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ABSTRACT

The quality of the asymptotic normal approximation to the distributions of instrumental
variables estimators in the linear IV regression model depends on the extent to which the
instruments are relevant.  If the instruments are weak, so that the system is nearly
unidentified for a given sample size, then the sampling distribution can be quite different
from its Gaussian limit. This raises a practical problem:  under what circumstances can an
applied researcher be confident that identification is “good enough,” that is, that the
instruments are not weak?  This problem has been addressed previously (informally)
when there is a single endogenous regressor. This paper considers the problem of two or
more included endogenous regressors.  The paper has two specific contributions.  First,
we characterize sets of weak instruments in terms of specific population measures on
quality of inference based on two stage least squares; these sets in turn depend on
eigenvalues of the concentration matrix.  Second, we provide a statistical procedure to
test for whether the instruments at hand are weak, where the probability of a false
negative (concluding that instruments are not weak, when in fact they are) is controlled
asymptotically.

*Prepared for the Festschrift in honor of Thomas Rothenberg.  This research was
supported by NSF grant SBR-9730489.
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1.  Introduction

Textbook treatments of instrumental variables regression stress that for

instruments to be valid they must be exogenous.  In practice, however, it is equally

important that the second condition for a valid instrument, instrument relevance, also

holds, for if the instruments are only marginally relevant, or “weak,” then the

conventional first order asymptotic limits can provide poor approximations to the

sampling distributions of standard instrumental variables regression statistics.

At a formal level, the strength of the instruments matters because the natural

measure of this strength – the so-called concentration parameter – plays a role formally

akin to the sample size in IV regression statistics.  In his survey of approximations to the

distributions of estimators and test statistics, Rothenberg (1984) makes this point to

illustrate that asymptotic expansions need not always be performed in orders of the

number of observations.  He considered the single equation IV regression model,

y = Yβ + U, (1.1)

where y is a T�1 vector of observations on the dependent variable, Y is the T�1 included

endogenous variables, and U is T�1 a vector of i.i.d. N(0,σuu) errors (his notation is

different).  The reduced form equation for Y is,

Y = ZΠ + V, (1.2)
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where Z is a T�K2 matrix of exogenous instrumental variables, Π is K2�1 coefficient

vector, and V is a vector of i.i.d. N(0,σvv) errors, where corr(ut, vt) = ρ.

The two stage least squares (TSLS) estimator of β is ˆTSLSβ  = (Y�PZy)/ (Y�PZY),

where PZ = Z(Z�Z)-1Z�, which Rothenberg (1984) expresses as,

cµ( ˆTSLSβ  – β) = 
2

( / )

1 (2 / ) / )

X s

Y S

µ
µ µ

+
+ +

, (1.3)

where µ2 = Π�Z�ZΠ/σvv, c
2 = σvv/σuu, X = Π�Z�U/(σuuΠ�Z�ZΠ)1/2, Y =

Π�Z�U/(σvvΠ�Z�ZΠ)1/2, s = V�PZU/(σuuσvv)
1/2, and S = V�PZV/σvv.

Under the assumptions of fixed instruments and normal errors, X and Y are

standard normal variables with correlation ρ, and s and S are elements of a matrix with a

central Wishart distribution; in particular the distributions of X, Y, s, and S do not depend

on the sample size.  Thus the sample size enters the distribution of the TSLS estimator

only through the concentration parameter µ2.  Moreover, the form of (1.3) makes it clear

that µ2 can be thought of as an effective sample size, in sense that µ formally plays the

role usually associated with T  in (1.3).  Rothenberg (1984) proceeds to describe

(among other things) expansions of the distribution of the TSLS estimator in orders of µ,

and he emphasizes that the quality of these approximations can be poor when µ is small.

For this reason, an important practical concern is whether µ is so small – that is,

whether the instruments are sufficiently weak – that inferences based on conventional

TSLS estimates and their standard errors are potentially unreliable.  But µ is an unknown
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population parameter;  how is a researcher to know in practice whether his or her

instruments are sufficiently weak to jeopardize the validity of conventional TSLS

inferences?

In this paper, we develop a procedure for detecting whether instruments are weak.

The matter of whether a set of instruments is weak cannot be resolved in the abstract,

rather it depends on the inferential task to which the instruments are applied.  We

therefore offer two concrete definitions of a weak instrument, both based on the

performance of the most common IV method, TSLS.  The first is that an instrument is

weak if the bias of the TSLS estimator, relative to the bias of OLS, could exceed a certain

threshold b, for example 10%.  The second is that an instrument is weak if the size of the

Wald test based on the TSLS estimator exceeds the level of the test by a gap r, for

example 10%.

In this light, we do two things.  First, we provide an asymptotic characterization

of these two sets of weak instruments in terms of the minimum eigenvalue of the matrix

version of µ/K2.  Next, we provide a test of the hypothesis that the instruments are weak –

that is, they fall in the set of weak instruments – against the alternative that they are not.

The test we propose is a simple one:  compute the minimum eigenvalue of the matrix

version of the F-statistic in the first stage of TSLS and compare it to a critical value,

tabulated below.  If the minimum eigenvalue is less than the critical value, conclude that

the instruments are weak; otherwise, conclude they are not.1

Both the characterization of the set of weak instruments and the distribution

theory for the test under the weak instrument null require asymptotic approximations to

various IV statistic distributions.  This requires approximating distributions that are
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highly accurate even when the concentration parameter is quite small, so small that the

approximations discussed in Rothenberg (1984) are poor.  We therefore work within the

asymptotic framework developed by Staiger and Stock (1997), in which is held constant

as the number of observations increases.  This allows stochastic objects like X and Y in

the representation (1.3) to have limiting normal distributions even if the errors are not

exactly normal and the instruments are stochastic, so that (1.3); it also provides

substantial simplifications in the expressions for the Wald statistic.

The tabulated boundaries of the weak instrument sets and the associated critical

values for the test behave quite differently for moderate to large values of K2.  We

investigate these differences by performing Nagar-type asymptotic expansions of the

TSLS estimator and its Wald statistic in orders of 1/2K   under the assumptions that the

information per instrument, µ/K2, is fixed and K2/T → 0.  This is similar in spirit to

Bekker’s (1994) approach;  he obtained a first order distribution under the sequence K2

� ∞, T � ∞, K2/T � c, 0 < c < 1, and µ/T is fixed.  In Bekkers’ (1994) expansion, the

TSLS estimator is approximately normally distributed, although it is biased.  Although

Bekker’s expansion might be a reasonable approximation when there are very many

instruments, the assumption that K2/T � c > 0 raises questions about its suitability cases

in which K2 is moderate and the sample size is large, for example, K2 is 15 and T = 1000.

The rest of the paper is organized as follows.  The IV regression model and the

proposed test statistic are presented in Section 2.  The set of weak instruments is

characterized in Section 3.  Section 4 presents the limiting asymptotic distribution of the

test on the boundary of the (composite) null hypothesis, and argues that the test is
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asymptotically unbiased.  Section 5 examines the power of the test, and the asymptotic

expansions are presented in Section 6.  Section 7 concludes.

2.  The IV Regression Model and Proposed Test Statistic

2.1.  The IV Regression Model

The Population Regression Model.  The general instrumental variables

regression model extends (1.1) and (1.2) to have n included endogenous regressors and

K1 included exogenous regressors:

y = Yβ + Xγ + U, (2.1)

Y = ZΠ + XΦ + V, (2.2)

where Y is now a T�n matrix of included endogenous variables, X is a T�K1

matrix of included exogenous variables (one column of which is 1’s if the regressions

include an intercept), and Z is a T�K2 matrix of excluded exogenous variables to be used

as instruments; it is assumed throughout that K2 � n.  Let Z = [Z  X] denote the matrix of

all the exogenous variables.  The conformable vectors β and γ and the matrices Π and Φ

are unknown parameters. Throughout this paper, we shall focus on inference about β.

Let Xt = ( )
11t K tx x" �, Zt = ( )

21t K tz z" �, and Zt = (Zt� Xt�)� denote the

vectors of the tth observations on these variables.  Also let Q and Σ denote the population

second moment matrices,



6

( )
t

t uu u
t t

u

u
E u

σ   
= =   

   
V

V VV

V
V

Σ
Σ

Σ Σ
 and ( )

t

t
t tE

   
= =   

  
XX ZX

XZ ZZ

X Q Q
X Z Q

Z Q Q
. (2.3)

The essential idea of weak instruments is that Z is only weakly related to Y, given

X.  Following Staiger and Stock (1997), weak instrument asymptotics are developed by

modeling Π as local to zero:

Assumption LΠΠ:  Π = ΠT = C/ T , where C is a fixed K2�n matrix.

Also following Staiger and Stock (1997), we make the following assumption on

the moments:

Assumption M.  The following limits hold jointly:

(a) (T-1U�U, T-1V�U, T-1V�V) 
p

→  (σuu, ΣVu, ΣVV);

(b) T-1Z�Z 
p

→ Q, where Q has blocks denoted QXZ, etc.;

(c)  (T-1/2X�U, T-1/2Z�U, T-1/2X�V, T-1/2Z�V) À (<Xu, <Zu, <XV, <ZV), where < �

[<Xu�, <Zu�, vec(<XV)�, vec(<ZV)�]� is distributed N(0,Σ¦Q).

Assumption M can hold for time series or cross-sectional data.  Part (c) assumes

that the errors are homoskedastic.
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The TSLS Estimator and Wald Statistic.  We focus on estimation of β by two

stage least squares.  Let the superscript “A” denote the residuals from the projection on X;

that is, YA = MXY, yA = MXy, and so forth, where MX = I  – X(X�X)-1X�.  In this notation,

the OLS estimator of β is β̂  = (YA
�YA)-1(YA

�y).  The TSLS estimator is,

ˆTSLSβ  = (YA
�

Z
P A YA)-1(YA

�
Z

P A y). (2.4)

The Wald statistic testing the q linear restrictions that Rβ = r0 is,

WT = 
1 1ˆ ˆ( ) '[ ( ' ) '] ( )

ˆ

TSLS TSLS

TSLS
uuqσ

− −− −
Z

R r R Y P Y R R rβ βA

A A

(2.5)

where ˆ TSLS
uuσ  = ˆ TSLSU � ˆ TSLSU /(T–K1–n), where ˆ TSLSU  = yA – YA ˆTSLSβ .  We shall focus on

the case q = n.

2.2.  The Proposed Test Statistic

The proposed test is based on the eigenvalue of the matrix version of the F-

statistic from the first stage regression of TSLS,

GT = 1/ 2ˆ −
VVΣ �YA

�
Z

P A YA 1/ 2ˆ −
VVΣ /K2, (2.6)

where ˆ
VVΣ  = (Y�MZY)/(T–K1–K2).

2
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The test statistic is the minimum eigenvalue of GT:

gmin = mineval(GT). (2.7)

3.  Characterization of the Set of Weak Instruments

3.1.  Weak Instrument First Order Asymptotic Representations

We start by summarizing relevant weak instrument asymptotic results from

Staiger and Stock (1997).

Notation and definitions.  The following notation in effect is a transformation of

variables and parameters that simplifies the asymptotic expressions.  Let

ρ = 1/ 2 1/ 2' u uuσ− −
VV VΣ Σ ,

θ  = 1
u

−
VV VΣ Σ  = 1/ 2

uuσ 1/ 2−
VVΣ ρ,

λ = Ω1/2C 1/ 2−
VVΣ , and

Ω = QZZ – QZX
1−

XXQ QXZ.

Note that ρ�ρ � 1.  Define the K2�1 and K2�n random variables,

zu = Ω-1/2
�(<Zu – QZX

1−
XXQ <Xu)

1/ 2
uuσ −

zV = Ω-1/2
�(<ZV – QZX

1−
XXQ <XV) 1/ 2−

VVΣ
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so that

2

1 '
( , ), where 

vec( ) K
n

N
   

⊗ =   
   

u

V

z

z I
0

ρ
Σ Ι Σ

ρ
� .

Also let

ν1 = (λ + zV)� (λ + zV), and (3.1)

ν2 = (λ + zV)� zu. (3.2)

Weak Instrument Asymptotic Representations.  In this notation, the probability

limit of the OLS estimator is

β̂  
p

→  β + θ. (3.3)

The TSLS estimator and GT have the following limits (Staiger and Stock (1997),

theorem 1):

ˆTSLSβ  À 1/ 2
uuσ 1/ 2−

VVΣ 1
1 2
−ν ν , (3.4)

GT À ν1/K2 (3.5)

and, when q = n and the null hypothesis r = r0 is true,
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WT À 
1

2 1 2
1 2

1 2 2 1 2

'

(1 2 ' ' )n

−

− −− +
ν ν ν

ρ ν ν ν ν ν
 � W*, (3.6)

where “À” denotes weak convergence.  That is, (3.4) says that, under Assumptions LΠ

and M, as T � ∞, the distribution of ̂ TSLSβ  converges to the distribution of

1/ 2
uuσ 1/ 2−

VVΣ 1
1 2
−ν ν .

3.2.  First Characterization of the Set of Weak Instruments: TSLS Bias

Our first characterizations of the set of weak instruments is based on the

maximum bias of TSLS relative to OLS.  The expectation of the weak instrument

asymptotic representation of the TSLS estimator exists only if the degree of

overidentification K2 – n � 2, so this is assumed whenever discussing bias of TSLS.

We consider the relative bias measure BT, which is the ratio of the bias of TSLS to

the bias of OLS, where the coefficient vector has been put into standardized units by

rotating by 1/ 2

Y Y
Σ A A :3

2
TB  = 

ˆ ˆ( ) ' ( )
ˆ ˆ( ) ' ( )

TSLS TSLS

Y Y

Y Y

E E

E E

− −

− −

β β Σ β β
β β Σ β β

A A

A A

. (3.7)

If n = 1, then the scaling matrix in (3.7) drops out and the expression simplifies to

BT = |E ˆTSLSβ  – β|/|E β̂  – β|.



11

Under weak instrument asymptotics, ˆTSLSβ  has the limit in (3.4), and the bias

measure has the asymptotic limit,

2
TB  � 

' '

'

h hρ ρ
ρ ρ

 � B2, (3.8)

where h = E[ 1
1
−ν (λ + zV)�zV].

The asymptotic bias measure B2 depends on ρ and λ, which are unknown, as well

as K2 and n.

Our approach is to consider instruments to be strong if they lead to reliable

inferences for all possible degrees of simultaneity ρ; otherwise they are weak.  Applied to

the relative bias measure and assuming ρ�ρ > 0, this leads us to consider the worst-case

asymptotic bias,

Bmax =  (maxρρ: ρρ�ρρ > 0 B
2)1/2 (3.9)

This first characterization of the set of weak instruments is based on this worst-

case bias.  We define the set of weak instruments, based on relative bias, to consist of

those instruments that have the potential of leading to asymptotic relative bias greater

than some value b.  In population, the strength of an instrument is determined by the

parameters of the reduced form equation (2.2).  Accordingly, let 2 = {Π, ΣVV, Ω}.  The

relative bias definition of a weak instrument is,
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/bias = {2: Bmax � b} (3.10)

The asymptotic results make it possible to characterize the set /bias. Because h

depends on λ but not ρ, by (3.8) we have that

Bmax = (maxρρ
' '

'

h hρ ρ
ρ ρ

)1/2 = [maxeval(h�h)]1/2, (3.11)

where maxeval(A) denotes the maximum eigenvalue of the matrix A.  By applying the

singular value decomposition to lamba, it is further possible to show that the maximum

eigenvalue of h�h, and thus Bmax, depends only on K2, n, and the eigenvalues of λ�λ/K2.

In Section 6, we provide an asymptotic expansion for the TSLS estimator and its

Wald statistic when the number of instruments K2 increases slowly with the sample size

and in which λ�λ/K2 is fixed, so λ�λ/K2 = Λ, a fixed matrix.  Proposition 2 in that section

states that the leading term in the associated expansion for Bmax is nonincreasing in each

of the eigenvalues of Λ.  It follows that, to the first order of approximation in that

expansion, the set /bias can be characterized by the minimum eigenvalue of λ�λ/K2 for a

given n and K2.  That is, Bmax = Bmax(mineval(λ�λ/K2);K2,n), where this function is

increasing in its argument and therefore invertible.  This in turn implies that

Bmax(mineval(λ�λ/K2);K2,n) � b is equivalent to mineval(λ�λ/K2) � A bias(b;K2,n), where
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A bias is the inverse function of Bmax with respect to its first argument.  That is, /bias in

(3.10) can be written as,

/bias = {2: mineval(λ�λ/K2) � A bias( b;K2,n)}. (3.12)

Our formal justification for the simplification that /bias depends only on the

smallest eigenvalue of λ�λ/K2, rather than on all its eigenvalues, rests on the expansion in

Section 6.  Numerical analysis for n = 2 suggests, however, that Bmax is decreasing in all

the eigenvalues of λ�λ/K2 for all values of K2.  This numerical analysis suggests that the

simplification in (3.12), looking only at the minimum eigenvalue, is valid for all K2 under

the weak instrument asymptotics, even though we currently cannot provide a formal

justification.4

3.3.  Second Characterization of the Set of Weak Instruments: TSLS Wald Test Size

The second characterization of the set of weak instruments is based on the

maximal size of the TSLS-based Wald test of all the elements of β.  Throughout we focus

only on the possibility that the Wald test rejects too often under the null, which is in fact

the case with weak instruments.

In parallel with the approach for the bias measure, we consider an instrument

strong from the perspective of the Wald statistic if the size of the test is close to its level

for all possible configurations of the IV regression model.  The actual rejection rate RT

under the null hypothesis is,
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RT =  Pr[WT > 2
;n αχ /n| r = r0], (3.13)

where 2
;n αχ  is the α-level critical value of the chi-squared distribution with n degrees of

freedom and α is the nominal level of the test.

Under the weak instrument asymptotics the distribution of WT has the limiting

representation (3.6) under the null hypothesis.  Thus,

RT � Pr[W* > 2
;n αχ /n] � R, (3.14)

Inspection of (3.6) reveals that R depends on ρ and λ, as well as K2, n, and α.

Following our treatment of the bias, because ρ is unknown we consider the worst-case

size,

Rmax = maxρρ R = maxρρ Pr[
1

2 1 2
1 2

1 2 2 1 2

'

(1 2 ' ' )

−

− −− +
ν ν ν

ρ ν ν ν ν ν
> 2

;n αχ ]. (3.15)

It is not necessary to exclude ρ�ρ = 0 in the maximization in (3.15) because there is no

singularity at ρ�ρ = 0.

The set of weak instruments, /size , based on the size of the Wald statistic,

consists of instruments that can lead to a size of at least r:
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/size = {2: Rmax ≥ r} (3.16)

For example, if α = .05 then a researcher might consider it acceptable if the worst case

size is r = .10.

The maximal bias measure Rmax depends on the eigenvalues of λ�λ/K2 as well as n

and K2 (the argument is the same as for the similar assertion for Bmax).  Thus, under the

weak instrument asymptotics, the weak instrument set /size is fully characterized by ρ

and the eigenvalues of λ�λ/K2.

In the expansion of W* in Section 6, the leading term is nonincreasing in the

eigenvalues of λ�λ/K2 (Proposition 3).   This implies that we can characterize /size in

terms of the minimum eigenvalue of λ�λ/K2, as well as K2 and n.  The argument leading

to (3.12) therefore applies here and leads to the characterization,

/size = {2: mineval(λ�λ/K2) � A size( r;K2,n,α) }. (3.17)

where A size( r;K2,n,α) is the inverse function of Rmax(mineval(λ�λ/K2); K2,n,α) with

respect to its first argument.

As is the case for /bias, the justification for the simplification (3.17) in which

/size depends on only the smallest eigenvalue of λ�λ/K2 formally is based on the
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expansion in Section 6 for weak instruments and moderate K2.  However, numerical

analysis of the n = 2 case suggests that this property holds for small K2 as well.

3.4.  Numerical Results

The worst case bias and the maximal size distortion were computed by Monte

Carlo simulation for a grid of minimal eigenvalue of λ�λ/K2 from 0 to 50, for K2 = n +

2,…,100 for the relative bias, and for K2 = n,…, 100 for the size distortions.  All results

are based on 20,000 Monte Carlo draws.  Computing the maximum bias entails first

computing h defined following (3.8) by Monte Carlo simulation, given n, K2, and the

minimum eigenvalue; as discussed above, for these computations we set λ�λ/K2 = A I n,

where A  is the minimum eigenvalue.  The maximum relative bias is then

[maxeval(h�h)]1/2.  Computing the maximum size distortion is more involved because

there is no simple analytic solution to the maximum problem (3.15).  Numerical analysis

indicates that R is maximized when ρ�ρ = 1, so the maximization for n = 2 was done by

transforming to polar coordinates and performing a grid search over the half unit circle

(half because of symmetry in the expression for W*).  As in the relative bias

computations and as discussed above, in these computations we set λ�λ/K2 = A I n, where

A  is the minimum eigenvalue.

The relative bias is plotted for n =1 as a function of K2 and λ�λ/K2 in Figure 1, and

the maximal relative bias is plotted for n = 2 as a function of K2 and the minimum

eigenvalue of λ�λ/K2 in Figure 2 (when n = 1, the relative bias B does not depend on ρ, so

Bmax = B).5  Evidently, for K2 sufficiently large, the maximal relative bias depends only

weakly on K2.  The maximal relative bias seems to decline as approximately the inverse
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of the minimum eigenvalue.  Also, the contours for n = 1 in Figure 1 and n = 2 in Figure

2 are quite similar.

The worst case size, Rmax, is plotted in Figure 3 for n =1 and in Figure 4 for n = 2

for a Wald test of level 5%.  In contrast to the plots of the worst case bias, the worst case

size strongly depends on K2 over the full range considered.  The worst case size

approaches 5% much more rapidly as a function of the minimum eigenvalue for small K2

than when K2 is large.  Also, the surfaces for n = 1 and n = 2 are qualitatively similar but

quantitatively different; curiously, given a value of K2 and the minimum eigenvalue, the

size distortion when n = 1 is worse than when n = 2.

These surfaces can be used to compute boundaries of the weak instrument regions

/bias and /size, where the boundaries are determined by the minimum eigenvalue of

λ�λ/K2, as well as by n and K2.  These boundaries are plotted in Figure 5: the relative bias

region boundary is plotted in the top two panels for selected values of the relative bias

cutoff b, and the size region boundary is plotted in the bottom two panels for selected

values of the size cutoff r.

First consider the boundary of /bias.  These are essentially flat in K2 for K2

sufficiently large; moreover, the boundaries for n = 1 and n = 2 are numerically very

similar, even for small K2.  The boundary of the relative bias region for b = .1 (10% bias)

asymptotes to approximately 8 for both n = 1 and n = 2.

In contrast, the boundary of /size depends strongly on K2 and n.  The boundary is

approximately linear in K2 for K2 sufficiently large, for all the size distortion cutoffs r

considered.  Note also that the cutoffs are numerically quite large when the degree of



18

overidentification is large.  For example, if one is willing to tolerate a maximal size of

15%, so the size distortion is 10% for the 5% level test, then with 20 instruments the

minimum eigenvalue boundary is approximately 25 for n = 1 and approximately 20 for

n= 2.

We return to some of these features of the weak instrument region boundary

functions when in the discussion of the asymptotic expansion in Section 6.

4.  Asymptotic Distribution of the Test Statistic

This section provides the weak instrument asymptotic representation of the test

statistic gmin and a bound on its distribution.  This bound provides conservative critical

values for the test based on gmin.

Distribution of gmin.  Recall that the statistic gmin is the minimum eigenvalue of

GT, where GT is given by (2.6).  Under weak instrument asymptotics, K2GT is

asymptotically distributed as a noncentral Wishart with dimension n, degrees of freedom

K2, identity covariance matrix, and noncentrality matrix λ�λ:

GT À G* _ Wn(K2, In, λ�λ)/K2. (4.1)

The joint pdf for the n eigenvalues of a noncentral Wishart is known in the sense

that there is an infinite series expansion for the pdf in terms of zonal polynomials

(Muirhead [1978]).  This joint pdf depends on all the eigenvalues of λ�λ, as well as n and

K2.  In principal the pdf for the minimum eigenvalue can be determined from this joint
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pdf for all the eigenvalues.  It appears that this pdf (the “exact asymptotic” pdf of gmin)

depends on all the eigenvalues of λ�λ.

This exact asymptotic distribution of gmin is not very useful for applications both

because of the computational difficulties it poses and because of its dependence on all the

eigenvalues of λ�λ.  This latter consideration is especially important because in practice

these eigenvalues are unknown nuisance parameters, so any critical values based on these

eigenvalues would produce an infeasible test.

We circumvent these two problems by performing the test using conservative

critical values.  These conservative critical values are based on a noncentral chi-squared

bounding distribution, given in the following proposition.

Proposition 1.  Let W be distributed Wn(k, I n, A).  Then Pr[mineval(W) ≥ x] ≤

Pr[ 2
kχ (mineval(A)) ≥ x], where 2

kχ (a) denotes a noncentral chi-squared random

variable with noncentrality parameter a.

Proof.  Let α be the eigenvector of A corresponding to its minimum eigenvalue.

Then α�Wα is distributed 2
kχ (mineval(A)) (Muirhead [1982, Theorem 10.3.6]).  But

α�Wα ≥ mineval(W), and the result follows.

Applying the proposition, (4.1), and the continuous mapping theorem, we have

that
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Pr[gmin ≥ x] → Pr[mineval(G*) ≥ x] ≤ 2

2
2

2

(mineval( ' ) / )
Pr K K

K
x

χ 
 
  

≥
λ λ

. (4.2)

Conservative critical values for the test based on gmin are obtained by the

following procedure.  First, select the desired minimal eigenvalue of λ�λ/K2.  Next, obtain

the desired percentile, say the 95% point, of the noncentral chi-squared distribution with

noncentrality parameter equal to this selected minimum eigenvalue, and divide this

percentile by K2.

Weak instruments test. This yields the following testing procedure to detect for

weak instruments.  To be concrete, this is stated for a test based on the bias measure.  The

null hypothesis is that the instruments are weak, and the alternative is that they are not:

H0: 2 ° /bias v. H1: 2 ± /bias. (4.3)

The test procedure is,

Reject H0 if gmin ≥ 
2

2
,K δχ ( A bias( b;K2,n)), (4.4)

where 
2

2
,K δχ  (A ) is the 100δ% critical value (100(1-δ)% percentile) of the noncentral chi-

squared distribution with K2 degrees of freedom and noncentrality parameter A .
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The critical value chosen by the researcher depends on the attitude of the

researcher towards the maximal bias.  If the researcher is satisfied if the maximal relative

bias is no more than 10%, then she would set b = .10.

The results of Section 3 and the bound in Proposition 1 imply that,

asymptotically, the test (4.4) has the desired asymptotic level:

limT�∞ Pr[gmin ≥ 
2

2
,K δχ ( A bias( b;K2,n)) | 2 ° /bias] � δ. (4.5)

The procedure for testing whether the instruments are weak from the perspective

of the size of the Wald statistic is the same, except that the critical value in (4.4) is

obtained using the size-based boundary eigenvalue function,A size( r;K2,n,α)

Critical Values.  Given a minimum eigenvalue A , conservative critical values for

the test are percentiles of the noncentral chi-squared distribution, 
2

2
,K δχ ( A ).  The

minimum eigenvalue A  is obtained from the boundary eigenvalue functions, numerical

values of which were reported in Section 3.4.

Critical values for the relative bias version of the test are tabulated in Tables 1, 2,

and 3 for n = 1, 2 and 3, respectively, for various K2 and relative bias tolerances b.

Critical values for the size version of the test are reported in Tables 4 and 5.

The critical values reflect the features of the boundary eigenvalue functions

discussed in Section 3.4.  For example, the critical values for the relative bias at first

increase then, for moderate K2, essentially do not depend on K2.  In contrast, the critical

values for the size version increase approximately linearly with K2.
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The critical values are plotted in Figure 6.  These critical value plots are

qualitatively similar to the boundary eigenvalue plots in Figure 5, except of course the

critical values exceed the boundary eigenvalues to take into account the sampling

distribution of the test statistic.

Comparison to the Staiger-Stock (1997) rule of thumb.  Staiger and Stock (1997)

suggested the rule of thumb that, in the n = 1 case, instruments be deemed “weak” if the

first stage F is less than ten.  They motivated this suggestion based on the relative bias of

TSLS.  Because the 5% critical value for the relative bias weak instrument test with b =

.1 is approximately 11 for all values of K2, the Staiger-Stock rule of thumb can be viewed

as 5% test that the worst case relative bias is approximately 10% or less.  This provides a

formal, and not unreasonable, testing interpretation of the Staiger-Stock rule of thumb.

The Staiger-Stock rule of thumb fares less well from the perspective of size

distortion.  When the number of instruments is one or two, the Staiger-Stock rule of

thumb corresponds to a 5% level test that the maximum size is no more than 15% (the

maximum TSLS size distortion is no more than 10%).  However, when the number of

instruments is moderate or large, the critical value is much larger and this rule of thumb

does not provide substantial assurance that the size distortion is controlled.

5.  Asymptotic Properties of the Test as a Decision Rule

This section discusses the asymptotic properties of the weak instruments test as a

function of the smallest eigenvalue of λ�λ/K2.  This entails providing and studying the

asymptotic rejection rate of the test as a function of the smallest eigenvalue of λ�λ/K2.
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When this eigenvalue exceeds the cutoff population eigenvalue A bias( b;K2,n) for a given

b, this asymptotic rejection rate is the asymptotic power function.

The asymptotic distribution of gmin depends on all the eigenvalues of λ�λ/K2.  It is

bounded above by (4.2).  We conjecture that this distribution is bounded below by the

distribution of the minimum eigenvalue of a random matrix with the noncentral Wishart

distribution Wn(K2, I n, mineval(λ�λ)I n)/K2.
6  We will use these two bounding distributions

to bound the distribution of gmin as a function of mineval(λ�λ/K2).

The resulting bounds on the asymptotic rejection rate of the test (4.4) (based on

relative bias) are plotted in Figures 7 for b = .10 and n = 2.  The value of the horizontal

axis (the minimum eigenvalue) at which the upper rejection rate curve equals 5% is

A bias(.10;K2,2).  Evidently, as the minimum eigenvalue increases, the rejection rate

increases.  For large K2, this increase is rapid, and the test effectively has unit power

against values of the minimum eigenvalue not much larger than one.  The bounding

distributions give a reasonably tight range for the actual power function, which depends

on all the eigenvalues of λ�λ/K2.

The analogous bounds for the test based on the size of the Wald statistic are

plotted in Figure 8.  The curves have a similar shape, but they are centered at much larger

values of the minimal eigenvalue for the reasons discussed in Sections 4 and 5.

Otherwise, the qualitative conclusions for the bias-based test apply to the size-based test.

Interpretation as a decision rule. The test in (4.4) can, of course, be interpreted

as a decision rule:  if gmin is less than the critical value, conclude that the instruments are

weak; if it exceeds the critical value, conclude that they are strong.
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Under this interpretation, the asymptotic rejection rates plotted in Figures 7 and 8

bound the asymptotic probability of deciding that the instruments are strong.  Evidently,

for small values of mineval(λ�λ/K2), the probability of correctly concluding that the

instruments are weak is effectively one.  Thus, if in fact one is confronted by instruments

that are quite weak, then the probability of not recognizing this using the testing

procedure (4.4) is vanishingly small.  Similarly, if one has instruments for which the

minimum eigenvalue of λ�λ/K2 is substantially above the threshold for the weak

instruments set, then the probability of correctly concluding that they are strong also is

effectively one.

The range of ambiguity of the decision procedure is given by the values of the

minimum eigenvalue for which the asymptotic rejection rates effectively fall between

zero and one.  When K2 is small, this range is fairly large.  For K2 large, this range of

potential ambiguity of the decision rule is quite small.

From a practical perspective, it matters whether the researcher is concerned about

bias or size.  Concern about relative bias leads to much smaller weak instrument sets than

concern about size distortions.

6.  Asymptotic Expansion for Many Weak Instruments

This section reports the results of, and conclusions based on, Nagar-type

asymptotic expansions of the TSLS estimator ˆTSLSβ  and its Wald statistic W.  These

expansions have two purposes.  First, they provides a formal justification for the

characterizations of the sets /bias and /size solely in terms of the minimum eigenvalue of
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λ�λ/K2; this is summarized in Propositions 2 and 3 below.  Second, they explain the

peculiar feature, noted in Section 4, that the boundary of the weak instrument region

/bias is essentially constant for K2 is sufficiently large (say, K2 – n � 10), whereas the

boundary of the region /size is essentially linear in K2 for K2 sufficiently large.

The expansion here holds the noncentrality matrix, λ�λ/K2, constant.  We let K2 �

∞ and T � ∞ but, in contrast to Bekker (1994), K2/T � 0.  The expansion is carried out

only to order op(1/ 2K ), insufficient to calculate an Edgeworth approximation but

sufficient to address the matters of the previous paragraph.

The expansion is performed for the IV regression model (1.1) and (1.2) with no

included exogenous variables, fixed Z, and i.i.d. Gaussian errors, except that we allow for

n included endogenous variables.  Let

λ�  = (Z�Z/T)-1/2( T ΠT) 1/ 2−
VVΣ ,

Vz�  = (Z�Z/T)-1/2(Z�V/ T ) 1/ 2−
VVΣ ,

uz�  = (Z�Z/T)-1/2(Z�U/ T ) 1/ 2
uuσ − ,

1ν�  = (λ�  + Vz� )�( λ�  + Vz� ), and

2ν�  = (λ�  + Vz� )� uz� .

These definitions parallel the corresponding definitions of λ, etc. in the weak instrument

asymptotic representation in Section 3, except that these are defined in the original

sample space.
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With these definitions, we have the exact relations,

ˆTSLSβ  = β + 1/ 2
uuσ 1/ 2−

VVΣ 1
1
−ν� 2ν� , (6.1)

W = 2ν� �
1

1
−ν� 2ν� /(nsT), (6.2)

where the expression for W holds under the null hypothesis and

sT = (U�U/T)/σuu – 2[ uz� �λ�  + ρ� 1/ 2−
VVΣ (V�V/T) 1/ 2−

VVΣ � + 1/ 2
uuσ − (U�V/T) 1/ 2−

VVΣ ] 1
1
−ν� 2ν�

     + 2ν� �
1

1
−ν� [( λ� �λ� )/T + (λ� � Vz� )/T  + ( Vz� �λ� )/T + 1/ 2−

VVΣ (V�V/T) 1/ 2−
VVΣ �] 1

1
−ν� 2ν� .

We make the following assumption:

Assumption E.  K2 � ∞, T � ∞,  K2/T � 0, and λ� �λ� /K2 = Λ is fixed.

Assumption E replaces assumption LΠ.  Under this assumption, Π is implicitly

modeled as ΠT = 2 /K T C , that is, as being in a 2 /K T  neighborhood of zero.  This

captures the notion that the instruments are weak while permitting an analysis of the

statistics of interest for the case that the number of instruments is moderate, relative to the

sample size.

Under Assumption E, the assumption of homoskedastic Gaussian errors, and the

assumption that Z�Z/T 
p

→  QZZ, we find that,



27

1ν� /K2 = Λ + I n + 1 1 2

2

'

K

+ +z z z� � �
 + op(

2

1

K
), and (6.3)

2ν� /K2 = Inρ + 1 2 3 4

2K

+ + +z z z zρ� � � �
 + op(

2

1

K
) (6.4)

where 1z� , 2z� , 3z� , and 4z�  are independent and vec(1z� ) _ N(0,I n¦Λ), vec( 2z� ) _ N(0,H),

3z�  _ N(0, (1-ρ�ρ)Λ), and 4z�  _ N(0, (1-ρ�ρ)I n), and

H = 

2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

 
 
 
 
 
 

.

Bias.  Applying these results to the relative bias formula yields the leading term,

B2 = 
2'( )

'

−+ Iρ Λ ρ
ρ ρ

 + Op(
2

1

K
). (6.5)

This allows us to characterize the weak instrument set /bias to the order of

approximation in (6.5).
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Proposition 2.   For any ρ such that ρ�ρ > 0, the leading term in the expansion

(6.5) for the relative bias B2 is nonincreasing in each eigenvalue of Λ.  Moreover,

up to this leading term in the expansion, Bmax = [ mineval(Λ) + 1]-1.

Proof.  For any ρ, the leading term in (6.5) can be written as 2 2

1

( 1)
n

i i
i

a λ −

=
+∑ ,

where λi is the i th eigenvalue of Λ, a1,…, an do not depend on the eigenvalues of Λ and

2

1

n

i
i

a
=
∑  = 1.  The result follows.

Size.  The Wald statistic has the expansion,

    W/K2 = 
1

2 2 1 2 2 2
1 2

1 2 2 2 2 2 1 2 2 2

( / ) '( / ) ( / )

[1 2 '( / ) ( / ) ( / ) '( / ) ( / )]

K K K

n K K K K K

−

− −− +
ν ν ν

ρ ν ν ν ν ν
 + op(

2

1

K
).      (6.6)

where 1ν  and 2ν  denote the terms up to order Op(1/ 2K ) in (6.3) and (6.4), respectively.

The leading term in this expansion is,

W/K2 = 
1

1 2

'( )

[1 2 '( ) '( ) ]n

−

− −

+
− + + +

I

I I

ρ Λ ρ
ρ Λ ρ ρ Λ ρ

 + Op(
2

1

K
). (6.7)

This allows us to characterize the weak instrument set /size to the order of

approximation in (6.7):
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Proposition 3.  For any ρ, the leading term in the expansion for W/K2 in (6.7) is

nonincreasing in each eigenvalue of Λ.  Moreover, this leading term is maximized

when ρ�ρ = 1.

Proof.  Write (Λ + I )-1 = JHJ�, where H is the diagonal matrix with diagonal

elements 1/(1+λi), where λi is the i th eigenvector of Λ and J is the matrix of the associated

eigenvectors of Λ.  Then the leading term in (6.7) can be written, h = a�Ha/{ n[a�(I  – H)2a

+ (1–a�a)]}, where a = Hρ.  Differentiating h with respect to λj shows that �h/�λj � 0, j =

1,…, n, proving the first statement.  Because a�a � 1, �h/� 2
ja  � 0, j = 1,…, n, for any a, h

can be increased by increasing a proportionately, or equivalently by increasing ρ

proportionately until ρ�ρ = 1.  It follows that h is maximized when ρ�ρ = 1.

The leading terms in the expansions (6.5) and (6.7) explain the curious feature

that the boundary of /bias is constant for large K2 while it essentially increases linearly in

K2 for /size.  First consider the expression (6.5) for B2.  The leading term is constant for a

given ρ and Λ, and by Proposition 2, Bmax depends only on the minimum eigenvalue of Λ,

up to the order of this leading term.  But Λ, and thus Bmax, does not depend on K2.

Similarly, the minimum eigenvalue of  Λ does not depend on n.  Thus, for K2 sufficiently

large, Bmax depends only on the minimum eigenvalue of Λ, not on K2 or n.
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Next turn to the expression (6.7) for W/K2.  Calculations reveal that this leading

term, maximized over ρ, depends on n although it does not depend on K2.  Because W is

divided by K2 in this expression, (6.7) alternatively implies that W = cK2 + Op( 2K ),

where c depends on ρ, the eigenvalues of Λ, and n.  This explains the effectively linear

increase in the boundary of  /size and its dependence on n.

7. Conclusions

The procedure proposed here is simple to implement:  it entails comparing the

minimum eigenvalue of the first stage F-statistic matrix – the multivariate generalization

of the first stage F-statistic – to a critical value.  The critical value is determined by the

number of instruments K2, the number of included endogenous regressors n, and the

researcher’s willingness to tolerate relative bias or size distortions.  The test statistic is

the same whether one focuses on size or relative bias; all that differs is the critical value.

Viewed as a test, the procedure has good power (especially so when the number

of instruments is large).  Viewed as a decision rule, the procedure discriminates between

weak and strong instruments quite effectively, with the region of ambiguity decreasing

with the number of instruments.

When there is a single included endogenous variable, this procedure provides a

refinement and improvement to Staiger and Stock’s (1997) suggested rule of thumb that,

in the n = 1 case, instruments be deemed “weak” if the first stage F is less than ten.  The

difference between that rule of thumb and the procedure of this paper is that, instead of

comparing the first stage F to ten, it should be compared to the appropriate entry in Table
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1 (bias) or 4 (size).  Those critical values indicate that their rule of thumb can be

interpreted as a 5% test of the hypothesis that the maximum relative bias is

(approximately) 10%.  However, their rule of thumb does not ensure that TSLS-based

Wald statistics will have good size.

The results in this paper have two loose ends.  First, the characterization of the set

of weak instruments is based on the premise that the maximum relative bias and

maximum size distortion are nonincreasing in each eigenvalue of λ�λ/K2.  This was

justified for moderate K2 using the expansion in Section 6 and numerical analysis

suggests it is true for all K2, but this remains to be proven.  Second, the lower bound of

the power function in Section 6 is based on the similar assumption that the cdf of the

minimum eigenvalue of a noncentral Wishart random variable is nondecreasing in each

of the eigenvalues of its noncentrality matrix.  This too appears to be true based on

numerical analysis but we do not have a proof nor does this result seem to be available in

the literature.

Beyond this, several avenues of research remain open.  First, the testing procedure

described here focuses on TSLS.  One extension of this research would be to consider

other estimators and other Wald statistics, particularly the LIML Wald statistic.  LIML

and its Wald statistic have better-behaved weak instrument sampling distributions that

TSLS and its Wald statistic, so LIML-based inference might produce tighter boundaries

of the weak instrument region.

Second, the analysis here is predicated upon homoskedasticity, and it remains to

extend these tests to GMM estimation of the linear IV regression model under

heteroskedasticity.
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Third, the asymptotic expansion in Section 6 could be extended in several ways.

The expansion was for the classical fixed instrument/normal error model.  Relaxing this

assumption, as Rothenberg (1983) did for the Π fixed case, would complicate the

expressions only somewhat to order op(1/ 2K ) and would generalize the result

considerably.  It also remains to explore the quality of the resulting distributional

approximations to the finite sample distribution of the TSLS estimator.
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Endnotes

1 Cragg and Donald (1993) propose a test of the null hypothesis that the coefficients of

interest are underidentified, against the alternative that they are identified.  Our purpose is

quite different: just because the parameters are identified does not mean that an applied

researcher can reliably use use the conventional first order asymptotic approximations to

the limiting distributions of TSLS statistics.

2 The definition of GT in (2.6) is GT in Staiger and Stock (1997, eq. (3.4)), divided by K2

to put it in F-statistic form.

3 Note that 
Y Y

Σ A A  = ΣVV under Assumption LΠ.

4 The assumption that Bmax(A ;K2,n) is nonincreasing in A , needed to invert the function,

has the effect of potentially including in (3.12) some instruments that are not weak.

Because the maximal bias depends on all the eigenvalues, the maximal bias when all the

eigenvalues are equal to some value A 0 might be greater than the maximal bias when one

eigenvalue is slightly less than A 0 but the others are very large.  For this reason the set

/bias is potentially conservative.  This comment applies to the size-based set developed

in Section 3.3 as well.

5 Figure 1 previously appeared in Staiger and Stock (1997) and is included here for

completeness.

6 We have not located a formal statement of this in the literature but numerical

investigations suggest that it is true.
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Table 1: Critical values of minEval GT /K2 at the 5% significance level (n = 1)
Relative bias

K2 0.05 0.10 0.20 0.30
3 13.94 9.11 6.49 5.41
4 16.87 10.29 6.72 5.35
5 18.39 10.84 6.78 5.25
6 19.28 11.13 6.77 5.16
7 19.86 11.30 6.73 5.07
8 20.25 11.40 6.69 4.99
9 20.53 11.46 6.65 4.92

10 20.74 11.49 6.61 4.86
11 20.89 11.51 6.57 4.80
12 21.01 11.52 6.53 4.75
13 21.10 11.52 6.49 4.71
14 21.17 11.51 6.45 4.67
15 21.23 11.51 6.42 4.63
16 21.27 11.50 6.39 4.59
17 21.30 11.49 6.36 4.56
18 21.33 11.47 6.33 4.53
19 21.35 11.46 6.31 4.50
20 21.37 11.45 6.28 4.48
21 21.38 11.43 6.26 4.45
22 21.39 11.42 6.24 4.43
23 21.40 11.40 6.21 4.41
24 21.41 11.39 6.19 4.39
25 21.41 11.38 6.17 4.37
26 21.41 11.36 6.16 4.35
27 21.41 11.35 6.14 4.33
28 21.41 11.34 6.12 4.32
29 21.41 11.32 6.11 4.30
30 21.41 11.31 6.09 4.29
31 21.40 11.30 6.08 4.27
32 21.40 11.29 6.06 4.26
33 21.40 11.27 6.05 4.25
34 21.39 11.26 6.04 4.23
35 21.39 11.25 6.02 4.22
36 21.38 11.24 6.01 4.21
37 21.38 11.23 6.00 4.20
38 21.37 11.22 5.99 4.19
39 21.37 11.21 5.98 4.18
40 21.36 11.20 5.97 4.17

Relative bias
K2 0.05 0.10 0.20 0.30
41 21.36 11.19 5.96 4.16
42 21.35 11.18 5.95 4.15
43 21.34 11.17 5.94 4.14
44 21.34 11.16 5.93 4.13
45 21.33 11.15 5.92 4.13
46 21.33 11.14 5.91 4.12
47 21.32 11.14 5.90 4.11
48 21.31 11.13 5.89 4.10
49 21.31 11.12 5.89 4.09
50 21.30 11.11 5.88 4.09
51 21.30 11.10 5.87 4.08
52 21.29 11.10 5.86 4.07
53 21.28 11.09 5.86 4.07
54 21.28 11.08 5.85 4.06
55 21.27 11.07 5.84 4.05
56 21.27 11.07 5.83 4.05
57 21.26 11.06 5.83 4.04
58 21.26 11.05 5.82 4.04
59 21.25 11.05 5.82 4.03
60 21.24 11.04 5.81 4.03
61 21.24 11.03 5.80 4.02
62 21.23 11.03 5.80 4.01
63 21.23 11.02 5.79 4.01
64 21.22 11.01 5.79 4.00
65 21.22 11.01 5.78 4.00
66 21.21 11.00 5.78 3.99
67 21.21 11.00 5.77 3.99
68 21.20 10.99 5.77 3.99
69 21.20 10.98 5.76 3.98
70 21.19 10.98 5.76 3.98
71 21.19 10.97 5.75 3.97
72 21.18 10.97 5.75 3.97
73 21.18 10.96 5.74 3.96
74 21.17 10.96 5.74 3.96
75 21.17 10.95 5.73 3.96



Table 2: Critical values of minEval GT /K2 at the 5% significance level (n = 2)
Relative bias

K2 0.05 0.10 0.20 0.30
4 10.99 7.57 5.60 4.75
5 13.93 8.79 5.93 4.80
6 15.70 9.49 6.09 4.79
7 16.87 9.93 6.17 4.77
8 17.69 10.22 6.21 4.73
9 18.29 10.43 6.23 4.70

10 18.75 10.58 6.24 4.66
11 19.11 10.69 6.23 4.62
12 19.40 10.78 6.22 4.59
13 19.63 10.84 6.21 4.56
14 19.82 10.89 6.20 4.53
15 19.98 10.93 6.19 4.50
16 20.12 10.96 6.17 4.48
17 20.23 10.99 6.16 4.45
18 20.33 11.00 6.14 4.43
19 20.41 11.02 6.13 4.41
20 20.48 11.03 6.11 4.39
21 20.55 11.04 6.10 4.37
22 20.60 11.05 6.08 4.35
23 20.65 11.05 6.07 4.33
24 20.69 11.05 6.06 4.31
25 20.73 11.05 6.04 4.30
26 20.77 11.05 6.03 4.28
27 20.80 11.05 6.02 4.27
28 20.82 11.05 6.01 4.25
29 20.85 11.05 5.99 4.24
30 20.87 11.05 5.98 4.23
31 20.89 11.05 5.97 4.22
32 20.91 11.04 5.96 4.20
33 20.92 11.04 5.95 4.19
34 20.94 11.04 5.94 4.18
35 20.95 11.03 5.93 4.17
36 20.96 11.03 5.92 4.16
37 20.97 11.03 5.91 4.15
38 20.98 11.02 5.91 4.14
39 20.99 11.02 5.90 4.13
40 20.99 11.01 5.89 4.13

Relative bias
K2 0.05 0.10 0.20 0.30
41 21.00 11.01 5.88 4.12
42 21.01 11.00 5.87 4.11
43 21.01 11.00 5.87 4.10
44 21.02 11.00 5.86 4.09
45 21.02 10.99 5.85 4.09
46 21.03 10.99 5.84 4.08
47 21.03 10.98 5.84 4.07
48 21.03 10.98 5.83 4.07
49 21.03 10.97 5.82 4.06
50 21.04 10.97 5.82 4.05
51 21.04 10.96 5.81 4.05
52 21.04 10.96 5.81 4.04
53 21.04 10.96 5.80 4.03
54 21.04 10.95 5.79 4.03
55 21.04 10.95 5.79 4.02
56 21.04 10.94 5.78 4.02
57 21.05 10.94 5.78 4.01
58 21.05 10.93 5.77 4.01
59 21.05 10.93 5.77 4.00
60 21.05 10.93 5.76 4.00
61 21.05 10.92 5.76 3.99
62 21.05 10.92 5.75 3.99
63 21.05 10.91 5.75 3.98
64 21.05 10.91 5.74 3.98
65 21.04 10.91 5.74 3.97
66 21.04 10.90 5.73 3.97
67 21.04 10.90 5.73 3.96
68 21.04 10.89 5.72 3.96
69 21.04 10.89 5.72 3.96
70 21.04 10.89 5.71 3.95
71 21.04 10.88 5.71 3.95
72 21.04 10.88 5.71 3.94
73 21.04 10.88 5.70 3.94
74 21.04 10.87 5.70 3.94
75 21.04 10.87 5.69 3.93



Table 3: Critical values of minEval GT /K2 at the 5% significance level (n = 3)
Relative bias

K2 0.05 0.10 0.20 0.30
5 9.46 6.63 5.01 4.32
6 12.15 7.78 5.36 4.42
7 13.91 8.51 5.57 4.45
8 15.16 9.01 5.70 4.47
9 16.08 9.38 5.78 4.46

10 16.79 9.65 5.84 4.45
11 17.34 9.85 5.88 4.44
12 17.79 10.01 5.90 4.42
13 18.16 10.14 5.92 4.41
14 18.47 10.25 5.93 4.39
15 18.73 10.34 5.94 4.37
16 18.95 10.41 5.94 4.35
17 19.14 10.47 5.94 4.34
18 19.30 10.52 5.94 4.32
19 19.44 10.56 5.93 4.31
20 19.57 10.60 5.93 4.29
21 19.68 10.63 5.92 4.28
22 19.78 10.65 5.92 4.26
23 19.87 10.68 5.91 4.25
24 19.95 10.70 5.91 4.24
25 20.02 10.71 5.90 4.22
26 20.08 10.73 5.89 4.21
27 20.14 10.74 5.89 4.20
28 20.19 10.75 5.88 4.19
29 20.24 10.76 5.87 4.18
30 20.29 10.77 5.87 4.17
31 20.33 10.78 5.86 4.16
32 20.36 10.78 5.85 4.15
33 20.40 10.79 5.85 4.14
34 20.43 10.79 5.84 4.13
35 20.46 10.80 5.83 4.12
36 20.49 10.80 5.83 4.11
37 20.51 10.80 5.82 4.10
38 20.53 10.81 5.82 4.10
39 20.55 10.81 5.81 4.09
40 20.57 10.81 5.80 4.08

Relative bias
K2 0.05 0.10 0.20 0.30
41 20.59 10.81 5.80 4.07
42 20.61 10.81 5.79 4.07
43 20.63 10.81 5.79 4.06
44 20.64 10.81 5.78 4.05
45 20.66 10.81 5.78 4.05
46 20.67 10.81 5.77 4.04
47 20.68 10.81 5.77 4.03
48 20.69 10.81 5.76 4.03
49 20.70 10.81 5.76 4.02
50 20.71 10.81 5.75 4.02
51 20.72 10.81 5.75 4.01
52 20.73 10.81 5.74 4.01
53 20.74 10.80 5.74 4.00
54 20.75 10.80 5.73 4.00
55 20.75 10.80 5.73 3.99
56 20.76 10.80 5.72 3.99
57 20.77 10.80 5.72 3.98
58 20.77 10.80 5.71 3.98
59 20.78 10.80 5.71 3.97
60 20.79 10.79 5.71 3.97
61 20.79 10.79 5.70 3.96
62 20.80 10.79 5.70 3.96
63 20.80 10.79 5.69 3.95
64 20.80 10.79 5.69 3.95
65 20.81 10.79 5.69 3.95
66 20.81 10.78 5.68 3.94
67 20.82 10.78 5.68 3.94
68 20.82 10.78 5.67 3.93
69 20.82 10.78 5.67 3.93
70 20.83 10.78 5.67 3.93
71 20.83 10.77 5.66 3.92
72 20.83 10.77 5.66 3.92
73 20.83 10.77 5.66 3.92
74 20.84 10.77 5.65 3.91
75 20.84 10.77 5.65 3.91



Table 4: Critical values of minEval GT /K2 at the 5% significance level (n = 1)
Size distortion

K2 0.10 0.15 0.20 0.25
1 16.52 8.88 6.96 6.78
2 19.84 11.60 8.75 7.41
3 22.18 12.86 9.50 7.79
4 24.46 14.00 10.20 8.23
5 26.77 15.13 10.92 8.72
6 29.10 16.28 11.67 9.25
7 31.45 17.43 12.42 9.80
8 33.81 18.59 13.19 10.37
9 36.19 19.76 13.96 10.94

10 38.57 20.94 14.75 11.53
11 40.96 22.12 15.53 12.12
12 43.35 23.30 16.32 12.71
13 45.75 24.49 17.12 13.31
14 48.15 25.67 17.92 13.91
15 50.55 26.87 18.71 14.52
16 52.96 28.06 19.52 15.12
17 55.37 29.25 20.32 15.73
18 57.78 30.45 21.12 16.34
19 60.19 31.65 21.93 16.95
20 62.61 32.85 22.73 17.56
21 65.02 34.04 23.54 18.17
22 67.44 35.24 24.35 18.79
23 — 36.44 25.16 19.40
24 — 37.65 25.97 20.01
25 — 38.85 26.78 20.63
26 — 40.05 27.59 21.24
27 — 41.25 28.40 21.86
28 — 42.45 29.21 22.48
29 — 43.66 30.02 23.09
30 — 44.86 30.83 23.71
31 — 46.07 31.64 24.33
32 — 47.27 32.46 24.94
33 — — 33.27 25.56
34 — — 34.08 26.18
35 — — 34.89 26.80
36 — — 35.71 27.42
37 — — 36.52 28.04
38 — — 37.33 28.65
39 — — 38.15 29.27
40 — — 38.96 29.89



Table 5: Critical values of minEval GT /K2 at the 5% significance level (n = 2)
Size distortion

K2 0.10 0.15 0.20 0.25
2 6.96 5.32 5.17 5.02
3 13.34 8.21 6.60 5.75
4 16.78 9.76 7.45 6.26
5 19.38 10.98 8.16 6.73
6 21.63 12.05 8.83 7.20
7 23.69 13.06 9.48 7.66
8 25.64 14.03 10.11 8.13
9 27.53 14.98 10.74 8.60

10 29.37 15.92 11.37 9.07
11 31.19 16.84 12.00 9.54
12 32.98 17.77 12.63 10.02
13 34.75 18.68 13.25 10.49
14 36.52 19.60 13.88 10.97
15 38.27 20.51 14.50 11.45
16 40.01 21.41 15.13 11.93
17 41.75 22.32 15.76 12.41
18 43.49 23.23 16.38 12.89
19 45.22 24.13 17.01 13.37
20 46.94 25.04 17.63 13.86
21 48.67 25.94 18.26 14.34
22 50.39 26.84 18.89 14.82
23 52.11 27.75 19.51 15.31
24 53.82 28.65 20.14 15.79
25 55.54 29.55 20.77 16.27
26 57.25 30.45 21.40 16.76
27 — 31.35 22.02 17.24
28 — 32.26 22.65 17.73
29 — 33.16 23.28 18.21
30 — 34.06 23.91 18.70
31 — 34.96 24.53 19.18
32 — 35.86 25.16 19.67
33 — 36.76 25.79 20.15
34 — 37.66 26.42 20.64
35 — 38.56 27.04 21.13
36 — 39.46 27.67 21.61
37 — 40.36 28.30 22.10
38 — — 28.93 22.58
39 — — 29.56 23.07
40 — — 30.19 23.56
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Figure 5: Boundary of the weak instrument set



Figure 6: Critical values of minEval GT /K2 at the 5% significance level



Figure 7: Bounds of the power function when relative bias is 0.1 (n = 2)



Figure 8: Bounds of the power function when size distortion is 0.1 (n = 2)


