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ABSTRACT

The quality of the asymptotic normal approximation to the distributions of instrumental
variables estimators in the linear IV regression model depends on the extent to which the
instruments are relevant. If the instruments are weak, so that the system is nearly
unidentified for a given sample size, then the sampling distribution can be quite different
from its Gaussian limit. This raises a practical problem: under what circumstances can an
applied researcher be confident that identification is “good enough,” that is, that the
instruments are not weak? This problem has been addressed previously (informally)
when there is a single endogenous regressor. This paper considers the problem of two or
more included endogenous regressors. The paper has two specific contributions. First,
we characterize sets of weak instruments in terms of specific population measures on
guality of inference based on two stage least squares; these sets in turn depend on
eigenvalues of the concentration matrix. Second, we provide a statistical procedure to
test for whether the instruments at hand are weak, where the probability of a false
negative (concluding that instruments are not weak, when in fact they are) is controlled
asymptotically.

*Prepared for the Festschrift in honor of Thomas Rothenberg. This research was
supported by NSF grant SBR-9730489.



1. Introduction

Textbook treatments of instrumental variables regression stress that for
instruments to be valid they must be exogenous. In practice, however, it is equally
important that the second condition for a valid instrument, instrument relevance, also
holds, for if the instruments are only marginally relevant, or “weak,” then the
conventional first order asymptotic limits can provide poor approximations to the
sampling distributions of standard instrumental variables regression statistics.

At a formal level, the strength of the instruments matters because the natural
measure of this strength — the so-called concentration parameter — plays a role formally
akin to the sample size in IV regression statistics. In his survey of approximations to the
distributions of estimators and test statistics, Rothenberg (1984) makes this point to
illustrate that asymptotic expansions need not always be performed in orders of the

number of observations. He considered the single equation IV regression model,

y=YB+U, (1.1)

wherey is aTx1 vector of observations on the dependent varidbie theTx1 included
endogenous variables, abds Tx1 a vector of i.i.dN(0,oy,) errors (his notation is

different). The reduced form equation 0rs,

Y=zM+V, (1.2)



whereZ is aTxK; matrix of exogenous instrumental variableds K;x1 coefficient
vector, and/ is a vector of i.i.dN(0,a,,) errors, where com, ;) = p.
The two stage least squares (TSLS) estimat@isf3™" = (Y'Py)/ (Y'P2Y),

whereP; = Z(Z2’2)*2’, which Rothenberg (1984) expresses as,

RTSLS _ 3y — X +(s/p)
cH(p A 1+ (2Y 1u)+ Sip?)’

(1.3)
where? = [TZ'ZM1 Gy, ¢ = Gpl Ouu, X = IMZ°VI(0ul1Z'ZM)*2, Y =
[1Z’VI(0TZ'ZIMY?, s = V'P,U/(0uu0w) Y, andS = V'P,V/g,..

Under the assumptions of fixed instruments and normal eXasdY are
standard normal variables with correlatigrands andS are elements of a matrix with a
central Wishart distribution; in particular the distributionXp¥, s, andSdo not depend
on the sample size. Thus the sample size enters the distribution of the TSLS estimator
only through the concentration parametér Moreover, the form of (1.3) makes it clear
that 1 can be thought of as an effective sample size, in sense fiianally plays the
role usually associated WItliT in (1.3). Rothenberg (1984) proceeds to describe
(among other things) expansions of the distribution of the TSLS estimator in orgers of
and he emphasizes that the quality of these approximations can be pogr iwisemall.

For this reason, an important practical concern is whetiheso small — that is,
whether the instruments are sufficiently weak — that inferences based on conventional

TSLS estimates and their standard errors are potentially unreliable:isBah unknown



population parameter; how is a researcher to know in practice whether his or her
instruments are sufficiently weak to jeopardize the validity of conventional TSLS
inferences?

In this paper, we develop a procedure for detecting whether instruments are weak.
The matter of whether a set of instruments is weak cannot be resolved in the abstract,
rather it depends on the inferential task to which the instruments are applied. We
therefore offer two concrete definitions of a weak instrument, both based on the
performance of the most common IV method, TSLS. The first is that an instrument is
weak if the bias of the TSLS estimator, relative to the bias of OLS, could exceed a certain
thresholdb, for example 10%. The second is that an instrument is weak if the size of the
Wald test based on the TSLS estimator exceeds the level of the test by, éogap
example 10%.

In this light, we do two things. First, we provide an asymptotic characterization
of these two sets of weak instruments in terms of the minimum eigenvalue of the matrix
version of/K,. Next, we provide a test of the hypothesis that the instruments are weak —
that is, they fall in the set of weak instruments — against the alternative that they are not.
The test we propose is a simple one: compute the minimum eigenvalue of the matrix
version of thd=-statistic in the first stage of TSLS and compare it to a critical value,
tabulated below. If the minimum eigenvalue is less than the critical value, conclude that
the instruments are weak; otherwise, conclude they are not.

Both the characterization of the set of weak instruments and the distribution
theory for the test under the weak instrument null require asymptotic approximations to

various |V statistic distributions. This requires approximating distributions that are



highly accurate even when the concentration parameter is quite small, so small that the
approximations discussed in Rothenberg (1984) are poor. We therefore work within the
asymptotic framework developed by Staiger and Stock (1997), in which is held constant
as the number of observations increases. This allows stochastic objektah@¥ in
the representation (1.3) to have limiting normal distributions even if the errors are not
exactly normal and the instruments are stochastic, so that (1.3); it also provides
substantial simplifications in the expressions for the Wald statistic.

The tabulated boundaries of the weak instrument sets and the associated critical
values for the test behave quite differently for moderate to large valkgs Wie

investigate these differences by performing Nagar-type asymptotic expansions of the
TSLS estimator and its Wald statistic in orders QfJ under the assumptions that the

information per instrumenty/Ky, is fixed andK,/T - 0. This is similar in spirit to
Bekker’s (1994) approach; he obtained a first order distribution under the sefgence
— 00, T—> 00, Ko/T - ¢, 0<c<1, andu/T is fixed. In Bekkers’ (1994) expansion, the
TSLS estimator is approximately normally distributed, although it is biased. Although
Bekker’'s expansion might be a reasonable approximation when there are very many
instruments, the assumption tkafT — ¢ > 0 raises questions about its suitability cases
in which K5 is moderate and the sample size is large, for exaidple,15 andl = 1000.

The rest of the paper is organized as follows. The IV regression model and the
proposed test statistic are presented in Section 2. The set of weak instruments is
characterized in Section 3. Section 4 presents the limiting asymptotic distribution of the

test on the boundary of the (composite) null hypothesis, and argues that the test is



asymptotically unbiased. Section 5 examines the power of the test, and the asymptotic

expansions are presented in Section 6. Section 7 concludes.

2. The IV Regression Model and Proposed Test Statistic

2.1. The IV Regression Model
The Population Regression ModelThe general instrumental variables
regression model extends (1.1) and (1.2) to mawneluded endogenous regressors and

K1 included exogenous regressors:

y=YB+Xy+U, (2.1)

Y=ZM+X®+V, (2.2)

whereY is now aTxn matrix of included endogenous variabl&ds aTxK;
matrix of included exogenous variables (one column of which is 1’s if the regressions

include an intercept), ardlis aTxK, matrix of excluded exogenous variables to be used

as instruments; it is assumed throughout iat n. LetZ = [Z X] denote the matrix of

all the exogenous variables. The conformable ve@arsdy and the matriceH and @

are unknown parameters. Throughout this paper, we shall focus on inferencg.about
Let X; = (x1t x@t)’, Z; = (zlt qzt)’, andZ; = (Z X{)’ denote the

vectors of the™ observations on these variables. AlsdJetndS denote the population

second moment matrices,
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The essential idea of weak instruments is zhigtonly weakly related t¥, given
X. Following Staiger and Stock (1997), weak instrument asymptotics are developed by

modeling/T as local to zero:

Assumption lg: M =T = C/\T , whereC is a fixedK xn matrix.

Also following Staiger and Stock (1997), we make the following assumption on

the moments:

Assumption M The following limits hold jointly:
p
@ (T'UU, TVU, TVV) = (uw S S);
p
(b) T?Z'Z - Q, whereQ has blocks denotegx, etc.;

©) (TYX'U, TYZ’U, TYX'V, TYZ'V) = (¥, ¥ou v, ¥v), Where¥=

[ Y, ¥ou', vec(Wy)', vec(Wzy)] is distributed\(0,2®Q).

Assumption M can hold for time series or cross-sectional data. Part (c) assumes

that the errors are homoskedastic.



The TSLS Estimator and Wald Statistid/Ve focus on estimation @fby two
stage least squares. Let the supersctiplénote the residuals from the projectionXgn
that is,Y* = MxY, y" = Mxy, and so forth, whemlx = | —X(X’X)™X". In this notation,

the OLS estimator g8is B = (Y~Y4)}(YYy). The TSLS estimator is,

B\TSLS — (Y_L/ PZL YJ_)-l(Y_L/ PZL y) (24)

The Wald statistic testing thglinear restrictions thaRf =rg is,

(RBATSLS_ r)n[ R(YJ_I F)ZL YJ_)—l R]— ( m@ TSLS__ D
qé‘TSLS

where g3 = U™ U™5/(T-K;—n), whereU ™5 =y*= — Y+ 875, We shall focus on

the case =n.
2.2. The Proposed Test Statistic

The proposed test is based on the eigenvalue of the matrix versiorfFef the

statistic from the first stage regression of TSLS,

Gr= S5 YY P, Y207 IK, (2.6)

where 2, = (YMzY)/(T-K1—K>).2



The test statistic is the minimum eigenvalu&ef

Omin = MinevalGry). (2.7)

3. Characterization of the Set of Weak Instruments

3.1. Weak Instrument First Order Asymptotic Representations

We start by summarizing relevant weak instrument asymptotic results from
Staiger and Stock (1997).

Notation and definitions The following notation in effect is a transformation of

variables and parameters that simplifies the asymptotic expressions. Let

o= 55,0
6 =3,%,=0, 2P
A=Q"C57Y2 and

Q=Qzz - QzxQxy Qxz-

Note thato’p< 1. Define th&k;x1 andK,xn random variables,

Zy = QY2 (¥, — Qux Qik W) ot

2y = QY7 (Woy — Qzx Qi Fv) Zy'”



So that

Oz O - - I pO
N(,2 01, ), whereX = L
Hectz, “ s JN
Also let
vi=A+2) (A+z), and (3.2)
v=A+2z) 2. (3.2)

Weak Instrument Asymptotic Representationt this notation, the probability

limit of the OLS estimator is

B - B+0. (3.3)

The TSLS estimator an@r have the following limits (Staiger and Stock (1997),

theorem 1):

BT = 0y 23, (3.4)

Gr=> V1/K2 (3 . 5)

and, wherg = n and the null hypothesis=ry is true,



V2 'Vl_]vz
=
nl-2p v, v, +v, v;¥v,)

=W, (3.6)

where ‘=" denotes weak convergence. That is, (3.4) says that, under Assumptions L
and M, asT — oo, the distribution ofBTSLS converges to the distribution of

1/2 -1/2,,-
o2 Pv .

3.2. First Characterization of the Set of Weak Instruments: TSLS Bias

Our first characterizations of the set of weak instruments is based on the
maximum bias of TSLS relative to OLS. The expectation of the weak instrument
asymptotic representation of the TSLS estimator exists only if the degree of

overidentificationK, —n > 2, so this is assumed whenever discussing bias of TSLS.

We consider the relative bias measiBfewhich is the ratio of the bias of TSLS to

the bias of OLS, where the coefficient vector has been put into standardized units by

rotating by =2 3

vyt

(EBTSLES_ ﬁ) 'ZYLYL (Eﬁ: TSLS_ ﬁ) |
(EEIB _-Ig)'z:ylyd (EEIB —-[3)

B = (3.7)

If n=1, then the scaling matrix in (3.7) drops out and the expression simplifies to

Br=EB™°-BIEB -B

10



Under weak instrument asymptotig8’>*® has the limit in (3.4), and the bias

measure has the asymptotic limit,

g2 » PR g2 (3.8)
p'p

whereh =E[v;* (A + 2/)'2].

The asymptotic bias measuB&depends op andA, which are unknown, as well
asK; andn.

Our approach is to consider instruments to be strong if they lead to reliable
inferences for all possible degrees of simultangitytherwise they are weak. Applied to
the relative bias measure and assurmipg> 0, this leads us to consider the worst-case

asymptotic bias,
B™ = (ma¥: pp>0B)"? (3.9)

This first characterization of the set of weak instruments is based on this worst-
case bias. We define the set of weak instruments, based on relative bias, to consist of
those instruments that have the potential of leading to asymptotic relative bias greater

than some valub. In population, the strength of an instrument is determined by the

parameters of the reduced form equation (2.2). Accordingly {/1, 2, Q}. The

relative bias definition of a weak instrument is,

11



Whias = { Z: B"™> b} (3.10)

The asymptotic results make it possible to characterize th&ggtBecauséd

depends o but notp, by (3.8) we have that

Bmax

p h hp )1/2

= (max——F [maxevaltrh)]*? (3.11)

where maxeval) denotes the maximum eigenvalue of the mairixBy applying the
singular value decomposition to lamba, it is further possible to show that the maximum

eigenvalue of’h, and thu8™®, depends only oK, n, and the eigenvalues AfA/Ko.

In Section 6, we provide an asymptotic expansion for the TSLS estimator and its

Wald statistic when the number of instrumegtsncreases slowly with the sample size
and in whichA’A/K; is fixed, sOA’A/K; = A, a fixed matrix. Proposition 2 in that section
states that the leading term in the associated expansiBi¥Gs nonincreasing in each

of the eigenvalues a. It follows that, to the first order of approximation in that

expansion, the s&t,as can be characterized by the minimum eigenvalugXK for a

givenn andK,. That is B™ = B™*{(mineval@’A/Ky);K2,n), where this function is
increasing in its argument and therefore invertible. This in turn implies that

B™*{mineval@d’A/K,);K2,n) < b is equivalent to mineval(A/Ky) < 7 piad b;K>,n), where

12



! biasis the inverse function &"* with respect to its first argument. That)ighiasin

(3.10) can be written as,

Whias = {Z: mineval@’A/Ky) < £ piad b;K2,n)}. (3.12)

Our formal justification for the simplification thawi,s depends only on the

smallest eigenvalue &fA/K,, rather than on all its eigenvalues, rests on the expansion in
Section 6. Numerical analysis fo= 2 suggests, however, tit**is decreasing in all

the eigenvalues of A/K; for all values oK,. This numerical analysis suggests that the
simplification in (3.12), looking only at the minimum eigenvalue, is valid fokalinder

the weak instrument asymptotics, even though we currently cannot provide a formal

justification?

3.3. Second Characterization of the Set of Weak Instruments: TSLS Wald Test Size

The second characterization of the set of weak instruments is based on the
maximal size of the TSLS-based Wald test of all the elemerfis dhroughout we focus
only on the possibility that the Wald test rejects too often under the null, which is in fact
the case with weak instruments.

In parallel with the approach for the bias measure, we consider an instrument
strong from the perspective of the Wald statistic if the size of the test is close to its level
for all possible configurations of the 1V regression model. The actual rejectidrrrate

under the null hypothesis is,

13



RT = PrI_V\ILr > Xr?;a /nl r= ro], (313)

where X.f;a is thea-level critical value of the chi-squared distribution witdegrees of

freedom andr is the nominal level of the test.
Under the weak instrument asymptotics the distributionohas the limiting

representation (3.6) under the null hypothesis. Thus,

Rr— Priw* > x2 /n] =R, (3.14)

Inspection of (3.6) reveals thRtdepends op andA, as well ak,, n, anda.
Following our treatment of the bias, becapss unknown we consider the worst-case

size,

V, ViV,

R = ma, R = max, P
TR M 20, v, vivy)

> Xnal- (3.15)

It is not necessary to exclugéo = 0 in the maximization in (3.15) because there is no
singularity ato’p = 0.

The set of weak instrumenid/si;e, based on the size of the Wald statistic,

consists of instruments that can lead to a size of atrleast

14



Wiize={Z: R"™>r} (3.16)

For example, itr = .05 then a researcher might consider it acceptable if the worst case
size isr = .10.

The maximal bias measuRE'™ depends on the eigenvaluesit¥/K, as well as
andK; (the argument is the same as for the similar assertid!"fox. Thus, under the

weak instrument asymptotics, the weak instrumeni\égt is fully characterized bp

and the eigenvalues AfA/Ko.
In the expansion oiV* in Section 6, the leading term is nonincreasing in the

eigenvalues ol’A/K; (Proposition 3). This implies that we can characterizg. in

terms of the minimum eigenvalue AA/K,, as well a¥k; andn. The argument leading

to (3.12) therefore applies here and leads to the characterization,

Wsize= {Z: mineval@’A/Ky) < 7 sid 1;Ko,n,0) }. (3.17)

where / i, 1;K2,n,0) is the inverse function d¥"*{mineval@d’A/Ky); K,,n,a) with
respect to its first argument.

As is the case forVyias the justification for the simplification (3.17) in which

Wiize depends on only the smallest eigenvalud’ K, formally is based on the

15



expansion in Section 6 for weak instruments and mod&gatélowever, numerical

analysis of the = 2 case suggests that this property holds for dtaak well.

3.4. Numerical Results

The worst case bias and the maximal size distortion were computed by Monte
Carlo simulation for a grid of minimal eigenvalueXdA/K; from 0 to 50, foK, =n +
2,...,100 for the relative bias, and #¢s = n,..., 100 for the size distortions. All results
are based on 20,000 Monte Carlo draws. Computing the maximum bias entails first
computingh defined following (3.8) by Monte Carlo simulation, giverK,, and the
minimum eigenvalue; as discussed above, for these computationsAM&kset 71,
where ¢ is the minimum eigenvalue. The maximum relative bias is then
[maxevalp’h)]*2. Computing the maximum size distortion is more involved because
there is no simple analytic solution to the maximum problem (3.15). Numerical analysis
indicates thaR is maximized whep'p = 1, so the maximization for= 2 was done by
transforming to polar coordinates and performing a grid search over the half unit circle
(half because of symmetry in the expressionfty. As in the relative bias
computations and as discussed above, in these computationshdkset /|, where
¢ is the minimum eigenvalue.

The relative bias is plotted for=1 as a function dk, andA’A/K in Figure 1, and
the maximal relative bias is plotted o= 2 as a function df,; and the minimum
eigenvalue ofA’A/K; in Figure 2 (whem = 1, the relative biaB does not depend gmn so
B™=B).> Evidently, forK, sufficiently large, the maximal relative bias depends only

weakly onK,. The maximal relative bias seems to decline as approximately the inverse

16



of the minimum eigenvalue. Also, the contoursrfer 1 in Figure 1 and = 2 in Figure
2 are quite similar.

The worst case siz&" is plotted in Figure 3 fan =1 and in Figure 4 fon = 2
for a Wald test of level 5%. In contrast to the plots of the worst case bias, the worst case
size strongly depends && over the full range considered. The worst case size
approaches 5% much more rapidly as a function of the minimum eigenvalue foKgmall
than wherK; is large. Also, the surfaces o= 1 andn = 2 are qualitatively similar but
guantitatively different; curiously, given a valuekafand the minimum eigenvalue, the
size distortion when = 1 is worse than wham= 2.

These surfaces can be used to compute boundaries of the weak instrument regions

Whias@NdWsize Where the boundaries are determined by the minimum eigenvalue of

A'AIK,, as well as by andK,. These boundaries are plotted in Figure 5: the relative bias

region boundary is plotted in the top two panels for selected values of the relative bias
cutoff b, and the size region boundary is plotted in the bottom two panels for selected

values of the size cutoff

First consider the boundary B¥,i,s These are essentially flatha for K,

sufficiently large; moreover, the boundariesticr 1 andn = 2 are numerically very
similar, even for smaK,. The boundary of the relative bias regionber .1 (10% bias)

asymptotes to approximately 8 for botk 1 andn = 2.

In contrast, the boundary ®¥s;,e depends strongly df, andn. The boundary is

approximately linear i, for K, sufficiently large, for all the size distortion cutoffs

considered. Note also that the cutoffs are numerically quite large when the degree of

17



overidentification is large. For example, if one is willing to tolerate a maximal size of
15%, so the size distortion is 10% for the 5% level test, then with 20 instruments the
minimum eigenvalue boundary is approximately 251ferl and approximately 20 for
n= 2.

We return to some of these features of the weak instrument region boundary

functions when in the discussion of the asymptotic expansion in Section 6.

4. Asymptotic Distribution of the Test Statistic

This section provides the weak instrument asymptotic representation of the test
statisticgmin and a bound on its distribution. This bound provides conservative critical
values for the test based gn.

Distribution of gnin. Recall that the statist@ni, is the minimum eigenvalue of
Gr, whereGr is given by (2.6). Under weak instrument asymptoke&r is
asymptotically distributed as a noncentral Wishart with dimensidegrees of freedom

Ky, identity covariance matrix, and noncentrality maix:

Gr = G* ~ Wi(Ka, In, AA)/Ko. (4.1)

The joint pdf for then eigenvalues of a noncentral Wishart is known in the sense

that there is an infinite series expansion for the pdf in terms of zonal polynomials
(Muirhead [1978]). This joint pdf depends on all the eigenvalud$Aofs well as and

K. In principal the pdf for the minimum eigenvalue can be determined from this joint

18



pdf for all the eigenvalues. It appears that this pdf (the “exact asymptotic” ggf,)of
depends on all the eigenvaluesAok.

This exact asymptotic distribution gk, is not very useful for applications both
because of the computational difficulties it poses and because of its dependence on all the

eigenvalues oA’A. This latter consideration is especially important because in practice

these eigenvalues are unknown nuisance parameters, so any critical values based on these
eigenvalues would produce an infeasible test.

We circumvent these two problems by performing the test using conservative
critical values. These conservative critical values are based on a noncentral chi-squared

bounding distribution, given in the following proposition.

Propositionl. LetW be distributed WK, 1, A). Then Pr[minevalyy) = x] <
Pr[ x/ (mineval@)) = x], where x?(a) denotes a noncentral chi-squared random

variable with noncentrality parameter

Proof. Leta be the eigenvector & corresponding to its minimum eigenvalue.

Thena’Wa is distributedx? (mineval@)) (Muirhead [1982, Theorem 10.3.6]). But

oa’'Wa = minevalV), and the result follows.

Applying the proposition, (4.1), and the continuous mapping theorem, we have

that

19



E)(iz(minevala A)IK, )2 XEL

Pr[gmin = X] - Pr[minevalG*) =x] < Pr <
2

(4.2)

Conservative critical values for the test basedgnare obtained by the

following procedure. First, select the desired minimal eigenvaldAf,. Next, obtain

the desired percentile, say the 95% point, of the noncentral chi-squared distribution with
noncentrality parameter equal to this selected minimum eigenvalue, and divide this
percentile byKo.

Weak instruments tesiThis yields the following testing procedure to detect for
weak instruments. To be concrete, this is stated for a test based on the bias measure. The

null hypothesis is that the instruments are weak, and the alternative is that they are not:

Ho: Z € WhiasV. H1: Z & Whias (4.3)

The test procedure is,

RejectHo if Omin 2 Xz, 5 (£ biad BK2)), (4.4)

Wherexizya (¢) is the 10@% critical value (100(13)% percentile) of the noncentral chi-

squared distribution witK, degrees of freedom and noncentrality parameter

20



The critical value chosen by the researcher depends on the attitude of the
researcher towards the maximal bias. If the researcher is satisfied if the maximal relative
bias is no more than 10%, then she wouldset10.

The results of Section 3 and the bound in Proposition 1 imply that,

asymptotically, the test (4.4) has the desired asymptotic level:

|imT_>oo Pr[gmm = Xizﬁ(g b|ai b,KZ,n)) |Z S Wb|ag S 5. (4.5)

The procedure for testing whether the instruments are weak from the perspective
of the size of the Wald statistic is the same, except that the critical value in (4.4) is
obtained using the size-based boundary eigenvalue functighr;K,,n,a)

Critical Values Given a minimum eigenvalué, conservative critical values for

the test are percentiles of the noncentral chi-squared distribwﬁgg(f). The

minimum eigenvalu€ is obtained from the boundary eigenvalue functions, numerical
values of which were reported in Section 3.4.

Critical values for the relative bias version of the test are tabulated in Tables 1, 2,
and 3 fom =1, 2 and 3, respectively, for variokisand relative bias tolerancks
Critical values for the size version of the test are reported in Tables 4 and 5.

The critical values reflect the features of the boundary eigenvalue functions
discussed in Section 3.4. For example, the critical values for the relative bias at first
increase then, for moderafg, essentially do not depend Kga In contrast, the critical

values for the size version increase approximately linearlyKyith
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The critical values are plotted in Figure 6. These critical value plots are
gualitatively similar to the boundary eigenvalue plots in Figure 5, except of course the
critical values exceed the boundary eigenvalues to take into account the sampling
distribution of the test statistic.

Comparison to the Staiger-Stogk997)rule of thumh Staiger and Stock (1997)
suggested the rule of thumb that, in thre 1 case, instruments be deemed “weak” if the
first stageF is less than ten. They motivated this suggestion based on the relative bias of
TSLS. Because the 5% critical value for the relative bias weak instrument telst=with
.1 is approximately 11 for all values i§$, the Staiger-Stock rule of thumb can be viewed
as 5% test that the worst case relative bias is approximately 10% or less. This provides a
formal, and not unreasonable, testing interpretation of the Staiger-Stock rule of thumb.

The Staiger-Stock rule of thumb fares less well from the perspective of size
distortion. When the number of instruments is one or two, the Staiger-Stock rule of
thumb corresponds to a 5% level test that the maximum size is no more than 15% (the
maximum TSLS size distortion is no more than 10%). However, when the number of
instruments is moderate or large, the critical value is much larger and this rule of thumb

does not provide substantial assurance that the size distortion is controlled.

5. Asymptotic Properties of the Test as a Decision Rule

This section discusses the asymptotic properties of the weak instruments test as a

function of the smallest eigenvalue 8A/K,. This entails providing and studying the

asymptotic rejection rate of the test as a function of the smallest eigenvaldékof
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When this eigenvalue exceeds the cutoff population eigenvalseb;K,,n) for a given
b, this asymptotic rejection rate is the asymptotic power function.

The asymptotic distribution @i, depends on all the eigenvalueAt¥/Ko. Itis

bounded above by (4.2). We conjecture that this distribution is bounded below by the
distribution of the minimum eigenvalue of a random matrix with the noncentral Wishart

distribution Wi(K», 1, mineval@’A)1,)/K».6 We will use these two bounding distributions
to bound the distribution @min as a function of mineval(A/Ky).

The resulting bounds on the asymptotic rejection rate of the test (4.4) (based on
relative bias) are plotted in Figures 7 bor .10 anch = 2. The value of the horizontal
axis (the minimum eigenvalue) at which the upper rejection rate curve equals 5% is
lpiad-10K2,2). Evidently, as the minimum eigenvalue increases, the rejection rate
increases. For lardge, this increase is rapid, and the test effectively has unit power
against values of the minimum eigenvalue not much larger than one. The bounding
distributions give a reasonably tight range for the actual power function, which depends

on all the eigenvalues dfA/Ks.

The analogous bounds for the test based on the size of the Wald statistic are
plotted in Figure 8. The curves have a similar shape, but they are centered at much larger
values of the minimal eigenvalue for the reasons discussed in Sections 4 and 5.
Otherwise, the qualitative conclusions for the bias-based test apply to the size-based test.

Interpretation as a decision ruleThe test in (4.4) can, of course, be interpreted
as a decision rule: @min is less than the critical value, conclude that the instruments are

weak; if it exceeds the critical value, conclude that they are strong.
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Under this interpretation, the asymptotic rejection rates plotted in Figures 7 and 8
bound the asymptotic probability of deciding that the instruments are strong. Evidently,
for small values of mineval(A/Ky), the probability of correctly concluding that the
instruments are weak is effectively one. Thus, if in fact one is confronted by instruments
that are quite weak, then the probability of not recognizing this using the testing
procedure (4.4) is vanishingly small. Similarly, if one has instruments for which the
minimum eigenvalue of’A/K; is substantially above the threshold for the weak
instruments set, then the probability of correctly concluding that they are strong also is
effectively one.

The range of ambiguity of the decision procedure is given by the values of the
minimum eigenvalue for which the asymptotic rejection rates effectively fall between
zero and one. Whdf, is small, this range is fairly large. Hgs large, this range of
potential ambiguity of the decision rule is quite small.

From a practical perspective, it matters whether the researcher is concerned about
bias or size. Concern about relative bias leads to much smaller weak instrument sets than

concern about size distortions.

6. Asymptotic Expansion for Many Weak Instruments

This section reports the results of, and conclusions based on, Nagar-type
asymptotic expansions of the TSLS estima8o?-® and its Wald statisti&V. These
expansions have two purposes. First, they provides a formal justification for the

characterizations of the sét,i.s and)Wsize Solely in terms of the minimum eigenvalue of
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A’ AIKy; this is summarized in Propositions 2 and 3 below. Second, they explain the
peculiar feature, noted in Section 4, that the boundary of the weak instrument region

Whias IS €ssentially constant fé; is sufficiently large (sayK, —n > 10), whereas the
boundary of the regioWs;,e is essentially linear iK for K, sufficiently large.

The expansion here holds the noncentrality madfi¥K,, constant. We lef; —
o andT — oo but, in contrast to Bekker (1994K,/T — 0. The expansion is carried out
only to ordemy(1/,/K, ), insufficient to calculate an Edgeworth approximation but

sufficient to address the matters of the previous paragraph.
The expansion is performed for the IV regression model (1.1) and (1.2) with no
included exogenous variables, fixédand i.i.d. Gaussian errors, except that we allow for

nincluded endogenous variables. Let

A = @zZmy AT ) 55,
2, = @ZTyYAZVINT ) 257,

ZJ — (Z/Z/T)-l/Z(Z/U/ﬁ)U—1/2

uu 1

V,=(X +2,)(A +2) and

é\ll

V,=(A +2)2,.

These definitions parallel the corresponding definitions, eftc. in the weak instrument
asymptotic representation in Section 3, except that these are defined in the original

sample space.
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With these definitions, we have the exact relations,

BTSLS :B"' 03/2 Z\;\yzﬁlﬂ ‘72’ (6.1)

u

W = v, V1 v, /(nsy), (6.2)

where the expression f¥v holds under the null hypothesis and

sr= (WUM/ow—2[2,"A + @ Z,32(VVIT) Z55% + o, 2(UVIT) Z5021v, v,

+V, V(A )T+ (A 2)IT + (2, AT+ Z;12(VVIT) Z2%7 vitv,.

We make the following assumption:

Assumption E K, — o0, T— o, Ko/T — 0, andA’ A /K, = A is fixed.

Assumption E replaces assumptiai LUnder this assumptiofi] is implicitly
modeled aglr = \/K,/T C, that is, as being in dK,/T neighborhood of zero. This

captures the notion that the instruments are weak while permitting an analysis of the

statistics of interest for the case that the number of instruments is moderate, relative to the

sample size.

Under Assumption E, the assumption of homoskedastic Gaussian errors, and the

p
assumption that’Z/T - Qzz, we find that,
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p 1

5 e — Z+3'+7%

V,/IKo=A+1,+ +0 , and 6.3
1/1\2 (—KZ p( (—KZ) ( )
ey o Lt LP+ %+ 1

V,/IKo =10+ +0 6.4
2/ N2 1Y ,—KZ p( ,—KZ) ( )

wherez, z,, Z,, andz, are independent and veg) ~ N(O,I,®A), vec(Z,) ~ N(O,H),

z, ~ N(O, (1-@p)A), andz, ~ N(O, (10'p)I ), and

I

I
FHEHLETN
O r r O
o e o

O R L O

Bias. Applying these results to the relative bias formula yields the leading term,

g2= PA+1)"p '(Apfl'))_zp ; op(%)_ (6.5)

This allows us to characterize the weak instrument\$gt to the order of

approximation in (6.5).
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Proposition2. For anyp such thap’p > 0, the leading term in the expansion
(6.5) for the relative biaB? is nonincreasing in each eigenvalue'ofMoreover,

up to this leading term in the expansiBi® = [ mineval(\) + 1]™.

Proof. For anyp, the leading term in (6.5) can be WrittenZsaf(/\i +1)7,

wherel; is thei™ eigenvalue of\, a,..., a, do not depend on the eigenvalueg\aind

Zaﬁ =1. The result follows.

Size The Wald statistic has the expansion,

7,/ K) W,/ K) "W, K )

- (7 -l 72 Vi -2 ) (6-6)
n[1—2p (V1/K2) (V2/K2)+ (V2/K2) (V1/K2) gle 2)]

+ 0p(

WK,

1
JK,

wherev, andv, denote the terms up to ordé,g(l/\/Kj) in (6.3) and (6.4), respectively.

The leading term in this expansion is,

_ pPA+1)"p 1
e e e el T o0

This allows us to characterize the weak instrumeniégt to the order of

approximation in (6.7):
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Proposition3. For anyp, the leading term in the expansion YK in (6.7) is
nonincreasing in each eigenvalue/of Moreover, this leading term is maximized

whenp'p = 1.

Proof. Write (A +1)* = JHJ’, whereH is the diagonal matrix with diagonal
elements 1/(1%), where); is thei™ eigenvector ofA andJ is the matrix of the associated

eigenvectors of\. Then the leading term in (6.7) can be writter,a’Ha/{n[a’(I —H)%a
+ (1-&’a)]}, wherea = Hp. Differentiatingh with respect ta\; shows thadbh/oA; < 0,j =
1,...,n, proving the first statement. Becawéa< 1,0h/d aj2 >0,j =1,...,n, for anya, h

can be increased by increasagroportionately, or equivalently by increasing

proportionately untip’p = 1. It follows thah is maximized whep'p = 1.

The leading terms in the expansions (6.5) and (6.7) explain the curious feature

that the boundary ofVyiasis constant for largE, while it essentially increases linearly in

K for Wsize First consider the expression (6.5)B3r The leading term is constant for a

givenp andA, and by Proposition B™ depends only on the minimum eigenvalue\pf
up to the order of this leading term. Butand thu8™®, does not depend d.
Similarly, the minimum eigenvalue oAl does not depend an Thus, forK; sufficiently

large,B™* depends only on the minimum eigenvalué\phot onK or n.
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Next turn to the expression (6.7) M#K,. Calculations reveal that this leading

term, maximized ovep, depends on although it does not depend i Becausé&Vis
divided byK; in this expression, (6.7) alternatively implies that cK; + Oy(4/K, ),
wherec depends op, the eigenvalues af, andn. This explains the effectively linear

increase in the boundary ols;c and its dependence on

7. Conclusions

The procedure proposed here is simple to implement: it entails comparing the
minimum eigenvalue of the first stagestatistic matrix — the multivariate generalization
of the first stagé--statistic — to a critical value. The critical value is determined by the
number of instruments,, the number of included endogenous regressasd the
researcher’s willingness to tolerate relative bias or size distortions. The test statistic is
the same whether one focuses on size or relative bias; all that differs is the critical value.

Viewed as a test, the procedure has good power (especially so when the number
of instruments is large). Viewed as a decision rule, the procedure discriminates between
weak and strong instruments quite effectively, with the region of ambiguity decreasing
with the number of instruments.

When there is a single included endogenous variable, this procedure provides a
refinement and improvement to Staiger and Stock’s (1997) suggested rule of thumb that,
in then = 1 case, instruments be deemed “weak” if the first dtagdess than ten. The
difference between that rule of thumb and the procedure of this paper is that, instead of

comparing the first stageto ten, it should be compared to the appropriate entry in Table
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1 (bias) or 4 (size). Those critical values indicate that their rule of thumb can be
interpreted as a 5% test of the hypothesis that the maximum relative bias is
(approximately) 10%. However, their rule of thumb does not ensure that TSLS-based
Wald statistics will have good size.

The results in this paper have two loose ends. First, the characterization of the set
of weak instruments is based on the premise that the maximum relative bias and

maximum size distortion are nonincreasing in each eigenvaldid/éf,. This was

justified for moderat&, using the expansion in Section 6 and numerical analysis

suggests it is true for afl,, but this remains to be proven. Second, the lower bound of

the power function in Section 6 is based on the similar assumption that the cdf of the
minimum eigenvalue of a noncentral Wishart random variable is nondecreasing in each
of the eigenvalues of its noncentrality matrix. This too appears to be true based on
numerical analysis but we do not have a proof nor does this result seem to be available in
the literature.

Beyond this, several avenues of research remain open. First, the testing procedure
described here focuses on TSLS. One extension of this research would be to consider
other estimators and other Wald statistics, particularly the LIML Wald statistic. LIML
and its Wald statistic have better-behaved weak instrument sampling distributions that
TSLS and its Wald statistic, so LIML-based inference might produce tighter boundaries
of the weak instrument region.

Second, the analysis here is predicated upon homoskedasticity, and it remains to
extend these tests to GMM estimation of the linear 1V regression model under

heteroskedasticity.
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Third, the asymptotic expansion in Section 6 could be extended in several ways.
The expansion was for the classical fixed instrument/normal error model. Relaxing this

assumption, as Rothenberg (1983) did forfihiexed case, would complicate the
expressions only somewhat to ordgfl/,/K, ) and would generalize the result

considerably. It also remains to explore the quality of the resulting distributional

approximations to the finite sample distribution of the TSLS estimator.
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Endnotes

! Cragg and Donald (1993) propose a test of the null hypothesis that the coefficients of
interest are underidentified, against the alternative that they are identified. Our purpose is
quite different: just because the parameters are identified does not mean that an applied
researcher can reliably use use the conventional first order asymptotic approximations to
the limiting distributions of TSLS statistics.

2The definition ofGt in (2.6) isGy in Staiger and Stock (1997, eq. (3.4)), dividedKby

to put it inF-statistic form.

*Note thatZYlYi = Zyv under Assumption d.

*The assumption th&"*{ ¢ ;K,n) is nonincreasing irf, needed to invert the function,

has the effect of potentially including in (3.12) some instruments that are not weak.
Because the maximal bias depends on all the eigenvalues, the maximal bias when all the
eigenvalues are equal to some valyamight be greater than the maximal bias when one

eigenvalue is slightly less thaiy but the others are very large. For this reason the set

Whias IS potentially conservative. This comment applies to the size-based set developed

in Section 3.3 as well.

®Figure 1 previously appeared in Staiger and Stock (1997) and is included here for
completeness.

®We have not located a formal statement of this in the literature but numerical

investigations suggest that it is true.
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Table 1: Critical values of minEval G/ K> at the 5% significance level (n = 1)
Relative bias

Ky | 0.05 0.10 0.20 0.30 Relative bias
311394 9.11 649 541

Ky | 0.05 0.10 0.20 0.30
4116.87 10.29 6.72 5.35

41 1 21.36 11.19 5.96 4.16
51839 10.84 6.78 5.25

421 21.35 11.18 5.95 4.15
6(19.28 11.13 6.77 5.16

43 121.34 11.17 594 4.14
71986 1130 6.735.07 44 121.34 11.16 5.93 4.13
812025 1140 6.69 4.99

451 21.33 11.15 5.92 4.13
46 | 21.33 11.14 591 4.12
47 121.32 11.14 590 4.11
48 1 21.31 11.13 5.89 4.10
491 21.31 11.12 5.89 4.09
50 | 21.30 11.11 5.88 4.09
50112130 11.10 5.87 4.08
022129 11.10 5.86 4.07
53 | 21.28 11.09 5.86 4.07
04 | 21.28 11.08 5.85 4.06
05 | 21.27 11.07 5.84 4.05
56 | 21.27 11.07 5.83 4.05
o7 12126 11.06 5.83 4.04
o8 | 21.26 11.05 5.82 4.04
29 | 21.25 11.05 5.82 4.03
60 | 21.24 11.04 5.81 4.03
61 | 21.24 11.03 5.80 4.02
62 | 21.23 11.03 5.80 4.01
63 | 21.23 11.02 5.79 4.01
64 | 21.22 11.01 5.79 4.00
65| 21.22 11.01 5.78 4.00
66 | 21.21 11.00 5.78 3.99
67 | 21.21 11.00 5.77 3.99
68 | 21.20 10.99 5.77 3.99
69 | 21.20 10.98 5.76 3.98
70 | 21.19 10.98 5.76 3.98
71| 21.19 1097 5.75 397
72| 21.18 10.97 5.75 3.97
73 21.18 10.96 5.74 3.96
74| 21.17 1096 5.74 3.96
75| 21.17 10.95 5.73 3.96

912053 1146 6.65 4.92
10 1 20.74 1149 6.61 4.86
11 120.89 11.51 6.57 4.80
12 1 21.01 11.52 6.53 4.75
13 1 21.10 11.52 6.49 4.71
14 | 21.17 11.51 6.45 4.67
151 21.23 1151 6.42 4.63
16 | 21.27 11.50 6.39 4.59
17 121.30 1149 6.36 4.56
18 121.33 1147 6.33 4.53
19 121.35 1146 6.31 4.50
20 | 21.37 1145 6.28 4.48
2112138 11.43 6.26 4.45
22 1 21.39 1142 6.24 4.43
2312140 1140 6.21 441
24 | 2141 11.39 6.19 4.39
25| 21.41 11.38 6.17 4.37
26 | 2141 11.36 6.16 4.35
27| 2141 11.35 6.14 4.33
28 | 21.41 11.34 6.12 4.32
29 | 2141 11.32 6.11 4.30
30| 21.41 11.31 6.09 4.29
3112140 11.30 6.08 4.27
3212140 11.29 6.06 4.26
33| 21.40 11.27 6.05 4.25
34121.39 11.26 6.04 4.23
351 21.39 11.25 6.02 4.22
36 | 21.38 11.24 6.01 4.21
37 121.38 11.23 6.00 4.20
38 | 21.37 11.22 5.99 4.19
39 | 21.37 11.21 5.98 4.18
40 | 21.36 11.20 5.97 4.17




Table 2: Critical values of minEval G/ K> at the 5% significance level (n = 2)
Relative bias

Ky | 0.05 0.10 0.20 0.30 Relative bias
411099 757 560 4.75 || K| 0.056 0.10 0.20 0.30
511393 879 593 480 | 41 |21.00 11.01 5.88 4.12
61570 949 6.09 4.79 | 421 21.01 11.00 5.87 4.11
711687 993 6.17 4.77 | 43|21.01 11.00 5.87 4.10
8 117.69 10.22 6.21 4.73 | 44| 21.02 11.00 5.86 4.09

911829 1043 6.23 4.70 || 45| 21.02 10.99 5.85 4.09
10 | 18.75 10.58 6.24 4.66 || 46 | 21.03 10.99 5.84 4.08
11 1 19.11 10.69 6.23 4.62 || 47 | 21.03 10.98 5.84 4.07
12 | 19.40 10.78 6.22 4.59 || 48 | 21.03 10.98 5.83 4.07
13 119.63 10.84 6.21 4.56 || 49 | 21.03 10.97 5.82 4.06
14 1 19.82 10.89 6.20 4.53 || 50 | 21.04 10.97 5.82 4.05
151 19.98 1093 6.19 4.50 || 51 | 21.04 10.96 5.81 4.05
16 | 20.12 1096 6.17 448 || 52| 21.04 10.96 5.81 4.04
17 120.23 10.99 6.16 4.45 | 53 |21.04 1096 5.80 4.03
18 120.33 11.00 6.14 4.43 | 54| 21.04 1095 5.79 4.03
19 12041 11.02 6.13 4.41 | 55| 21.04 10.95 5.79 4.02
20 | 20.48 11.03 6.11 4.39 || 56 | 21.04 10.94 5.78 4.02
2112055 11.04 6.10 4.37 || 57| 21.05 10.94 5.78 4.01
22 120.60 11.05 6.08 4.35|| 58 | 21.05 10.93 5.77 4.01
23 120.65 11.056 6.07 4.33 || 59 | 21.05 10.93 5.77 4.00
24 120.69 11.06 6.06 4.31 || 60 | 21.05 10.93 5.76 4.00
251 20.73 11.06 6.04 4.30 || 61 |21.05 10.92 5.76 3.99
26 | 20.77 11.05 6.03 4.28 || 62 | 21.05 10.92 5.75 3.99
27120.80 11.05 6.02 4.27 || 63 |21.05 1091 5.75 3.98
28 120.82 11.05 6.01 4.25|] 64 |21.05 1091 5.74 3.98
29 1 20.85 11.056 5.99 4.24 || 65| 21.04 1091 5.74 3.97
30 | 20.87 11.05 5.98 4.23 || 66 | 21.04 1090 5.73 3.97
31 120.89 11.05 597 4.22 || 67| 21.04 10.90 5.73 3.96
3212091 11.04 596 4.20 || 68 |21.04 10.89 5.72 3.96
3312092 11.04 595 419 || 69 |21.04 10.89 5.72 3.96
3412094 11.04 594 418 || 70 |21.04 10.89 5.71 3.95
3512095 11.03 593 4.17 || 71 |21.04 10.88 5.71 3.95
36 12096 11.03 592 4.16 || 72 |21.04 1088 5.71 3.94
3712097 11.03 591 4.15|] 73| 21.04 10.88 5.70 3.94
38 12098 11.02 591 4.14 || 74 |21.04 1087 5.70 3.94
3912099 11.02 590 4.13 || 75 |21.04 10.87 5.69 3.93
40 1 20.99 11.01 5.89 4.13




Table 3: Critical values of minEval G7/K5 at the 5% significance level (n = 3)
Relative bias

Relative bias

Ky, | 005 0.10 0.20 0.30
2 Ky, | 0.05 0.10 0.20 0.30
5] 9.46 6.63 501 4.32

4112059 10.81 5.80 4.07
6|12.15 7.78 5.36 4.42

42 1 20.61 10.81 5.79 4.07
711391 851 5,57 A5 0l o063 1081 579 4.06
8 115.16 9.01 5.70 4.47

441 20.64 10.81 5.78 4.05
451 20.66 10.81 5.78 4.05
46 | 20.67 10.81 5.77 4.04
47 1 20.68 10.81 5.77 4.03
48 1 20.69 10.81 5.76 4.03
49 1 20.70 10.81 5.76 4.02
50 | 20.71 10.81 5.75 4.02
51| 20.72 10.81 5.75 4.01
52 | 20.73 10.81 5.74 4.01
53 | 20.74 10.80 5.74 4.00
54 1 20.75 10.80 5.73 4.00
55 | 20.75 10.80 5.73 3.99
26 | 20.76 10.80 5.72 3.99
o7 | 20.77 10.80 5.72 3.98
58 | 20.77 10.80 5.71 3.98
59 | 20.78 10.80 5.71 3.97
60 | 20.79 10.79 5.71 3.97
61 | 20.79 10.79 5.70 3.96
62 | 20.80 10.79 5.70 3.96
63 | 20.80 10.79 5.69 3.95
64 | 20.80 10.79 5.69 3.95
65 | 20.81 10.79 5.69 3.95
66 | 20.81 10.78 5.68 3.94
671 20.82 10.78 5.68 3.94
68 | 20.82 10.78 5.67 3.93
69 | 20.82 10.78 5.67 3.93
70 | 20.83 10.78 5.67 3.93
71 120.83 10.77 5.66 3.92
72 120.83 10.77 5.66 3.92
73 120.83 10.77 5.66 3.92
74 120.84 10.77 5.65 391
75 120.84 10.77 5.65 3.91

9116.08 938 5.78 4.46
10 | 16.79  9.65 5.84 4.45
1111734 985 588 4.44
12 1 17.79 10.01 5.90 4.42
13 | 18.16 10.14 5.92 4.41
14 | 1847 10.25 593 4.39
15 | 1873 10.34 594 4.37
16 | 18.95 10.41 594 4.35
17 1 19.14 1047 594 4.34
18 1 19.30 10.52 5.94 4.32
19 1 19.44 10.56 5.93 4.31
20 | 19.57 10.60 5.93 4.29
21 1 19.68 10.63 5.92 4.28
22 1 19.78 10.65 5.92 4.26
23 119.87 10.68 5.91 4.25
24119.95 10.70 591 4.24
251 20.02 10.71 5.90 4.22
26 | 20.08 10.73 5.89 4.21
271 20.14 10.74 5.89 4.20
28 120.19 10.75 5.88 4.19
29 1 20.24 10.76 5.87 4.18
301 20.29 10.77 5.87 4.17
31 120.33 10.78 5.86 4.16
32 120.36 10.78 5.85 4.15
3312040 10.79 585 4.14
3412043 10.79 5.84 4.13
351 20.46 10.80 5.83 4.12
36 | 2049 10.80 5.83 4.11
37 120.51 10.80 5.82 4.10
38 1 20.53 10.81 5.82 4.10
391 20.55 10.81 5.81 4.09
40 | 20.57 10.81 5.80 4.08




Table 4: Critical values of minEval G/ K> at the 5% significance level (n = 1)
Size distortion

0.10 015 0.20 0.25
16.52 888 6.96 6.78
19.84 11.60 875 7.41
22.18 12.86 9.50 7.79
2446 14.00 10.20 8.23
26.77 1513 10.92 8.72
29.10 16.28 11.67  9.25
31.45 1743 1242 9.80
33.81 18.59 13.19 10.37
36.19 19.76 13.96 10.94
38.57 20.94 14.75 11.53
40.96 22.12 15.53 12.12
43.35 23.30 16.32 12.71
45.75 2449 17.12 13.31
48.15 25.67 1792 1391
50.55 26.87 18.71 14.52
02.96 28.06 19.52 15.12
55.37 29.25 20.32 15.73
o7.78 30.45 21.12 16.34
60.19 31.65 21.93 16.95
62.61 32.85 22.73 17.56
65.02 34.04 23.54 18.17
67.44 3524 2435 18.79
36.44 25.16 19.40
37.65 25.97 20.01
38.85 26.78 20.63
40.05 27.59 21.24
41.25 28.40 21.86
4245 29.21 2248
43.66 30.02 23.09
44.86 30.83 23.71
46.07 31.64 24.33
47.27 3246 24.94
33.27  25.56
34.08 26.18
34.89  26.80
35.71 27.42
36.52  28.04
37.33  28.65
38.15  29.27
38.96 29.89

= =
O © 00O U W N

W W W W WWWWWWwhNNoNDNDNDNDNDNNDDN = ==
O© 00 IO Ul W HFH O OO Ul WNHFE O OO0 Uk WwN =~
e e e

N

I
S
|
|




Table 5: Critical values of minEval G/ K5 at the 5% significance level (n = 2)
Size distortion

0.10 0.15 0.20 0.25

6.96 532 517 5.02
13.34 821 6.60 5.75
16.78  9.76  7.45 6.26
19.38 1098 8.16 6.73
21.63 12.05 883 7.20
23.69 13.06 948 7.66
25.64 14.03 10.11 8.13
27.53 1498 10.74  8.60
29.37 15.92 11.37  9.07
31.19 16.84 12.00 9.54
32.98 17.77 12.63 10.02
34.75 18.68 13.25 10.49
36.52 19.60 13.88 10.97
38.27 20.51 14.50 11.45
40.01 21.41 15.13 11.93
41.75 2232 15.76 12.41
43.49 23.23 16.38 12.89
45.22 2413 17.01 13.37
46.94 25.04 17.63 13.86
48.67 2594 18.26 14.34
50.39 26.84 18.89 14.82
52.11 27.75 19.51 15.31
03.82 28.65 20.14 15.79
55.54 29.55 20.77 16.27
57.25 30.45 21.40 16.76
31.35 22.02 17.24
32.26 22.65 17.73
33.16  23.28 18.21
34.06 23.91 18.70
34.96 24.53 19.18
35.86 25.16 19.67
36.76 25.79 20.15
37.66 26.42 20.64
38.56 27.04 21.13
39.46 27.67 21.61
40.36 28.30 22.10
28.93 22.58
29.56 23.07
30.19 23.56
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Figure 5: Boundary of the weak instrument set
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Figure 6: Critical values of minEval G /K, at the 5% significance level
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Figure 7: Bounds of the power function when relative bias is 0.1 (n = 2)
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Figure 8: Bounds of the power function when
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