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SUMMARY

A range of developments in Bayesian time series modelling in recent years has focussed on issues of
identifying latent structure in time series. This has led to new uses and interpretations of existing theory
for latent process decompositions of dynamic models, and to new models for univariate and multi-
variate time series. This article draws together concepts and modelling approaches that are central to
applications of time series decomposition methods, and reviews recent modelling and applied develop-
ments. Several applications in time series analyses in geology, climatology, psychiatry and finance are
discussed, as are related modelling directions and current research frontiers.
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1. INTRODUCTION

The identification and interpretation of latent processes underlying observed time series is an
old and essentially archetypal problem in time series analysis. In recent years applied interests
in a variety of fields have stimulated Bayesian time series research focussed on latent structure
analysis. This has led to theoretical developments of new decomposition methods that has gen-
erated new methodology and associated computational tools for model fitting and exploration.
A collection of related research directions in this area are tied together and reviewed here, with
reference to ranges of applications and new research directions.

We begin in Section 2 with discussion of univariate dynamic models and highlight concepts
and methods of time series decomposition to infer characteristics of underlying latent compo-
nent processes. These results are very general, arising in a broad class of dynamic models,
and utilise new interpretations of existing theory of decompositions of dynamic models. The
theory is exemplified in the simple but very important special case of a time series with a latent
autoregressive component, and with a summary of an application in a climatological modelling
and prediction problem. The section continues with more general time-varying autoregressive
models as components of a time series, where the generality and broader utility of decomposi-
tion results becomes apparent. The section concludes with a summary of analysis of a model
in this class applied to a geological time series study. Section 3 takes these models further,
with applied motivation drawn from studies of EEG time series arising in clinical psychiatric
studies. This begins with further discussion of the methodology of univariate decompositions
for non-stationary time series, and moves into comparisons of analyses across several related
time series. The section concludes with discussion of issues and theory associated with latent
factor structure in multivariate time series, including commentary on the extensions of univari-
ate decomposition results to multivariate dynamic models. Section 4 introduces a special class
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of multivariate latent factor models, namely dynamic factor models with multivariate stochas-
tic volatility components, of interest in financial time series analysis. Section 5 concludes with
summary remarks on additional multivariate dynamic modelling developments and current re-
search frontiers.

2. UNIVARIATE TIME SERIES DECOMPOSITIONS AND LATENT STRUCTURE
2.1.Introduction

Much of the recent development in latent structure analysis is based on novel extensions and
exploitation of the fundamental component structure of dynamic models (West and Harrison
1997, chapter 6). Begin with a general dynamic linear model (DLM) in which the scalar time

seriesy;, observed at equally spaced time poihts 1, 2, ..., is modelled as
y=xi+v, x=F, 6 =G _1+uw (2.1)
for eacht. Herex; is the latent signal process, is an observation erroé; = (6,1, ...,0:4)’

is thed x 1 state vectorf; is the column regressioi—vector, G, is thed x d state evolu-

tion matrix, andw; is the stochastic state evolution noise, or innovation. Oftenttandw;
sequences are mutually uncorrelated white noise, though more complex structures are possible
and sometimes useful.

This is a very general class of models. Important special cases discussed below include
constant models, characterised by constamnd G elements, and time-varying parameter
regressions and autoregressions, among others. The central decomposition result is that the
signal process in (2.1) has the representation

dy dq
Ty = Zzt,j + Z at,j (2.2)
j=1 j=1

where, for eacly, z;; anda; ; are underlying latent processes with specific and relatively
simple structure. Both the numbeis., d,) and structure of these latent processes are model
dependent, and the utility of the decomposition result is evident through their definitions and
interpretations in specific special cases. Some key special cases exemplify this in the following
sections. Full background and mathematical details of this construction are given in West,
Prado and Krystal (1997), and in special cases in West (1997c) and West and Harrison (1997,
sections 9.5, 9.5 and 15.3).

2.2.Latent Structure, Prior Specifications and Model Uncertainty in Autoregressions
The simplest, and important, special case is that of an autoregressive signal in noise, in which
= Y0, ¢jmi_j + wy. This is a special case of (2.1) with

1 b1 P2 P30 Pa1 Pa Wi
0 1 0 o --- 0 0 0
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: : 0 : :
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for all t. Note the constancy &fandG terms. In this case, the eigenvaluesodre the recipro-
cals of the usual characteristic roots of the(Rmodel, and the decomposition (2.2) is related
to the standard partial fractions expansion of AR processes. Suppose the reciprocal eigenvalues
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occur as, pairs of complex conjugates exp (+ic;), (j = 1,...,d.), andd, real values;,
(j=1,...,d,),where2d.+d, = d. Thenz ; is a latent, quasi-periodic ARMA&, 1) process—

a damped sinusoid of time-varying amplitude and phase, and fixed frequerfasavelength

or period2r/«;.) Eacha, ; is a simple AR(1) process with AR parametgr In application,

it is often the case that some of the latent processes, and particulary;thbeocesses, have
physical interpretation. The utility of the theory is in identifying and estimating these pro-
cesses, and then investigating possible physical meaning. The quasi-periodic components are
often primary, in connection with time-varying periodicities in the time series under study.

It is common to fit higher-order AR models to provide empirical approximations to lower
order ARMA models or non-linear features in the series. This means that latent components
with lower moduliir;, and/or very high frequencies;, are induced in order to capture corre-
lation structure in the series but do not represent physically meaningful components. Thus the
prior perspective in a new application is that a higher-order model is likely needed, but that only
a small number of the latent components will have higher modulii and lower frequencies, and
that these will be of primary interest. This leads to a focus on component structure in assessing
prior distributions for both model parameters and model ol€dne of the major develop-
ments arising from this is a novel class of smoothness priors developed on the eigenvalues of
G. In addition to this novel and practical focus in prior specification, this carries an immediate
benefit in dealing with model order uncertainty. This is developed in Huerta (1998), and Huerta
and West (1997a,b), which include a range of examples in component assessment, prediction
and spectral analysis. Our work here provides a very different approach to prior modelling
and model uncertainty than other recent approaches (e.g., Barnett et al 1996) in AR models.
Among other things, the very practical focus on component structure leads to new classes of
smoothness priors on thg coefficients, permits models of possibly very high order, trivially
concentrates on the AR stationary region or its boundaries, and allows unit roots to model per-
sistent low frequency trends and sustained periodicities (related to alternative approaches in
West 1995 and 1996). This latter feature helps to resolve difficulties in inference on “spikes”
in spectral densities in using AR models (Huerta and West 1997b) that arise in standard ap-
proaches where unit roots are disallowed. Model fitting involves customised MCMC methods
that are fully developed, explored and exemplified in the above references, with direct exten-
sions to problems of missing observations and data analytic issues. We note further that, though
our focus on component structure and assessment of latent processes is novel, others have ex-
plored inference on autoregressive root structure under more standard prior distributions (e.qg.,
Geweke, 1988,89).

Finally, though not pursued here, the focus on component structure of state space models
has also generated a quite novel theorgaritinuoudime state space models (Huerta 1998), to
be reported in the near future. This has been important, for example, in analysis of geological
time series which can have very erratic spacings, and small numbers of very long gaps between
consecutive observations. These developments also have potential uses in addressing issues of
timing uncertainty (West 1996, 97a; Li 1997).

A currently very topical example, drawn from Huerta and West (1997a), concerns a se-
ries of observations on theouthern Oscillation IndegSOI) of interest in monitoring global
climatic variability. This is a series of 540 monthly measurements (during 1950-1995) of the
“difference of the departure from the long-term monthly mean sea level pressures” at Tahiti
in the South Pacific and Darwin in Northern Australia (Trenberth and Hoar 1996) known as
the El Niro southern oscillation series. The series, in the upper frame of Figure 1, oscillates
about zero and the predominance of negative values in more recent years is related to a recent
warming in the tropical Pacific. Of key climatological concern has been the long run of 22
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months of consecutive negative values during the last two years of the series. Trenberth and
Hoar (1996) conclude that, under a stationary ARMA model for the data selected from a set
of possible models, this run is so unlikely as to cast serious doubt on stationarity and suggest
structural changes in favour of a warming trend.

One analysis is summarised in Figure 1. The smoothness prior structure adopted here
allows models of order up t@ = 40. Figure 1 displays the resulting posterior tbfover the
range plotted, the prior faf is essentially uniform). Uncertainty abadis high, though values
in the 8-14 range are indicated. Figure 1 graphs posterior means of three identified dominant
latent z; ; components over time, each on the same vertical scale as the original data. The
posterior indicates that three quasi-periogi¢ components with largest moduti} also have
largest amplitudes; the trajectories displayed are of posterior means for these three components.
The first is clearly dominant, and has a period of around 4 to 5 years, consistent with historical
analyses of El Nto periodicities. Beyond the displayed components, subsidiary components
all have lower amplitudes. It should be stressed that these inferences fully incorporate model
order uncertainty as these are posterior estimates averaging over the postefiovéato not
know how many components there are, but there are clearly at leastthreemponents.
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Figure 1. Aspects of SOl analysis. Left frame: SOI series and three latent components. Upper right
frame: Posterior distribution on model ordet. Lower right frame: Predictive distribution for run
length of negative values in the next 540 months.

Our assessment of the recent run of 22 negative values is purely predictive. From the
model we repeatedly simulate the next 540 months, generating “sample futures” over a time
span equal to that of the data. This trivially delivers a Monte Carlo approximation to the pre-
dictive distribution of a run length of 22 negatives during that time period; see Figure 1. The
probability of runs of length 22 or more @502, which may be compared with the correspond-
ing value of 0.00015 assessed by Trenberth and Hoar (1996). Our view is that these authors are
wildly extreme in their assessment, partly due to ignoring both model and parameter uncertain-
ties that are appropriately represented in our analysis. We conclude that the chance of such a
run reoccurring in the next 45 years is only about 1 in 50, so the event is indeed unusual under
a stationary linear model, though by no means as unusual as the earlier analysis suggested.
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2.3.Nonstationary Time Series Decompositions

A range of recent developments and applications of decomposition analys&s-stationary

models have adapted the above framework to thahw-varying autoregressior(g.g., Kita-

gawa and Gersch 1996, chapter 11; West and Harrison 1997, section 9.6). These simply adopt
the model (2.1, 2.3) but now with time-varying AR parametgrs= (¢y,1, - .., ¢ 4)" in the first

row of G;. An additional evolution model for the dynamic variationgfcompletes the spec-
ification, and this is often taken as a neutral random walk- ¢;_; + §; for some zero-mean
innovationg; (e.g., West, Prado and Krystal 1997). Now the decomposition (2.2) still arises,
though with subtle differences due to the time-variation in model param@te/st each time

pointt, the latent processesg; anda, ; exist and have the instantaneous forms of ARZA)

and AR(1) processes, but now the defining modulii and frequencies are subject to change over
time. There is also an element of linear mixing of the latent processes through time that slightly
changes the theory, though this is generally completely negligible from a practical viewpoint
(see discussion in West, Prado and Krystal 1997, and Prado 1998). In cases where the identified
latent processes ; have physical interpretation, the changes over time in their frequengjes

and moduliir; ; (both now indexed by as they are time-varying) are often of primary interest.
These changes represent patterns of time-variation in spectral characteristics of the;signal
Assessment of changes over time in these parameters can be viewed as a novel approach to
exploring time-variation in spectral density functions, and the corresponding decomposition
analysis represents a form of spectral decomposition in the time domain.

An example from geology concerns patterns of relative change in latent processes underly-
ing variation in levels of geochemical indicators spanning the last few million years. Figure 2
graphs a series of oxygen isotope measures during the last 2.5million years (one of a collection
of such series, another of which was presented and analysed with a slightly different, constant
parameter model in West 1997a; see also West 1997b,c). The data measure relative abundance
of 6'®0 to 60 on a time scale of 3000 year (3kyr) intervals stretching back roughly 2.5Myr.
The nature of changes over time in the structure of the evident time-varying periodicities in
the data, induced by the forcing earth-orbital periodicities, are of interest in connection, partic-
ularly, with the changing nature of the so-called100kyr “ice-age cycle” (Park and Maasch
1993). An extension of the time-varying AR model to incorporate a locally-constant, first-order
polynomial trend component is needed to adequately model the apparent increasing levels over
this time period, associated with generally increasing global temperatures in more recent times
(note that the data is plotted with time reversed). That apart, the decomposition analysis ap-
plies for any specified model, and analysis here is based on the trend plus time-vary2tg AR
model. The resulting posterior means of four dominaptcomponents are graphed in the left
frame of Figure 2, on the same vertical scales for comparison; the residual components are
negligible by comparison, so that the data series is essentially the sum of the trend plus four
oscillatory components graphed. Corresponding to these four latent processes are their individ-
ual wavelengths (or periods), now time-varying. The posterior means of the time trajectories
of the periods appear in the lower right frame of Figure 2, corresponding in order, from the
top down, to the latent processes labelled 1 to 4. We see that the estimated periods are very
stable, almost constant over the time interval, and the values correspond to the known ranges
of cycle lengths of the main earth-orbital cycles: that is, around 110kyr for cycles induced by
the eccentricityof the earth’s rotation about its axis, around 41-43kyr fordbequity of the
Earth’s orbit around the Sun, and two possiptecessionargycles induced by precession of
the Earth about its axis, with periods of around 19 and 23kyr respectively. The changing form
of the dominant eccentricity or “ice-age cycle” is of particular interest. The vertical lines in the
figure indicate the point (and the only point) at which the estimates of the relative amplitudes
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of the two dominant latent cycles switched order, at about 1.1million year ago. Prior to that
point, the ice-age cycle had lesser amplitude; characterising the timing of this switch-over is
of current geological interest in connection with whether or not the increased significance of
this cycle was gradual, or the result of abrupt and significant structural climatic change (Park
and Maasch 1993). Our analysis does not model change points per se, of course, and this ini-
tial study suggests that an elaboration to include the possibility of abrupt changes in the AR
parameters would be of interest to help resolve this issue. Nevertheless, this initial “routine”
decomposition analysis provides interesting insights, and exemplifies the use of such methods
for spectral decompositions in the time domain.
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Figure 2. Decomposition analysis of oxygen isotope series. Left frame (top down): Estimates of under-
lying trend and first four quasi-cyclical latent processes in isotope series. Upper right frame: Data with
estimated trend. Lower right frame: Trajectories of the estimated periods (in thousands of years) of the
four dominant quasi-cyclical components. The vertical line in the period graph indicates the point at
which the relative amplitudes of the first two components switched.

3. LATENT STRUCTURES IN MULTIPLE TIME SERIES
3.1.Exploring Related Univariate Decompositions

A range of recent applied studies has been generated in the area of EEG analysis (Prado and
West 1997, West, Prado and Krystal 1997). In treatment of human subjects with critical neuro-
psychiatric disorders, such as major depression, electroconvulsive (ECT) therapy is among
the most effective clinical treatments (Weiner and Krystal 1993). In ECT a brain seizure is
evoked, inducing major increases in amplitudes and frequencies of electrical potential fluctua-
tions measuring neural communications. Effective seizures are characterised by longer lasting,
high amplitude fluctuations, and clinical psychiatrists investigate treatment effects by explor-
ing differing patterns of seizure stimulus. The resulting electroencephalographic (EEG) traces
— long time series of potential fluctuations at various scalp locations — provide the main data
on which to compare and assess the differences in characteristics of seizures. As illustrated
in the above references, time series decomposition methods allow us to characterise the time-
frequency structure of such records by isolating latent components representing fluctuations in
various key frequency ranges. The comparison of the time courses of parameters defining these
latent components (amplitudes, frequencies/wavelengths, modulii) provide accessible graphi-



Bayesian Time Series 7

cal displays for evaluation of the nature of the seizure effects in different wavebands, and for
comparisons across seizures for the same patient but under differing ECT treatment controls.
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Figure 3. Decomposition analysis of EEG series: channel 18. Left frame: Time series and estimated
trajectories of five main latent components. Right frame: estimated trajectories of the time-varying
wavelengths of the three dominant components.

Figure 3 displays aspects of an analysis of an EEG series from a dataset in Prado and West
(1997). The data in the first frame is a section of an EEG trace from one of 19 “channels” at
different scalp locations on a patient in seizure. Analysis of EEG data using time-varying au-
toregressions has a history, with notable contributions in the work of Will Gersch and coauthors
(see references in Kitagawa and Gersch 1996), and our developments of latent factor decom-
positions complement and extend such prior work in this applied field. The model assumes
d = 12 and time variation is modelled using standard discount factor methods. The graph
displays estimated trajectories of five latent, quasi-cycligalprocesses, displayed from the
top down in order of increasing frequencies (decreasing wavelengths). These represent brain
potential fluctuations in key wavebands. The data and components are graphed on the same
scale for comparison. Trajectories of the estimated wavelengths of the first three, key compo-
nents appear in the right frame of the figure. On the time scale here, the wavelength of the first
component varies between 17-25 which, converting to the original time scale of the data corre-
sponds to a frequency range of between 1.5 and 3 cycles per second (cds)tdleaveband
of brain fluctuations. This is thdelta “slow wave”that dominates seizure induced activity.
Over the full time course of a seizure, this wave is initially negligible but then, as the seizure
takes hold, increases rapidly in amplitude to become the dominant feature, then eventually de-
cays as the seizure tails off. The section of seizure displayed here is in the central, active part;
related analyses in Prado and West (1997) display similar graphs for other channels in which
the early and late stages are included. A key feature here is the gradual increase in wavelength
of the delta wave, corresponding to decreasing frequency of fluctuations as the seizure matures
and begins to decay. Related graphs of time trajectories of the corresponding modulii and am-
plitudes indicate general stability of these parameters over time, but with a gradual decay of
the amplitude of the delta wave consistent with the evolution of the seizure. Components 2
and 3 are in th¢heta(4 — 8cps) andalpha(8 — 12cps) wavebands respectively, and represent
“normal” brain activity that is distorted by the seizure but whose characteristics nevertheless
remain relatively stable over time as identified by the decomposition analysis. A similar com-
ment applies to the lower amplitude components 4 and 5, the so-¢aiedavesn the beta



8 West et al

waveband. This kind of analysis is a first in the sense of providing deconvolution of the EEG
series into isolated and identifiable components corresponding to standard frequency ranges,
and the resulting assessment of patterns of change in defining parameters over time that charac-
terise the response to the specific ECT treatment. Further examples and discussion, including
explicit comparisons of two treatments, appear in West, Prado and Krystal (1997).

Across the full set of 19 EEG channels, similar analyses yield similar inferences: each
channel represents a noisy convolution of many underlying brain processes that interact with
time-varying characteristics and that are evidenced in individual, univariate analyses. Com-
parisons of individual univariate decomposition analyses do provide insights into issues of
variations across channels. For example, the left frame in Figure 4 plots the trajectory of the
wavelength parameter of the delta waveform, estimated from each channel separately. The
dominant delta wave is very stable across channels, and the obvious commonality indicates an
underlying, “driving” mechanism, and suggests a multivariate model with all channels driven
by a time-varying seizure process. Note that the time scale here now represents nearly all of the
seizure record, and we see that the estimated wavelengths vary more widely in the later stages
of the seizure record, primarily as a result of increasing uncertainty about this delta wave as
it decays in amplitude. The right frame in Figure 4 displays related estimates of amplitudes
of the dominant delta component across channels. For each individual channel analysis, we
simply graph the estimated amplitude (in terms of voltage potential level) at four selected time
points (¢ =1000, 2000, 3000 and 3650) during the seizure time course. Note the apparent
cyclical form as a function of channel index; though the waveform is consistent across chan-
nels, there are small but significant lags between channels that induce this periodic graph and
that can be related to the physical layout of the channels on the scalp, as discussed in Prado
and West (1997). Spatially contiguous locations do tend to be more highly related in terms of
their temporal patterns of change in amplitude. In addition, there is evidence that the lag struc-
tures across channels are evidently slowly varying in time, which suggests that very significant
complications will be faced by multivariate models that attempt to isolate common underly-
ing latent processes. Comparative evaluation of independent univariate decompositions is, in
contrast, immediately accessible.
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Figure 4. Multiple EEG series: 19 channels. Left frame: Trajectories of wavelength of dominant latent
component from independent univariate models. Right frame: Amplitudes of dominant latent component
in independent univariate series at four time points during the seizure.
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3.2. Multivariate Models and Decompositions

The multiple EEG series framework is an example of a range of problems in which it is de-
sirable to introduce multivariate models involving underlying latent factor processes. Various
such models and approaches have been introduced during the last couple of decades, includ-
ing, for example, the foundational work of ##e and Box (1987), contributions by Tiao and
Tsay (1989) and Escribano anddag(1994) related to cointegration and common component
time series models, and, more specific to the Bayesian forecasting world, dynamic hierarchical
models as developed by Gamerman and Migon (1993). We explore some basic ideas of factor
modelling here.

Considern parallel time serieg; ;, (i = 1,...,m), that are driven by: < m underlying
latent processes; ;, (7 = 1,...,k), in a time-varying, dynamic linear model. Writiryg for
them—vector time series anx} for the k—vector latent process, a rather general framework is
generated by the dynamic model

Yy = BiX; + vy (31)

overt = 1,...,n, where they; are zero-mean observation error vectors, andBthare dy-

namic regression matrices to be estimated. In factor analytic terminodoggpresents a latent
factor process and th®; are time-varying factor loadings. The EEG context, for example, is
suggestive of a model of the form (3.1) in which the elements;adre current and lagged
values of the latent waveforms in various frequency bands, in which case they will be appro-
priately modelled via time-varying autoregressions, or possibly time-varying ARMA models.
At a level of generality similar to (3.1), such models and others can be represented by a time-
varying vector autoregression for tReprocess directly. Combined with (3.1), this generates

a very rich and flexible structure for dynamic latent factor modelling, but one that is a long
way from providing practical and implementable methodology. The issues of parametrisation
and identification are key, raising questions about appropriate structuring and parametrisation
of thex; process model, and of strict parametric constraints oBthmeatrices. The framework

is intriguing but the research agenda only just entered (Prado and West 1997).

Theoretical progress has been made in exploring and extending the time series decompo-
sition results discussed earlier to multivariate settings. The results are perhaps surprisingly
complete theoretically, though they have yet to be explored and exploited in practice. Con-
sider equation (3.1) and suppose thabllows a time-varying parameter vector autoregressive
model. Then, extending the foundational results ai&?and Box (1987) to time-varying pa-
rameter contexts, it follows that, itself follows a time-varying vector ARMA model. Often
this will be adequately represented by a higher-order vector autoregression, again with time-
varying parameters, and the focus for decomposition theory may therefore be restricted to this

class. A general model has
d

Yy = Z DY+ wi (3.2)
j=1

where the®, ; are time-varying coefficient matrices angdis a sequence of zero-mean vector
innovations. It turns out that the univariate decomposition (2.2) has a direct extension to this
multivariate context, obtained by casting (3.2) in state-space form. Full details can be found
in Prado (1998). Key aspects of this result relate to the implied component structure of the
univariate elements of;. In particular, eachy; ; has a decomposition of the form (2.2) and ev-
ery characteristic component frequency and modulus appears in eachypf.tidis result is
surprising, and suggestive of potential decomposition methodology arising from time-varying
vector AR models. It is perhaps best appreciated in the case of constant parameters ;
for all ¢. In such a case, eagfp; series has a decomposition as the sum of several AR(1) and
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ARMA(2,1) processes. Focus on the ARMA(2,1) processes initially — it turns out that there
are a subset of ARMA(2,1) component frequencies and modulii that are common across the
yt,i, though the observed amplitude and phase characteristics are specific to.Jesanilar
comment applies to the latent AR(1) processes. Hence we have a framework in which under-
lying latent phenomena “drive” the univariate output segigs but in which the effects of the
latent processes are distorted and convoluted by factors specific to the individual output series.
This encompasses, for example, an underlying waveform of a fixed or time-varying frequency
arising as a component of each of the but with time-variation in lag structure across series

i, or precisely the kind of phenomena observed with multiple EEG series. Future develop-
ment of time-varying vector models is therefore suggested, and this link-up is also natural in
view of existing studies of EEG and related series with vector autoregressions (Kitagawa and
Gersch 1996), which may now be extended in practically important ways based on this novel
perspective on latent components. Future applied work here will exploit this theory.

4. DYNAMIC FACTOR MODELS FOR MULTIPLE TIME SERIES

Recent methodological research in structured dynamic latent factor models has been motivated
by financial forecasting problems where time-varying volatility plays a key role. Aguilar and
West (1998a) develop and illustrate such models in forecasting and portfolio construction for
multiple time series of international exchange rates, relating to and building on foundational
work Quintana (1992), Putnam and Quintana (1994), and Quintana and Putnam (1996), and
following earlier modelling developments as reported in Quintana and West (1987). These
dynamic factor modelare direct generalisations of univariate stochastic volatility models, as
mentioned by Harvey, Ruiz and Shephard (1994), Jacquier, Polson and Rossi (1994, 95), and
Kim, Shephard and Chib (1998). In particular, Aguilar and West (1998a) extend models and
associated computational methods suggested in Kim, Shephard and Chib (1998), and their work
is intimately related to the important and independent studies of Shephard and Pitt (1998).

At a general level, dynamic factor models are based on (3.1) with specific and rather struc-
tured models for th&; andx; processes. For an—vector time series of financial returgs
the primary model extends (3.1) to

Y =60+ BiXe + 1y (4.1)

where

e 0, is a dynamic level vector, possibly including regression on econometric predictors;

® X; = (w1...,241) IS ak—vector latent factor process such that~ N(0,H;) are

conditionally independent with diagonal variance maktixchanging over time;

e v, ~ N(0O,¥,) with diagonal variance matri¥,; and

e y; andx, are mutually independent for all s.
The central notion here is that, beyond the potential to predict returns as modellgolatierns
of residual variation and, critically, correlation among the univariate serggsmay potentially
be explained by a small number of latent factor processes, sé thatften much less tham.
Conditional on all quantities but the latent fackgr the instantaneous variance matrix yoiis

%, = B/H/B, + T, (4.2)

which is of standard factor form but with possibly time-varying components. If volatility struc-
ture exhibited in the financial outcome serigsis in fact largely determined by structural
changes in volatility of a few underlying factor processes, and if this underlying volatility can
be adequately modelled, there is resulting potential for meaningful gains: increased accuracy
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in forecasting changes in variance-covariance patterds in (4.2) that are critical in deter-
mining portfolio allocation decisions (Quintana 1992; Quintana and Putnam 1996; Aguilar and
West 1998a); and increased control over resulting investment risks due to increased opportu-
nities for informed interventions based on econometric interpretations of the underlying factor
processes. These issues are key motivations behind recent work with these models.

Aguilar and West (1998a) use multivariate extensions of standard stochastic volatility mod-
els. TakeH; as diagonal with elementsp()\; j), where ), ; is the log of the instantaneous
variance of thg'™" latent factor at time. Write A, for the vector of the\; ;. The model adopts
a stationary vector autoregression of order one, namely

M=p+PNg —p)+w (4.3)

with independent innovations ~ N (0, U) for some innovations variance mattik Note that

our models explicitly allow contemporaneous dependencies between the innovations impacting
the volatilities across factors through the general variance mid{raxfeature that is strongly
supported in data analyses such as that summarised below. Model completion requires impo-
sition of identifying parametric constraints to determine a specific model within this dynamic
factor model class. Aguilar and West (1998a) study international exchange rates in a model that
adopts a constant factor loading matBx = B whose upper triangular elements are zero, a
parametrisation used, for example, in Geweke and Zhou (1996). They also constrain to constant
level parameters; = 6 and series-specific residual variandes= ¥ = diag(¢1, ..., ¥n)

for that specific, preliminary analysis and illustration of the modelling approach. Model imple-
mentation requires, in addition, informed prior distributions and the development of numerical
methods. It is beyond our scope here to review the computational algorithms used in Aguilar
and West (1998a), but note that they they involve a range of customised MCMC components
originating from Kim, Shephard and Chib (1998), drawing on Geweke and Zhou (1996) and
using techniques in West and Aguilar (1997).

Figure 5 displays some aspects of an analysis of exchange rates, relative to the $US, of a
collection of 12 major international currencies (extending the preliminary study of 6 currencies
in Aguilar and West 1998a). In the specific model used here, we analysed the returns on daily
spot rates over a period of several years, a total of 2,561 observations on each series. The
factor model allowed: = 6 factors, and of these we focus on two for illustration: these are
two factors related primarily to the Japanese Yen and the British Pound, respectively, but have
the interpretations of factors for these currencies that are already “corrected” for movements
in exchange rates of other key currencies, namely the German (Deutsch) Mark and Canadian
Dollar, relative to the $US dollar. For our purposes here, the two latent factors of interest
can be viewed as, and are referred to as Jpenese Yen factand theBritish Pound factor
underlying co-movements in the full set of 12 exchange rate returns series. Further details of the
model, analysis and its uses will be reported in a forthcoming article. In Figure 5 the left hand
frames relate to the Japanse Yen, the right hand frames to the British pound. The daily spot rates
appear in the first row of figures, and the daily returns (defined simpfpas /Spot;_; — 1)
in the second row. Our strategy for data analysis and computation is fully discussed in Aguilar
and West (1998a). Resulting posterior samples for all model parameters and latent processes
may be explored and summarised in various ways for posterior and predictive inferences, and
for model checking. Figure 5 displays some selected posterior summaries for key processes
related to the Yen and Pound series from the current analysis.
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Figure 5. Aspects of analysis of 12 international exchange rate series under a dynamic factor model.
First row: Daily exchange rates of Yen and Pound in $US. Second row: Daily returns on exchange rates.
Third row: Estimated volatility processes of Yen and Pound return series. Fourth row: Estimated Yen
and Pound latent factor processes underlying co-movements in the full set of 12 exchange rate returns
series. Fifth row: Estimated volatilities of Yen and Pound factor processes.
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The graphs in Figure 5 present estimated time trajectories, in terms of posterior means, for
three key latent processes related to each of the two currencies. The third row of frames in
Figure 5 displays such estimates for the conditional standard deviations of the Yen and Pound
return series, respectively; at each timthese are simply the square roots of the corresponding
diagonal elements of the “current” conditional variance-covariance niatiot the vector time
series. To some extent these kinds of graphs provide for informal, subjective model checking;
the estimated volatility series should appropriately “match” the observed fluctuations in the
return time series, as we see is the case here. In addition, off-line parallel analysis of univariate
return series using standard univariate stochastic volatility models (the special case-of
k = 1 here) can be routinely performed to provide comparisons that assist in validation of the
MCMC analysis. A key feature of this time series is the major “event” associated with the
forced withdrawal of Britain from the European Monetary System (EMS) in September 1992,
resulting in increased volatility patterns in the series captured by this model. The associated
imposition of target currency bands for several EU currencies in September 1993, that played a
key role in breaking the EMS (Quintana and Putnam 1996, section 5), is reflected in additional
spurts of increased volatility in the Yen series, though hardly impacts the Pound. The fourth
row of frames displays the posterior means of the Yen and Pound factor procgsseer
time. The final row displays the time series of estimated conditional standard deviations of
these two factors, namely the posterior meansxgf()\; ;/2) for all ¢t andj = 1,2. On the
log scale, the volatility AR processes are highly persistent, with posterior distributions for the
diagonal matrix of AR coefficient® strongly supporting values in tie95 — 1 range; this
is indicative of the potential for improved short-term forecasting of changes in volatility under
such models relative to the more standard “random walk” models underlying Bayesian variance
matrix discounting (Aguilar and West 1998a; Quintana and West 1987) that are used in this
area. Some initial indications of realisation of this potential are discussed in the assessment of
portfolio allocation decisions in Aguilar and West (1998a), and full details of this, and of the
application excerpted here, can be found in Aguilar (1998). Of course, a critical applied interest
in these models, and variants of them, lies in the development of efficient and accurate methods
for sequentialanalysis, as opposed to the “batch” analyses reported here. Some preliminary
investigations of sequential analyses can be found in the closely related work of Shephard and
Pitt (1998) using slightly different models and methods.

5. RELATED DEVELOPMENTS AND CURRENT RESEARCH

Related developments of non-linear and non-normal Bayesian models with multivariate latent
structure are explored in Cargnoni, Muller and West (1997), Aguilar and West (1998b) and
West and Aguilar (1997). These models fall under the general umbrella heading of multi-
variate, discrete dynamic models for longitudinal studies, but all share latent process structure
closely linked to the developments discussed in this review. They also represent non-linear,
multivariate extensions of dynamic generalised linear models (West 1985; West, Harrison and
Migon 1985; West and Harrison 1997, chapter 14). The examples in Cargnoni, Muller and West
(1997) involve collections of related time series of conditionally multinomial outcomes, with
dynamic linear models providing the structure for variation over time, and cross-sectionally,
in functions of the sets of multinomial probabilities. The developments in Aguilar and West
(1998b) and West and Aguilar (1997) arise from motivating applications in institutional assess-
ment and monitoring, and involve multivariate hierarchical models evolving in time, adding
structured time series components to more standard hierarchical models used in this field (e.g.,
Christiansen and Morris 1997; Normand, Glickman and Gatsonis 1997). Here we are dealing
with a large number of related time series of conditionally binomial counts, and adopt multi-
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variate, latent factor dynamic models for vectors of parameters defining the sets of binomial
outcome probabilities. Components of these dynamic models represent vectors of institution-
specific random effects that are typically highly related over time, so that model components
such as (4.3) arise as natural models for embedded latent factor processes. In addition to pro-
viding transfer of modelling ideas and concepts, the commonalities of mathematical structures
across these various models has been important in aiding development of MCMC algorithms
for model fitting and computation. Looking ahead, we anticipate broader application of these
longitudinal dynamic models in various socio-economic contexts.

The above comments speak to the broader interest in dynamic latent process models and
time series decomposition beyond the more traditional linear modelling framework of Section
2 and 3. In fact, the linear framework itself is deceptive; the fundamental equation (2.1) effec-
tively covers many non-linear models too. To see this, note that the state m&yiees the
distributions of the innovations; can be specified as we choose. In typical applied DLMs, the
innovations are normally distributed, or conditionally normal based on hyperparameters that
induce normal mixture models to allow for stochastic jumps in state vectors. However, we are
free to specify these distributions, and may make them conditional on past state vedtors
s < t. Similarly, theG; sequence may be functionally dependent on past state vectors, which
means that the framework allows essentially arbitsaaye-dependemiodels (Priestley 1980),
and hence arbitrary non-linear structures (Tong 1990). Perhaps surprisingly, the decomposition
results arise in such cases too. Hence, though these sections appear restricted to time-varying
linear models, the generality is notable and indicative of potential for future work with latent
structure in state-dependent, non-linear time series.

MCMC methods for model implementation are obviously quite fundamental to this field.
In addition to building on and adapting general simulation methods from the growing toolboxes
available to Bayesians, methods more specific to time series structures are critical in deliver-
ing tried, tested and efficient algorithms (e.g., Carter and Kohn 1994, de Jong and Shephard
1995). One key area of current research interest is focussed on adapting simulation methods
to a sequential analysis context. In the dynamic factor framework of Section 4, for example,
investment decisions are made sequentially in time as new data is processed and the model
inferences adapt to a changing, possibly quite volatile, environment. In this area, in particular,
the applied benefits are only beginning to be exploited, and advances in computational methods
that enable serious real-time, analysis — that is both statistically and computationally efficient —
are likely to have measurable applied impact. We are currently some way from this goal, in any
but relatively “small” models, but recent work, that builds on imputation and adaptation meth-
ods of Berzuiniet al (1998), Liu and Chen (1997), Pitt and Shephard (1997) and West (1993),
has been encouraging. In their parallel development of dynamic factor models, Shephard and
Pitt (1998) demonstrate impressive preliminary results in using these sequential methods. In
addition to computation, there are very many issues of model structure, specification and choice
to be explored in further work on dynamic factor models. We anticipate an active and exciting
near future for this specific area, and for research more widely concerned with the utility of
models and methods focussed on latent structure in time series.
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