*(1) n=100

ET sequence
MSE

s.e.

EL sequence
MSE

S.e.

1=CUE
0.0185032
0.0003997
1=CUE
0.0185032
0.0003997

3
0.015828
0.0003327
3
0.0156564
0.0003385

case 1: x?(1) n=200

ET sequence
MSE

s.e.

EL sequence
MSE

S.e.

1=CUE
0.0079449
0.0001535
1=CUE
0.0079449
0.0001535

3
0.0074472
0.0001381

3
0.0074982
0.0001392

case 1: x*(1) n=400

ET sequence
MSE

s.e.

EL sequence
MSE

S.e.

1=CUE
0.003708
6.75e-05
1=CUE
0.003708
6.75e-05

3

6.72e-05
3

)
0.0399501
0.0008859

)
0.0408829
0.0009407

)
0.0155639
0.000321
)
0.0153857
0.0003316

)
0.0074264
0.0001374

)
0.0075231
0.0001396

5

6.72e-05
)

7
0.0395447
0.0008702

7
0.0406844
0.0009408

7
0.0155207
0.0003175

7
0.0153269
0.0003300

7
0.0074256
0.0001373

7
0.0075377
0.0001400

ET(Infinity)
0.0375955
0.0007401

EL(Infinity)

0.033915
0.0006789

ET(Infinity)
0.0155082
0.0003151

EL(Infinity)
0.0147410
0.0002938

ET(Infinity)
0.0074245
0.0001372

EL(Infinity)
0.0075811
0.0001405

7 ET(Infinity)
0.0036713 0.0036719 0.0036721

6.72e-05

0.0037128 0.0037281 0.003733
6.85¢-05 6.86e-05

6.82¢-05

Sample Mean
0.0401685
0.0007518

Sample Mean
0.0401685
0.0007518

Sample Mean
0.0200417
0.0003652

Sample Mean
0.0200417
0.0003652

Sample Mean
0.0101593
0.0001906

Sample Mean
0.0101593
0.0001906

Sample Mean

0.0036725 0.0050607
6.72e-05 9.09e-05
7 EL(Infinity) Sample Mean
0.0037455 0.0050607
6.88e-05 9.09e-05
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case 2: N(1,2) n=50

ET sequence
MSE
s.e.

EL sequence
MSE

S.e.

1=CUE
0.0208211
0.0003657
1=CUE
0.0208211
0.0003657

3
0.0207016
0.0003647

3
0.0206747

0.000365

case 2: N(1,2) n=100

ET sequence
MSE
s.e.

EL sequence
MSE

S.e.

1=CUE
0.0103036
0.0001887
1=CUE
0.0103036
0.0001887

3
0.0102563
0.0001881

3
0.0102351
0.0001877

case 2: N(1,2) n=200

ET sequence

1=CUE

MSE 0.0049441

S.e.

EL sequence
MSE

S.e.

8.74e-05
1=CUE
0.0049441
8.74e-05

3
0.0049305
8.73e-05

3
0.0049303
8.74e-05

case 2: N(1,2) n=400

ET sequence

1=CUE

3

MSE 0.0025947 0.0025918

S.e.

EL sequence

4.75e-05

1=CUE

4.75e-05
3

MSE 0.0025947 0.0025917

S.e.

4.75e-05

4.76e-05

)
0.0206913
0.0003647

)
0.0206713
0.0003664

)
0.0102546
0.0001881

)
0.0102265
0.0001876

)
0.0049297
8.72e-05

)
0.0049308
8.75e-05

)
0.0025918
4.75e-05

)
0.0025920
4.76e-05

7
0.0206884
0.0003647

7
0.0206562
0.0003668

7
0.0102543
0.0001881

7
0.0102245
0.0001876

7
0.0049297
8.72e-05

7
0.0049318
8.75e-05

7
0.0025918
4.75e-05

7
0.0025923
4.76e-05

ET(Infinity)
0.0206869
0.0003647

EL(Infinity)
0.0205861
0.0003669

ET(Infinity)
0.0102543
0.0001881

EL(Infinity)
0.0102176
0.0001877

ET(Infinity)
0.0049297
8.72e-05
EL(Infinity)
0.0049234
8.73e-05

ET(Infinity)
0.0025918
4.75e-05
EL(Infinity)
0.0025916
4.76e-05

Sample Mean
0.0397528
0.0007049

Sample Mean
0.0397528
0.0007049

Sample Mean
0.0199449
0.0003529

Sample Mean
0.0199449
0.0003529

Sample Mean
0.0098335
0.0001853

Sample Mean
0.0098335
0.0001853

Sample Mean
0.0051558
9.34e-05
Sample Mean
0.0051558
9.34e-05
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case 3: .5N(0,1)+.5N(2,1) n=25

1=CUE
0.0375929
0.0007475
1=CUE
0.0376024
0.0007504

ET sequence
MSE
s.e.

EL sequence
MSE
s.e.

3 )
0.0366819 0.0366552
0.0006434 0.0006431

3 )
0.0370686 0.0371873
0.0006974 0.0007338

case 3: .5N(0,1)+.5N(2,1) n=50

1=CUE
0.0175622
0.0003167
1=CUE
0.0175622
0.0003167

ET sequence
MSE
s.e.

EL sequence
MSE

S.e.

3 )
0.0174594 0.0174505
0.0003147 0.0003145

3 )
0.0174485 0.0174362
0.0003148 0.0003146

case 3: .5N(0,1)+.5N(2,1) n=100

ET sequence  1=CUE
MSE 0.0089522
0.0001613
EL sequence  1=CUE
MSE 0.0089522
0.0001613

S.e.

S.e.

3 )
0.0089106 0.0089075
0.0001609 0.0001609

3 )

0.008902 0.0088993
0.0001606 0.0001606

7
0.0366509
0.000643
7
0.0366086
0.0006494

7
0.0174491
0.0003144

7

0.017434
0.0003146

7
0.0089071
0.0001609

7
0.0088995
0.0001607

ET(Infinity)
0.0376198
0.0007462

EL(Infinity)
0.0373127
0.0007442

ET(Infinity)
0.0174489
0.0003144

EL(Infinity)

0.017364
0.0003128

ET(Infinity)
0.008907
0.0001609
EL(Infinity)
0.0088751
0.0001607

17

Sample Mean
0.0820290
0.0014929

Sample Mean
0.0820290
0.0014929

Sample Mean
0.0398252
0.0007314

Sample Mean
0.0398252
0.0007314

Sample Mean
0.0198064
0.0003546

Sample Mean
0.0198064
0.0003546
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case 4 Asymmetric normal mixture: n=50

1=CUE
0.0102061
0.0001833
1=CUE
0.0102061
0.0001833

ET sequence
MSE

s.e.

EL sequence
MSE

S.e.

case 4 Asymmetric normal mixture:

ET sequence  1=CUE
MSE 0.0050106

s.e.  9.07e-05

EL sequence  1=CUE
MSE 0.0050106

s.e.  9.07e-05

3 )
0.0100858  0.010078
0.0001814 0.0001813

3 )

0.0100745 0.0100638
0.0001811  0.000181

3 )
0.0049707 0.0049698
9.02e-05  9.02e-05

3 )
0.0049567 0.0049506
8.99e-05  8.99e-05

7 ET(Infinity) Sample Mean
0.0100775 0.0100774 0.0397681
0.0001813 0.0001813 0.0007181

7 EL(Infinity) Sample Mean
0.0100623 0.0100054 0.0397681

0.000181 0.0001805 0.0007181
n=100

7 ET(Infinity) Sample Mean
0.0049698 0.0049698 0.0198901

9.02e-05 9.02e-05 0.0003614
7 EL(Infinity) Sample Mean
0.004949 0.0049459 0.0198901
8.99e-05 9e-05 0.0003614
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Table 2: Bias for Estimators

6,000 replications
case 1: x*(1) n=50

ET sequence 1=CUE 3
Bias -0.0627946 -0.0382844
s.e.  0.0027030 0.0025737
EL sequence 1=CUE 3
Bias -0.0627946 -0.0281142
s.e.  0.002703 0.0026115

case 1: x*(1) n=100
ET sequence 1=CUE 3
Bias -0.0195812 -0.0033899
s.e. 0.0017379 0.0016237
EL sequence 1=CUE 3
Bias -0.0195812 0.0061319

s.e. 0.0017379 0.0016136

case 1: x*(1) n=200

1=CUE
-0.002773
0.0011503
1=CUE
-0.002773
0.0011503

ET sequence
Bias

s.e.

EL sequence
Bias

s.e.

case 1: x*(1) n=400

1=CUE
0.0016772
0.0007859
1=CUE
0.0016772
0.0007859

ET sequence
Bias

s.e.

EL sequence
Bias

s.e.

3
0.0048958
0.0011124

3
0.0101017
0.0011104

3
0.0044239
0.0007802

3
0.0065287
0.0007822

19

of 9 when E(x)=0=1 and V(x)=20=2;

5 7 ET(Infinity) Sample Mean
-0.0356822 -0.0352203  -0.0335646 -0.0020989
0.0025391  0.0025269 0.0024656 0.0025875
5 7 EL(Infinity) Sample Mean
-0.0202024 -0.0174114  -0.0016759 -0.0020989
0.0025975  0.0025945 0.0023776 0.0025875
5 7 ET(Infinity) Sample Mean
-0.0025044 -0.0025071  -0.0025731 0.0012786
0.0016104 0.0016082 0.0016075 0.0018277
5 7 EL(Infinity) Sample Mean
0.0114108 0.0132869 0.0166805 0.0012786
0.0015947 0.0015892 0.0015527 0.0018277

)
0.0050594
0.0011107

)
0.0118915
0.0011093

)
0.0043991
0.0007803

)
0.0069163
0.0007833

7 ET(Infinity) Sample Mean

0.0050137
0.0011107

7
0.0124566
0.0011093

0.0049701
0.0011106

EL(Infinity)

0.0125816
0.0011124

7 ET(Infinity)

0.0043744
0.0007803

7
0.0070145
0.0007836

0.0043640
0.0007804

EL(Infinity)

0.0066197
0.0007855

0.0018738
0.0013011
Sample Mean
0.0018738
0.0013011

Sample Mean
0.0011137
0.0009184

Sample Mean
0.0011137
0.0009184
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case 2: N(1,2) n=50

ET sequence
Bias

s.e.

EL sequence
Bias

S.e.

1=CUE
-0.015814
0.0018518
1=CUE
-0.015814
0.0018518

3

3

0.0018487

case 2: N(1,2) n=100

ET sequence
Bias

s.e.

EL sequence
Bias

S.e.

1=CUE
-0.0064192
0.0013079
1=CUE
-0.0064192
0.0013079

3
-0.0046947
0.0013061
3
-0.0042371
0.001305

case 2: N(1,2) n=200

ET sequence
Bias

s.e.

EL sequence
Bias

S.e.

1=CUE
-0.0035925
0.0009066
1=CUE
-0.0035925
0.0009066

3
-0.0025934
0.000906

3
-0.0021008
0.0009062

case 2: N(1,2) n=400

ET sequence
Bias

s.e.

EL sequence
Bias

s.e.

1=CUE
-0.0014226
0.0006574
1=CUE
-0.0014226
0.0006574

3
-0.0008502
0.0006572
3
-0.0004787

5

7 ET(Infinity)

Sample Mean

-0.0133767 -0.0131317 -0.0131018  -0.0130948 0.0005364
0.0018496 0.0018494 0.0018493 0.0018493 0.0025742
5 7 EL(Infinity) Sample Mean
-0.0131027 -0.0126967 -0.0124400  -0.0106091 0.0005364
0.001849 0.0018486 0.0018474 0.0025742

5 7 ET(Infinity) Sample Mean

-0.0045749 -0.0045645  -0.0045634 -0.0005053

0.0013061 0.0013061 0.0013061 0.0018234
5 7 EL(Infinity) Sample Mean
-0.0038316 -0.003693  -0.0027664 -0.0005053
0.0013047 0.0013046 0.0013046 0.0018234

5 7 ET(Infinity) Sample Mean

-0.0025558 -0.0025544  -0.0025544 7.35e-05

0.0009059  0.0009059 0.0009059 0.0012803

5 7 EL(Infinity) Sample Mean

-0.0018504 -0.0017735  -0.0014979 7.35e-05

0.0009063  0.0009064 0.0009057 0.0012803

5 7 ET(Infinity) Sample Mean

-0.0008379 -0.0008377  -0.0008377 0.0003372

0.0006572  0.0006572 0.0006572 0.0009271

5 7 EL(Infinity) Sample Mean

-0.0003439 -0.0003064  -0.0002362 0.0003372

0.0006573  0.0006573 0.0006573 0.0009271

0.0006573
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case 3: .5N(0,1)+.5N(2,1) n=25

ET sequence
Bias

s.e.

EL sequence
Bias

S.e.

1=CUE
-0.027177
0.0024786
1=CUE
-0.027181
0.0024789

3 )

3 )
-0.0245965 -0.0241462
0.0024654 0.0024702

case 3: .5N(0,1)+.5N(2,1) n=50

ET sequence
Bias

s.e.

EL sequence
Bias

S.e.

1=CUE
-0.0122021
0.0017037
1=CUE
-0.0122021
0.0017037

3 )
-0.0097789 -0.0095632
0.0017013 0.0017011
3 )
-0.0093893 -0.0088237
0.0017011  0.001701

case 3: .5N(0,1)+.5N(2,1) n=100

ET sequence
Bias

s.e.

EL sequence
Bias

S.e.

1=CUE
-0.0072486
0.001218
1=CUE
-0.0072486
0.001218

3 )
-0.0057475 -0.0056751

0.0012165 0.0012163
3 )
-0.0051148 -0.004709

0.0012164 0.0012165

7 ET(Infinity)
-0.023619 -0.0231924 -0.0231363
0.0024539 0.0024537  0.0024536

21

Sample Mean

-0.0223505 0.0016949

0.0024875 0.0036977

7 EL(Infinity) Sample Mean

-0.0232051  -0.0193877 0.0016949

0.0024521 0.0024814 0.0036977
7 ET(Infinity) Sample Mean
-0.0095442  -0.0095427 0.0023067
0.001701 0.001701 0.0025764

7 EL(Infinity) Sample Mean
-0.0086242 -0.006993 0.0023067
0.0017011 0.0016989 0.0025764
7 ET(Infinity) Sample Mean
-0.0056713 -0.005671 -0.0006089
0.0012163 0.0012163 0.001817
7 EL(Infinity) Sample Mean
-0.0045766  -0.0040612 -0.0006089
0.0012166 0.0012152 0.001817
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case 4 Asymmetric normal mixture: n=50

ET sequence 1=CUE
Bias -0.0106045

s.e. 0.0012971

EL sequence 1=CUE
Bias -0.0106045

s.e. 0.0012971

case 4 Asymmetric

ET sequence 1=CUE
Bias -0.0049305

s.e. 0.0009117

EL sequence 1=CUE
Bias -0.0049305

s.e. 0.0009117

3 )
-0.007696 -0.0074922
0.0012928  0.0012925

3 )
-0.0069114 -0.006191
0.0012928 0.0012927

normal mixture: n=100

3 )
-0.0032471 -0.0031752
0.0009093  0.0009093
3 )
-0.0024855 -0.0020272
0.0009084  0.0009081

7 ET(Infinity) Sample Mean
-0.0074792  -0.0074785 0.003173
0.0012925 0.0012925 0.0025744
7 EL(Infinity) Sample Mean
-0.0059425  -0.0044577 0.003173
0.0012928 0.0012902 0.0025744
7 ET(Infinity) Sample Mean
-0.003172  -0.0031718 3.25e-05
0.0009093 0.0009093 0.0018209
7 EL(Infinity) Sample Mean
-0.001878 -0.001382 3.25e-05
0.000908 0.0009078 0.0018209
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APPENDIX

Lemma 10. (EXPANSION OF MATRIX INVERSION)

Let A and B be M x M matrices, with A invertible and both A and B of order O,(1). Then
(i): (A+ B/VN)™ = A7 +0,(1),

(ii): (A+ B/VN)™ = A — A'BA'/\/N + 0,(1//N),

(#ii): (A+B/VN) ' =A1 —~A'BA'/y/N + A"\ BA"'BA~'/N + 0,(1/N),

Proof of Lemma 10

s B (4745 R (40 a0 R (s )

= (A7 = A7 BAT VN - (A4 BIVE) - (47— A7 BAT V)

= (A7~ AT BATVN) - (T+ BAT VN — AATBAT VN - BA‘lBA‘l/N))_l
= (A=A 'BA'/V/N)- (T — BA'BA™'/N))™*

— A" — A'BAY VN + 0,(1/VN).
For the next step consider the second factor in the last expression:

(Z-BA'BA7'/N))™!
— (Z+ BA'BA™'/N)- (T + BA'BA™'/N)"(T - BA"'BA'/N)!
= (T+ BA'BA™Y/N)- ((Z - BA"'BA™'/N)- (T + BA"'BA™'/N))™"
=(Z+BA'BA'/N)-(T-BA 'BA'BA'BAT'/N?*)!

= (Z+ BA'BA™'/N) +0,(1/N).

Hence:

(A+B/VN) ' = (A" —A'BA™'/V/N) - (T— BA'BA'/N))~!
— (A" — AT'BATYVN) - (z + BAT'BA"YN) + o(1 /N))

= A1~ AT'BAT'/V/N + AT BAT'BATY /N + 0,(1/N)).
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Proof of Lemma 1
Because by Lemma 10, 1/(1+9;) = 1 — 7, + 0,(1/v/N), we have
Oopt =1/ (1 +7T1) =1 (1 —T1) + 0,(1/N) =W, — @7, + 0,(1/N).
OJ
Proof of Lemma 2
We show the following two results, which then imply the main result:
(i), E[Th] = 0%,

(i4), E[Ra] = —p/N.
(7) This is immediate.
(

i1):

OJ

Proof of Lemma 3

We first show the following results.

(i): EIT? = 1/N,

(id): BTy - Ra] = —po/N?,

(iii): E[RZ] = (1 + 2p*)/N? + o(1/N?).

In the following, let 6,,, = 1 if m = n and zero otherwise.
(1):

N

E Zw;] —1/N.

i=1

(19):

1 N N N
ﬁ Z Z Z wuijm]

(iii):
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] N NN
m Z Z Z Z Vi1 W;1VE1 Wi
i=1 j=1 k=1 I=1

Because the (v, W) is independent of (vj,, w;,) if either i # j or m # n, we can ignore
all terms where one of the four indices ¢, j, k, and [, does not match up with at least one
of the others. Ignoring also the N terms with all four indices matching up because they are
of lower order, we only consider terms with (i = j,k =1,i # k), (i =1,j = k,1 # j) or
(t=Fk,j=1,1+#j), leading to

N N N
1
E[R?] = mE Z Z Vil Wil Vg1 W1 + Z Z Vi1Wj1V1Ws1 + Z Z VinW 1V Wy | + 0p(1/N2)

i=1 ki i=1 j#i i=1 j#i

1
- N2
Then, adding up the three components:

(P +p* +1) = (2p* + 1)/N°.

E[(T1 + Ry = 6")*)] = E[T{ + 211 Ry + Ri] = 1/N — 20115 /N* + (1 + 2p) IN? + 0,(1/N?).

0

Proof of Lemma 4:

First we proves the following set of preliminary results:
(i), w = O,(1/V'N),

(id), 0 1/ VN),

(143), 7w = O,(1/N),

(iv), (T +e)T = O,(1/VN),

(v), ww' = Ty + O,(1/V/N),

(iv), (ww')™ = Iy — (wa’ — Ir) + 0,(1/VN),
(vid), (T + e1) (ww') W = W, +0p(1/\/_)
(viii), ((T+ er) (ww') (T + 61)) = 1201 + (ww'y, — 1) + 0,(1/V/N).

(7) and (77) are obvious by a central limit theorem.

(#11): As the product of two factors that are both O,(1/v/N) this is O,(1/N).

(iv): (U+ €)W = W + w;. The first term is O,(1/N) and the second term is O,(1/v/N)
so that the sum is O,(1/v/N).

(v). The expectation opf ww’ is Zy;. Combined with a central limit theorem this proves the

result.

(vi): this is an application of Lemma 10

(vii). The first and second factor are O,(1), and the third one is O,(1/v/N). Hence the
leading term is ;7w = w;, and the remainder is O,/ (1\/N ).
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(vidd): by (vi), ww’ ' = Ta — (W’ — T) + 0,(1/v/N). Hence
@+ 1) (ww) '@+ e1) = (0 + &) (T — (wu — T))(ww') " (T + e1) + 0,(1/VN)

—el'el + Ve + €0 — €, (ww’ — Iar)er + 0,(1/VN)

= 1420, — (ww'yy — 1) + 0,(1/VN).

Nest we prove the main result. We write

~

Ogmm = (T + 1) - (W)™ @T+e1)) - (F+er) - (ww)™" )

9) — ((F+e) - @) @+e)” =1) - (F+e) - @u) " -m)
(10) +(@+en) - () @) = (7 (ww) W) = (¢ - (ww) W)
() + (e - (wu) ™ W) —w,

. (0 (ow) " T) - 7T

(13) W

(14) ;.

Next we consider each of these six terms in order. The first term is

((@E+e) @) @+e) —1) - (@+e) - (wo) " @)

By Lemma 2(vi) the second factor is O,(1/v/N), and by Lemma 2(vii) the first factor is
0,(1/v/N). Therefore the leading term of the product is O,(1/N). Since we are only
interested in the O,(1/N) terms, we can ignore all terms of order 0,(1/v/N) in the two

factors. For the first factor the leading O,(1/v/N) term is

—2’[11 + (’LU’LU’H — 1),

and for the second term the leading O,(1/v/N) term is ;. Hence the leading O,(1/N) term

of the product is
(15) —20,W; + (ww'y; — 1)w;.
The second term is identically equal to zero. The third term is
(¢ - (ww) W) —wy =€} - ((ww') ™" — Iy w.
Using result (vi) to approximate (ww’)~!, this can be written as

ey - (Tn — (ww' — Inr) — Ing) W+ 0,(1/N)
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(16) = —¢} (ww' — Trr )W + 0,(1/N).

The fourth term is

(17) @ (ww')™" W) —vw =7 ((ww) " = Zy)W = 0,(1/N),

because all three factors are O,(1/v/N). The fifth and sixth terms are O,(1/N), so adding
them to the sum of (15)-(17) gives the result. [

Proof of Lemma 5:

We show the following results:

(i), B[] =7,

(ii), B[R] = —2p/N,

(iii), B[R] = i/,

(i), B[Rs] = —pga/N.

(v), E[R4] = Mp/N,

which then by adding up imply the result in Lemma 5. In this we use the notation 6,,, for
the indicator function, 6,,, = 1 if m = n and zero otherwise.

(7): This is immediate.

(#7): This follows directly from Lemma 2, part (i7).

(iii):

] NN oM
= _F —QZZZ(wuwm 51n)wm]
i=1 j=1 n=1
TR
=_—F —QZZ(wilwzl 1)w]1]

N
1
=—F m Z(wilwil 1)1011] = —,u03/N
i=1
(1v):
1 N N M M
E[R3] = —Ele}(ww' — Iy 0] = —FE | Z Z Z Zelm(wlmwm 6mn)wm]
i=1 j=1 m=1n=1
= _F
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1

- _E =

Z Z(wilwil - 611)wj1]

i=1 j=1

m Z(wilwil - 1)wi1] = — o3

__gpld

(v):
E[R4) = E[v'w]
=F

L.

Proof of Lemma 6

We first show the following results.
i): E[T? =1/N,

i1): E[T) - Ry] = —2u,/N?,

i) E[T1 - Ra] = (p1os — 1)/N2>
w): E[Ty - R3] = —(pos — 1)/N?,
v): E[Ty- Ry] = f12/N?,

vi): B[R] =4- (20> +1)/N* + o(1/N?),
vii): B[R3] = (2,“33“‘#04—1)/]\72 o(1/N?),

viii): E[Ry - Ry] = =2 (2ppigz + 19)/N? 4 o(1/N?),

iz): B[R] = (2N03+N04+M—2)/N2 o(1/N?),
o(1/N?),

vi): IRy - Ry) = —(24 + pog — 1)/N? + o{1/N?),

xii): E[RY] = (M202+Mp + M)/N? + o(1/N?),

ziii): E[Ry - Ry] = —2- (Mp® + p* +1)/N? + o(1/N?),

riv): E[Ry- Ry| = (Mp,uoza + pligs + f12)/N? + o(1/N?),

av): B[Ry - Ry] = = (Mppigz + phios + iy
i): See Lemma 3, part (7).

i1): This follows directly from Lemma 3,

(
(
(
(
(
(
(
(
(1
(z): E[R1- R3] =2 (2ppg3 + p12) /N? +
(
(
(
(
(
(
(
(

2) /N? + o(1/N?).

part (ii).

/N.
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E[Ty - R3] = —E [ww' (ww’ — Iar)er] = —F

E[T} - Ry = E[w,v®) =

(vi): This follows directly from Lemma 3, part (7).
(vit):

1 N N N N
LSS Sk - 0w - ) wu]
i=1 j=1 k=1 I=1
1 N
=it DD wh =) wa - (why — 1) wp
i=1 k#i

29
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N
+ZZ(“’31 —1) - wj - (w]2'1 —1)-wy

i=1 j#i

+Z Z(wz?l — 1) wj - (wh — 1) - wji | +0,(1/N?)

i=1 j#i

1

N (W3 + 1o + g — 1)) /N? + 0, (1/N?)

1
= =5 (25 + poa — 1) /N? + 0,(1/N?).

(viii),

E[Rl : RQ] =F [—2ﬁ1m1(w11 — 1)@1} =—— . F

+0,(1/N?)

N
+ Z Z 'Uilel ('LUZ21 — 1)'[0]'1

i=1 j#i

2
=\ (prigs + Phos + p1z) + 0p(1/N?)

= —2(2ppigz + p12) /N? + 0, (1/N?).

ER} =E [(eg (v — IM)E)Q}

1 N N N N M M
= mE Z Z Z Z Z Z(wilwim — 61m)wjm(wk1wkn - 61n)wln
i=1 j=1 k=1 I=1 m=1n=1
1 N M M
= mE Z Z Z('lUil'lUim — 61m)wim(wk1wkn - 61n)wkn
i=1 k#i m=1n=1
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N M M
—+ Z Z Z(wilwzm 61m)w]m(w]1w]n 61n)wm
N M M
+ Z Z Z(wilwzm 61m)w]m(wz1wm 61n)wjn + Op(l/NQ)

N
1
—F Z Z(wilwil_)wil(wklwkl - 1)wk1

i=1 ki

N
+ Z Z(wilwil - 1)wj1(wj1wj1 — Dwa

i=1 j#i

N
+ Z Z(wilwil — Dwji(wawy — 1wj

i=1 ki

N
+ Z Z Z Wi Wign Wi Wit Wign Wi, | + 0p(1/N?)

i=1 ki m#£1

1

=~z (Mo + 15 + pog = 1+ M — 1) + 0,(1/N?).

1
=~ (2085 + pros + M = 2) + 0,(1/N?).

E[Rl . Rg] = E[(—2§1m2)(—61 (W — IM)E)]

=2 E [miwie) (ww — Iy )0

N N N M
E § § § § § 'Uzlel Wp1Wem — 6m1)wlm
i=1 j=1 k=1 [=1 m=1
N M
E E E Vi1Wi1 wklwkm - 6m1)wkm
i=1 k#im

N
—+ E E 'Uil'Ule(wjlem - 6m1)wzm



32 GUIDO W. IMBENS AND RICHARD H. SPADY

N M
+ Z Z Z Vit w1 (Wit Wim — B )Wjm | + 0p(1/N?)

i=1 j#i m=1

N
2
= N4E Z Z'Uilwil(wklwkl — Dwpy
i=1 ki

N
+ Z Z 'Uil'LUjl('LUjl'LUjl — 1)’[011

i=1 j#i

N
+ Z Z vpnwj (wipws — Dwsr | + 0,(1/N?)

i—1 jti
2 2
= m(ﬂﬂoz’) + ppioz + pag) + 0p(1/N7).

2
= m@pﬂo:’) + phyg) + Op(l/NQ)-

E[R; - R3] = —F [(ww'y; — 1)w €| (ww’ — Iy )]

N N N M
Z Z Z Z Z Dwji1 (Wit Wem — 61m)Wim

i=1 j=1 k=1 I=1 m=1

N M
Z Z wzl (wklwkm - 61m)wkm

N M
+ Z Z w]l(wjlw]m 61m)wzm
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+ Y (wh = Dwjn(wf — Dwjy | + 0,(1/N?)

i=1 j#i

1

= —m(uﬁs + g3 + oy — 1) + 0,(1/N?)

1
= _m@ﬂgza + pog — 1) + Op(l/NQ)

(i),

2323 3p o

N M M
§ § § § VimWim VknWkn

i=1 k#i m=1n=1

N M M
+§ § § 'Uimwjmvjnwm

=z

M

M

i=1 ki m=1n=1

N M

+ § § § 'Uimwjmvjmwim

i=1 j#i m=1

N M
+ § § § VimWjmUVimWjm

i=1 j#i m=1

+0p(1/N?)

1
= m(MQ,OQ + Mp? + M) + 0,(1/N?).
(i),
9 N N N N M
E[Ry - Ry = =2 E[v;w,v'w| = “NiC E Z Z Z Z Z Vi1 Wj1 Vg Wim
i=1 j=1 k=1 I=1 m=1
5 N M
= —mE Z Z Z Vi1 W;1 Uk Wkm
i=1 ksti m=1




34 GUIDO W. IMBENS AND RICHARD H. SPADY

N M
E E E Vi1Wj1VjmWim

i=1 j#i m=1

N M
E E E VilWj1VimWim

i=1 j#i m=1

N M
E E E Vi1 Wi1 Vg Wim

i=1 k#i m=1

N
E E Vi1W;1V51W5n

i=1 j#i

N
E E Vi1W;1V;1Wi51

i=1 j#i

+0p(1/N?)

2
=il

+0p(1/N?)

2
=~z (Mp* + " + 1) + 0, (1/N?).

(ziv),

1 N N N N M
mE Z Z Z Z Z(w?l — 1)wjlvkmwlm]
i=1 j=1 k=1 I=1 m=1
1 N M
= mE Z Z(w?l — D) w1 VgemWim
i=1 k#i m=1

=
g

=
g

- %E Z Z Z(wfl — D)Wit VkmWrm

=1 k#i m=1
N
+3 ) (wh - Dwpvjwy
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+0p(1/N?)

N
+3 ) (wh - Dwjvawy

i=1 j#i

1
= 3 (Mposp + prosp + th1z) + 0p(1/N?).

(zv),

E[Rs - Ry] = —El¢,(w — T JT0'T]

1 N N N N M M
— _mE Z Z Z Z Z Z(wilwim - 51m)wjmvknwln]
i=1 j=1 k=1 I=1 m=1n=1
1 N M M
= —mE Z Z Z(wzlwzm - 61m)wimvknwkn
i=1 k#i m=1n=1

i=1 keti m=1
1 N M
=B D000 (wawa — Dwivimwg,
i=1 ki n=1
N
+ Z Z(wilwil — Dwji1vj;wa
i=1 j£i

N
+ Z Z('lUil'lUil — 1)wj1Ui17~Uj1 + Op(l/NQ)
i=1 ki

M pigsp + progp + p12)-

— m (
Adding up all the terms leads to

E[(Ty + Ri + Ry + Ry + Ry — 0%)?]
= 1/N — 2y /N* 4 p*(M?* — 3M +4) +2M — 1 + 0,(1/N?)

= 1/N = 2p1;,/N* + (1 +2p*)/N?

35



36 GUIDO W. IMBENS AND RICHARD H. SPADY

(M = 1202 /N? 4 (M — 1)(2 = p?)/N? + 0,(1/N?).

O
Before proving Lemma 7, it is useful to consider the solution for ¢ given #. Define £(6)
implicitly through the first equation:

0= Z¢(Ui7 Wy, 9) : g(t(e),¢(vi7 Wy, 9))

Lemma 11. (EXPANSION FOR £(6))
If 0 = Oops + 0,(1/V/N), then

~

t(@) = —619 +w — Wl - ’LU’LU’(@ — 61@1)’[0’(@ - 61@1))\/2 + (W — IM)elﬁl

—(ww' — Iy )W — 2pW3e; + 200, + 0,(1/N).

Proof of Lemma 11:
Use a Taylor series expansion around zero for g(a), g(a) = g(0) + ¢'(0)a + ¢"(a)a?/2 =
t(6) as

1+a+g"(a)a?/2, to write the equation characterizing

0= Z ¢(Ui7 Wi, 9) ' (1 + t(@),’(/J(’UZ', Wi, 9) + g”(a) (t(@),f(/J(’Ui, Wi, 9)) /2) )

for some a between zero and t(0)'y(v;, w;,#). Hence

5(9) = - (% Z¢(Ui7wi79)¢(vi>wi>9),>

X (Z (v, wy, 0) + (v, w;i, 0)g" (a) (E(0) ¥ (vg, wy, 9))2 /2) )

i=1
The second step is to show that
(18)

% ;’(/J(’Ui, Wi, 9)9"((1) (t(@),’(/J(’UZ-, Wi, 9))2 /2 = ’LU'LU'(E - 61@1)10'(@ — elﬁl))\/2 + 0;0(1/]\7)7

To see this, first note that because 8 = @; 4 0,(1/v'N), we have £(§) = W — e @, +0,(1/VN).
Hence
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"N Z¢(vi, wi, 0°) (£(0) " (vi, wi, 07))* + 0,(1/N)

— % w; (H(0)w;)” + 0p(1/N)

= ww'(W — eywy)w' (W — e;w;) + 0,(1/N).

Since t = 0,(1), a = 0,(1), and ¢"(a) = A+ 0,(1), so that the result in equation (18) follows.
The third step is to show that, with 6 = W, + 0,(1/V/N), we have

-1

N
(19) % Z¢(Ui7 Wy, 9)¢(U17 Wy, 9), = IM + ('UJ'UJ, - IM) + 2p@11M + 010(1/ v N)
=1

To see this, first write out

N

1 -

N E W(vs, wi, O)ah(v;, wi, 0) = ww' — 2000 — 26,00 + 62 (v + e1) (v + e
i—1

= T + (W — Tag) — 2000 + 0,(1/V'N)
= Ty + (ww’ — Tpy) — 20pL0@1 + 0,(1/VN).
Hence, using Lemma 10,
N -1
1 , — _
N Z¢(vi,wi, 0)(vi, wy, 0) ] =Ty — (ww' —ZIy) + 2pTyws + op(l/\/]v),
i=1

which proves the equality in equation (19).
Then, using the fact that (v, w,0) = (v + ;)0 — W, we can approximate the expression for
t(9) as

~

£0) = — (Tar — @W — Tyy) + 2pTasDy) ((w Vel — T+ ww (@ — e )w (W — e@lwz)

= —W+e)l+w — ww (W — ew)w (W — eywr)\/2 + (ww’ — Ty )e Wy

—(ww' — Ty)W — 2pw3e; + 2pw1W + 0,(1/N).

= —e10 + W — WU — ww' (W — e1w1)w' (W — e3w1)A/2 + (ww' — Tpr)eiw;
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—(ww' — Ty)W — 2pw5e; + 2pw1W + 0,(1/N).

O
Proof of Lemma 7
The solution for 0, is characterized by the equation

We can write this as

0= ([_619 + W — W T — ww' (W — e 01w (W — e;w1)A/2 + (ww' — Iy)erwr — (ww’ — Iy )W

—2pwse; + 2pﬁlﬁ} + 5(9) - [619 + W — WU — ww (W — eyw )w (W — eywy )N\ /2

- - /
+(ww’ — Ty )e w; — (ww' — Ip))W — 2pwie; + 2,0E1ED

Hence,

X ([@ — W0 — ww (W — e;Wy)w' (W — ey w1)A/2 + (ww' — Ly )e w; — (ww' — Ty )w

—2pwse; + 2pﬁlﬁ} + £(0) — [619 + W — WU — ww (W — ey )w' (W — eywy )A/2

- - !
+(ww’ — Iy e w; — (ww' — Ip)w — 2pwie; + 2,0E1ED
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To see this, write out ¥ (v;, w;, 9) = (v; + €1)0 — w; to get

— Z vi+er) - g(E(0) (00 + 16 — w;))
= % Z(Ui +er) - (1+0) (00 + 16 — w;)) + 0,(1/V'N)

N
1
=1+ 7= > 0w+ 0,(1/VN) = e +7 — g0 + pert + 0,(1/VN),
i=1
which proves the equality in equation (20). A direct implication is that

1) (é%E?E@M%m4wwwwM%mQ = 1-T1 +0,(1/VN).

Second, we show that

(E(e) — [619 +W — W10 — ww' (W — ey )w (W — e W) \/2

- - !
+(ww’ — Iy e w; — (ww' — Iy)w — 2pwie; + 2,0E1ED

—~
&
&
>
~—
Q
—~
>

(0) ¢ (vi, wi, 0)) = 0p(1/N).

i=1
This follows from Lemma 7, which implies that the first factor is 0,(1/N), combined with
the fact that the left hand side of equation (20) is O,(1). Third, we show that

- - !
(E — W0 — ww (W — eyW1)w' (W — e;w)A/2 + (ww' — Ty)e w, — (ww' — Iy )W — 2pwe; + 2,0@1E)

s o
ZKWW-MWme>

=W — 10 — eyww’ (W — e1W1)w' (W — e1Wi)A/2 + i (ww' — Ty )erwy — €y (ww' — i)W — 2p0

+20W; + WY — pww + pw; + 0,(1/N).

=W; — W01 — eyww (W — eW)w' (W — e1w1)\/2 + € (ww' — Ly )eyw, — € (ww' — Iy )w
1 1 1

+WT — pwW'W + pw; + 0,(1/N).
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Now note that although ww'(w — e;w;)w' (W — e;w;) = O,(1/N), fww' (W — eyw;)w' (W —
eqws) = 0,(1/N), because the subtraction of e;w; from w makes (w — e;w) independent of
e;w. This relies on the full independence assumption we are using in the sequence of the

moments. Because of this the term ejww/(w — e;w; )w' (W — e;w;) is of lower order, and the
above expression reduces to

Wy — W10 + ey (ww' — Ty )e W, — ey (ww' — Ly )w

+WT — pwW'W + pw; + 0,(1/N).
Finally bringing all the terms together, we get

0, =w, + el (ww' — Iy )eyw; — e (ww' — Iy )w

+W'T — pw'W — 2w vy + pw; + 0,(1/N).

O

Proof of Lemma 8:
We first prove

(i), B[] =0,

(i1), E[Rs) =~/ N,
(iii) E[Rs] = p/N,
(iv) E[R4] = pM/N,
('U)7 E[ ] :_pM/N
(vi), B[R] = —p/N,
(vi), B[R] = pios /.

(vii), B[Rs] = 0,(1/N).

The result then follows from adding up the expectations.
(7): This is immediate.

(73): See proof of Lemma 5, part (iv).

(vi1):

E[R;) = pE[w?) =

1 L& 1
mzzwilwﬂ] meE

i=1 j=1

(iv): See proof of Lemma 5, part (v).

(v):

E[Rs] = —pE[w'w] = —pE

1 N N M 1
Z Z Z wzmw]m] = _me

i=1 j=1 m=1

(vi): See proof of Lemma 5, part (i7).
(vii): See proof of Lemma 5, part (iii).
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(viid): First consider

E [ejwwTw D] A/2 =

N N N
§ § § / / /

[y

N N N M M
E E E E E Wi1 Wiy, W jmn Win Wikn,

&
I
—
<
Il
—
>
I
—
Il
—
3

+ 0,(1/N)

N M M
E E E E Wil Wiy W jm Win W jn,

N N

E E W;1 Wil Wj1Wi1Wij1

i=1 j=1

= ot

The same argument shows that
B [ejwwrermnar) A2 = )/ (2N) + 0,(1/N),
and
E [efww'e;wiw'e;Wh | A2 = pgsA/(2N) + 0,(1/N),
which after adding the terms up gives the desired result that
E[R7] = 0,(1/N).

O
Proof of Lemma 9:
We first prove

iz), E[R3 - Rs] = _3PN03/N2 + Op(l/N2)>

z), E[Rs - Ra] = —(Mppos + phios + fh19) /N? + Op(l/N2)>
z1), E[Rs - Re] = ppos(M +2)/N? + 0,(1/N?),

zii), B[Ry - Ri] = 2(2ppgs + fh1o/N? + Op(l/N2)>

xiii) B[Ry - Ry] = —(2ugs + fos — 1)/N? + 0,(1/N?),
ziv), E[RE] = 3p?/N? + 0,(1/N?),

+0p(1/N) = g3/ (2N) + 0,(1/N).

41
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(e0), B[Ry~ a] = p(M +2)/N? 1 0,(1/N?),

(vvi), E[Ry - Be) = —p(M +2)/N? 1 0,(1/N?),
(zvid), E[Rs - R1] = —6p?/N? + 0,(1/N?),

(zviii), E[Rs - Ra] = 3ppigs/N? + 0,(1/N?),

(viz), BLRZ] = (M202 + Mp? + M)/N? + 0,(1/N?),
(e2), B[R - Ro] = —p*(M? + 2)/N? 1 0,(1/N?),
(e, B[R+ Ra] = ~2(Mp? + 2 1 1)/N? + 0,(1/N?),
(zwii), E[Ry - Rp] = (MPNO?) + phios + p2) /N? + 0,(1/N?),
(zxidii), E[RE] = p*(M? + 2)/N? + 0,(1/N?),

(zziv), E[Rg - Rl] = p*(2M + 4)/N? + 0,(1/N?),
(), Bl - ) — —ppos(M +2)/N° 4 0y (L/?)
(zavi), B[R] = 4(2p* + 1)/N? + 0,(1/N?),

(zzvit), B[Ry - Ro] = —2(2ppo3 + p12) /N? + 0,(1/N?),
(caviti), B{R2) = (242 + oy — 1)/N? + 0,(1/N?).

(1): See Lemma 3, part (7).
(#4): This follows directly from Lemma 6, part (iv).

(i)
E[T: - Rs] = E[pw;] = p%E [Z > szlwﬂwkll = phtgs/N?.

i=1 j=1 k=1

(iv): This follows directly from Lemma 6, part (v).

(v):
| [N N N oM
B[T\ - Re| = E[—p0,0'0] = —p7 [Z >IN wuwjmwkm]
=1 j=1 k=1 m=1
1 N N
B [Z 2> wnwﬂwm] = —phgs/N*
i=1 j=1 k=1
(vi): This follows directly from Lemma 6, part (i7).
(vii): This follows directly from Lemma 6, part (iii).
(viig): This follows directly from Lemma 6, part (ix).
(ix):
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UN N M

i=1 k=1 m=1

N

M
E E E wilel(wjlem_6m1)wim

i=1 j=1 m=1

1
= —Pm(ﬂoza + Loz + tos) = —3ppigs/N? + 0,(1/N?).

(x): This follows directly from Lemma 6, part (zv).
(xi):
E[Rs3 - Rs] = E[pw'we, (ww' — Ty )W)

1 N N N N M M
=pyiE SI YD wimwjm(wiwrn — Sn)win
i=1 j=1 k=1 =1 m=1 n=1
1 N N M M
=pyiE DYDY winwim (Wi wi, — 801 )win
i=1 k=1 m=1n=1

N N M M
F20 20 D0 D wimtm (Wi — B

i=1 j=1 m=1n=1

N N M M
+ Z Z Z Z WimWjm (wilwin - 6n1)wjn

= p(Mpigs + poz + po3) /[N + 0(1/N?) = ppugy(M + 2) /N? + 0,(1/N?).

+0,(1/N?)

(xi7): This follows directly from Lemma 6, part (z).
(xiti): This follows directly from Lemma 6, part (xi).
(ziv):

3333w

&
Il
—
<
I
—
£
Il
—
o~
—
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N N
—I—E E Wi W;i1W451W41

i=1 j=1

N N
+E E Wy W Wi Wiy

i=1 j=1

+ o(1/N?)

= 3p°/N? + o(1/N?).

(zv)
1 N N N N M
E[Ry - Rs) = E[pwiw'D] = mE Z Z Z Z Z Wi Wj1 Wrm Vim
i=1 j=1 k=1 I=1 m=1
1 N N
me[ + Z Z Wi1 Wi1 Weem Vkm
i=1 k=1
N N
+ Z Z Wi1Wi1WimUim
i=1 j=1
N N
+ Z Z Wil Wj1WimVjm + 0(1/N2)
i=1 j=1
— p(Mp + p+ p)/N? + o(1/N?) = p2(M +2)/N? + o(1/N?).
(zvi):
1 N N N N M
E[Rs - Rg] = E[—puwiw'D] = —me Z Z Z Z Z Wit W51 Whm Vim
i=1 j=1 k=1 =1 m=1
1 N M
= —me Z Z Z Wi1 Wil Wiem Vkm,
i=1 k=1 m=1

= —p((Mp+p+p)/N* +0o(1/N?) = —p*(M +2) /N + o(1/N?).
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(zvii):

N N N
E E E E Wi Wj1WE1V11

E E wzlwzlwklvkl‘l' Wy W51 W1 Vi1
i=1 k=1 i=1 j=1

o(1/N?)

N N
+E E Wi Wi W;1Vj1

i=1 j=1

= —2p(p+p+p)/N* +0(1/N?) = —6p*/N* + o(1/N?).
(zviii):

E[Rl . R5] =F [p@?@l (Wu — 1 FE

— 'ON4

i=1 j=1 k=1 [=1

N N
= pN4 Z Z Wi1Wi1 Wkl wkl ) + Z Z ’LUZ'1’LUj1'LUj1(’LUZ-21 — 1)
j=1

i=1 k=1 i=1 j=

o(1/N?)

N N
+ Z Z ’LUil'LUjl’LUil (’LU]21 — 1)

i=1 j=1

= p(N03 + oz + Nos)/N2 + 0(1/N2) = 3/0#03/N2 + 0(1/N2)-

(xiz): This follows directly from Lemma 6, part (zii).
(zx):

E[R4 . RG] =F [—p@'W'ﬁ]

Z i i i i i Wimn W jm WinVin

i=1 j=1 k=1 =1 m=1n=1

+
WE
] =
NE
NE
g
3
&
3
&
3
=
3

N N N N
ZZZZwﬂwﬂwkl (wh — 1)
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N N M M

+ Z Z Z Z Wi Wjm WinVjn + 0(1/N?)

i=1 j=1 m=1n=1

= —p(M?p+p+p)/N*>+0(1/N?) = —p*(M? +2)/N?| + o(1/N?).

(zxi): This follows directly from Lemma 6, part (xiii).
(xxii): This follows directly from Lemma 6, part (ziv).

19093 3) 9) oy

i=1 j=1 k=1 =1 m=1n=1

= p*(M? +1+1)/N? +0(1/N?) = p*(M?* +2)/N?| + o(1/N?).

(xxxiv):

E[RlRG] = E[2p@'mﬁl]

1 N N N M
= me B Z Z Z Z Z wuwjlvkmwlm]
i=1 j=1 k=1 I=1 m=1
1 N M
= 2me Zl o Z_lwuwilvkmwkm

N M
+ g E W;i1 W31 VjmWim

i=1 j#i m=1
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+0p(1/N?)

N M
—I—E E E W;1 W31 Vim Wim

i=1 j#i m=1

= P2(2M +4)/N? + 0,(1/N?),

(zv):

Z Z Z Z Z Wiy Wi Wi (Wi — 1)

m=
M
Z Wi W jm W31 (w121 - 1)

N M
+ Z Z Z Wi W jm Wi1 (7~U12'1 - 1) + Op(l/NQ)
i—1 j—1 m=1
= —p(M pro3 + pos + tos) /N? + 0o(1/N?) = —ppgs(M + 2)/N? + o(1/N?).

(xzwvi): This follows directly from Lemma 6, part (vi).
(xzwvii): This follows directly from Lemma 6, part (viii).
(xzwviii): This follows directly from Lemma 6, part (vii).
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