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Abstract

We propose a dynamic adaptive partitioning scheme for nonparametric analysis
of stationary nonlinear time series with values in IRd (d � 1). We use information
from past values to construct adaptive partitioning in a dynamic fashion which is then
di�erent from the more common static schemes in the regression set-up.

The idea of dynamic partitioning is novel. We make it constructive by proposing
an approach based on quantization of the data and adaptively modelling partition
cells with a parsimonious Markov chain. The methodology is formulated in terms of
a model class, the so-called quantized variable length Markov chains (QVLMC).

We discuss when and why such a QVLMC partitioning scheme is in some sort
natural and canonical. We explore asymptotic properties and give some numerical
results which re
ect the �nite sample behavior.

Key words and phrases. Conditional heteroscedasticity, Context algorithm,Markov chain, Mul-

tivariate time series, �-mixing, Prediction, Quantization, Stationary sequence, Tree model.
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1 Introduction

We propose a nonparametric analysis for nonlinear stationary time series which is based
on adaptive partitioning. The nonparametric approach is appropriate if there is essentially

no pre-knowledge about the underlying dynamic characteristics of the process and if the
sample size of the observed data is not too small. Such situations arise nowadays in quite
many applications. We refer to Tj�stheim (1994) for a review of nonparametric (and

parametric) models and to Priestley (1988) and Tong (1990) for nonlinear parametric
models.

Nonparametric methods which are able to adapt to local sparseness of the data are very
attractive, they are often substantially better than non-adaptive procedures because of the

curse of dimensionality. In nonparametric modelling of nonlinear phenomena, estimation
of the mean as a function of predictor variables (the regression function) with adaptive
partitioning schemes has attracted much attention, cf. Breiman et al. (1984) with CART,

Friedman (1991) with MARS or Gersho & Gray (1992) for an overview with a more
information theoretical point of view. Some of the partitioning schemes have been studied
also for the case of stationary time series, cf. Lewis & Stevens (1991) with MARS or Nobel
(1997) for general distortion properties of partitioning schemes.

But none of these adaptive partitioning schemes is using the simple fact that in case
of a time series, the partition cells themselves have typically a dynamic characteristic.
Consider a stationary real-valued p-th order Markov chain Yt (t 2 ZZ) with state vector
St�1 = (Yt�1; : : : ; Yt�p) being the �rst p lagged variables. Adaptive partitioning typically

yields models of the form IE[YtjSt�1] =
PJ

j=1 cj1[St�12Rj ] with fRj; j = 1; : : : ; Jg a partition
of the state space IRp. (MARS (Friedman, 1991) uses splines instead of step functions).
This is the common model in the regression set-up with independent errors; the various

schemes di�er by adaptively producing di�erent partitions. But for the time series case
we observe and make use of the following two facts.

(1) Yt is the �rst component of the next state vector St.

(2) Vt�1 =
PJ

j=1Rj1[St�12Rj ] (t 2 ZZ) is a stochastic process with values in fRj ; j =

1; : : : ; Jg. Note that St�1 2 Vt�1 for all t 2 ZZ. Given V1; : : : ; Vt�1 (or Y1; : : : ; Yt�1),
we can learn about a future partition cell Vt.

These facts (1) and (2) simply say that we can learn partially about Yt via Vt (being the

partition cell of which St will be an element) from the partition cell process V1; : : : ; Vt�1
or the data Y1; : : : ; Yt�1 . The novel approach here is to additionally model the parti-
tion cell process (Vt)t2ZZ, thus `making dependence our friend' for adaptive partitioning.
We incorporate this idea by quantization of the real-valued (or multivariate IRd-valued)

data which then yields an adaptive partition cell process as in the fact (2) above, being
modelled with a parsimonious Markov chain. This explains also the expression `dynamic
adaptive partitioning' in the title. It is possible to combine the quantization operation and

the Markov modelling of the partition cell process in a properly de�ned model class for
stationary, ergodic time series with values in IRd (d � 1), the so-called quantized variable
length Markov chains (QVLMC). We argue in sections 2.6, 2.7 and 3.1 why this model
class and its adaptive estimation turns out to be some sort of canonical in the context of

dynamic adaptive partitioning.
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The paper is organized as follows. In section 2 we describe the above mentioned model
class with its properties, in section 3 we discuss adaptive partitioning and estimation of
the models, in section 4 we give some results for asymptotic inference, in section 5 we

discuss the issue about model selection, in section 6 we present some numerical examples
and we state some conclusions in section 7. All proofs are deferred to an Appendix.

2 The QVLMC model

Our general strategy to �nd and �t a nonlinear time series model is to quantize the data

�rst and then use an adaptively estimated parsimonious Markov model for the quantized
series. To make our strategy successful having a �nite amount of data, we need a good
technique for choosing the amount of quantization and a good model for the quantized
series. Both issues are addressed in section 5.

In general, we assume that the data Y1; : : : ; Yn is an IRd-valued stationary time series.

Denote by

q : IRd ! X = f0; 1; : : : ; N � 1g (2.1)

a quantizer of IRd into a categorical set X = f0; 1; : : : ; N � 1g. To be precise, q describes
the discrete structure of a quantizer and does not assign a representative value in IRd, i.e.,

a so-called word in the code book. The quantizer q gives rise to a partition of IRd,

IRd = [x2X Ix; Ix \ Iy = ; (x 6= y);

y 2 Iq(y) for all y 2 IRd: (2.2)

2.1 VLMC for categorical variables

Consider a stationary process (Xt)t2ZZ with values in a �nite categorical space X =

f0; 1; : : : ; N � 1g as in (2.1). We will see in section 2.2 that Xt will play the role of a
quantized variable Yt 2 IRd, i.e., Xt = q(Yt) with q as in (2.1).

In the sequel, we denote by xji = xj; xj�1; : : : ; xi (i < j; i; j 2 ZZ [ f�1;1g) a string
written in reverse `time'. We usually denote by capital letters X random variables and
by small letters x �xed deterministic values. First, we de�ne the variable length Markov

chains. Such kind of models have been introduced in information theory as tree models,
FSMX models or �nite-memory sources. More motivation is given in Rissanen (1983),
Weinberger et al. (1995) or B�uhlmann & Wyner (1997).

De�nition 2.1 Let (Xt)t2ZZ be a stationary process with values Xt 2 X . Denote by

c : X1 ! X1 a (variable projection) function which maps

c : x0�1 7! x0�`+1; where ` is de�ned by

` = minfk; IP[X1 = x1jX
0
�1 = x0�1] = IP[X1 = x1jX

0
�k+1 = x0�k+1] for all x1 2 Xg

(` � 0 corresponds to independence):

Then, c(:) is called a context function and for any t 2 ZZ, c(xt�1�1) is called the context for

the variable xt.
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The name context refers to the portion of the past that in
uences the next outcome. By the
projection structure of the context function c(:), the context-length `(:) = jc(:)j determines
c(:) and vice-versa. The de�nition of ` implicitly re
ects the fact that the context-length

of a variable xt is ` = jc(xt�1�1)j = `(xt�1�1), depending on the history xt�1�1.

De�nition 2.2 Let (Xt)t2ZZ be a stationary process with values Xt 2 X and corresponding

context function c(:) as given in De�nition 2.1. Let 0 � p � 1 be the smallest integer

such that

jc(x0�1)j = `(x0�1) � p for all x0�1 2 X1:

Then c(:) is called a context function of order p, and (Xt)t2ZZ is called a stationary variable

length Markov chain (VLMC) of order p.

We sometimes identify a VLMC (Xt)t2ZZ with its probability distribution Pc on X
ZZ. Also,

we often write Pc(x
j
i ) = IP[Xj

i = xji ] and Pc(xjjx
j�1
i ) = IP[Xj = xjjX

j�1
i = xj�1i ] (i < j)

for (Xt)t2ZZ � Pc.

Clearly, a VLMC of order p is a Markov chain of order p, now having a memory of

variable length `. By requiring stationarity, a VLMC is thus completely speci�ed by its
transition probabilities Pc(x1jc(x

0
�1)); x

1
�1 2 X1. Many context functions c(:) yield a

substantial reduction in the number of parameters compared to a full Markov chain of

the same order as the context function. The VLMC's are thus an attractive model class,
which is often not much exposed to the curse of dimensionality.

A VLMC is a tree structured model with a root node on top, from which the branches

are growing downwards, so that every internal node has at most N = jX j o�springs. Then,
each value of a context function c(:) can be represented as a branch (or terminal node)
of such a tree. The context w = c(x0�1) is represented by a branch, whose sub-branch
on the top is determined by x0, the next sub-branch by x�1 and so on, and the terminal

sub-branch by x�`(x0�1)+1.

Example 2.1 X = f0; 1g, p = 3.
The function

c(x0�1) =

8>>><
>>>:

0; if x0 = 0, x�1�1 arbitrary

1; 0; 0; if x0 = 1; x�1 = 0; x�2 = 0, x�3�1 arbitrary

1; 0; 1; if x0 = 1; x�1 = 0; x�2 = 1, x�3�1 arbitrary

1; 1; if x0 = 1; x�1 = 1, x�2�1 arbitrary

can be represented by the tree � = �c, see Figure 2.1.

A `growing to the left' sub-branch represents the symbol 0 and vice versa for the symbol 1.

Note that such context trees do not have to be complete, i.e., every internal node does not
need to have exactly N = jX j o�springs.

De�nition 2.3 Let c(:) be a context function of a stationary VLMC of order p. The

context tree � and terminal node context tree �T are de�ned as

� = �c = fw;w = c(x0�1); x
0
�1 2 X1g;

�T = �Tc = fw;w 2 �c and wu =2 �c for all u 2 [
1
m=1X

mg:
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Figure 2.1: Context tree �c from example 2.1.

De�nition 2.3 says that only terminal nodes in the tree representation � are considered
as elements of the terminal node context tree �T . Clearly, we can reconstruct the context
function c(:) from �c or �

T
c . The context tree �c is nothing else than the minimal state

space of a VLMC with context function c(:). An internal node with b < N = jX j o�springs
can be implicitly thought to be complete by adding one complementary o�spring, lumping
the N � b non-present nodes together to a single new terminal node wnew representing a
single state in �c.

2.2 QVLMC for IRd-valued variables

Let q; X ; Ix be as in (2.1) and (2.2), respectively. Assume that

(Xt)t2ZZ is an X -valued �nite order variable length Markov chain (VLMC); (2.3)

as described in De�nition 2.2. Given Xt = x, de�ne Yt independently of Ys (s 6= t) and

Xs (s 6= t),

Yt � fx(y)dy given Xt = x;

supp(fx) � Ix; for all x 2 X ; (2.4)

where fx(:) is a d-dimensional density with respect to Lebesgue.

De�nition 2.4 The process (Yt)t2ZZ de�ned by (2.3) and (2.4) is called a stationary quan-

tized variable length Markov chain, denoted by QVLMC.

A QVLMC has the property that its quantized values (with the correct quantizer q)
form a VLMC, i.e., (q(Yt))t2ZZ = (Xt)t2ZZ is a VLMC. It is sometimes useful to think of
the underlying VLMC (Xt)t2ZZ also as a VLMC (Iq(Yt))t2ZZ which has as values the sets
Iq(Yt) being most often intervals.
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A QVLMC (Yt)t2ZZ is a stationary IRd-valued Markov chain with a memory of variable
length because

IP[Yt � yjY t�1
�1 ] =

X
x2X

Z y

�1
fx(z)dzIP[Xt = xjc(Xt�1

�1)]; y 2 IRd; Xs = q(Ys)

(`�' is de�ned componentwise), and thus,

IP[Yt � yjY t�1
�1 ] = IP[Yt � yjc(Xt�1

�1)]; y 2 IRd; Xs = q(Ys):

The minimal state space of (Yt)t2ZZ is the same as for (Xt)t2ZZ, namely �c (see De�nition
2.3). The dynamical character of a QVLMC is given by the probabilistic model for the

quantized series, namely the underlying VLMC.
The class of QVLMC's is broader than the nonparametric autoregressive models

Yt = m(Y t�1
t�p ) + Zt (t 2 ZZ; p 2 IN) (2.5)

with i.i.d. innovation noise (Zt)t2ZZ, Yt 2 IRd and m(:) the nonparametric autoregressive

function. In contrast to this model class in (2.5), the QVLMC's are 
exible enough

to approximate any stationary IRd-valued process, see Theorem 2.1 in section 2.4. We
view the QVLMC's as an important addition of a di�erent class of models for stationary
nonlinear time series.

For the univariate QVLMC model, the quantizer q : IR ! X = f0; 1; : : : ; N � 1g in
(2.1) is usually chosen with an interval geometry, see formula (3.1). That is, the sets
Ix (x 2 X ) in (2.2) are disjoint intervals in IR.

For the multivariate QVLMC model, the quantizer is q : IRd ! X = f0; 1; : : : ; N � 1g.
General vector quantization is less interpretable than scalar quantization, particularly in
terms of individual series. We propose, but do not require, scalar quantization of di�erent
individual time series,

qj : IR! Xj = f0; 1; : : : ; Njg; j = 1; : : : ; d; (2.6)

which can be combined to a quantizer,

q : IRd ! X ; q(Yt) = (q1(Y1;t); : : : ; qd(Yd;t)); Yt = (Y1;t; : : : ; Yd;t);

X = X1 � : : :� Xd; (2.7)

and X is labelled (arbitrarily) by 0; 1; : : : ; N � 1 with N = N1 � � �Nd: X is the product
space of the di�erent quantized values from the individual time series.

The class of multivariate QVLMC models is very 
exible. Already the individual
quantizers in (2.6) allow di�erent degrees of `resolution', i.e., di�erent numbers Nj for qj.
Choosing a general vector quantization q : IRd ! X can be done in very many di�erent
ways: this can be an advantage in a certain application, but generally it is easier to stick

with individual quantization as in (2.6). The 
exibility of QVLMC's also allows to model
multidimensional time series data with some real-valued and some categorical components.
Nonlinear multivariate time series modelling has not received very much attention so far.

One main di�culty is to deal with the complexity of the data in an appropriate way.
The recursive partitioning idea with TSMARS has been explored to the so-called semi-
multivariate case (Lewis and Stevens, 1991) where one time series is the response series
and the others are covariate series. Our approach has the potential to be useful for the

pure multivariate case.

6



2.3 Ergodicity of QVLMC's

The dynamic property of a QVLMC is given by the VLMC model of the quantized series

Xt = q(Yt). Since in the QVLMC model the variables Yt given (Xs)s2ZZ are independent
and depend only on their quantized values Xt, stationarity and ergodicity of (Yt)t2ZZ is
inherited from the VLMC (Xt)t2ZZ. (Note that this statement is meant to be unconditional
on (Xt)t2ZZ. This is appropriate here, because the values Xt are non-hidden). A su�cient

condition for ergodicity is then implied by a Doeblin-type condition, stationarity is already
implicitly assumed by our De�nitions 2.2 and 2.4.

(A) The underlying quantized �nite order VLMC (Xt)t2ZZ � Pc on X ZZ satis�es,

sup
v;w;w0

jP (r)
c (v; w)� P (r)

c (v; w0)j < 1� � for some � > 0;

where P
(r)
c (v; w) = IP[Zr = vjZ0 = w] denotes the r-step transition kernel of the

state process Zt = c(Xt
0x

1
0 ); x10 = x0; x0; : : : (t 2 IN0) with (Xt)t2ZZ � Pc.

The de�nition of Zt re
ects our implicit assumption here that the initial state is
padded with elements x0 2 X , i.e., Z0 = w means Z0 = wx10 so that the next states
Zt (t > 0) are uniquely determined.

Proposition 2.1 Let (Yt)t2ZZ be a QVLMC as given in De�nition 2.4, satisfying condi-

tion (A). Then, (Yt)t2ZZ is ergodic. Even more, (Yt)t2ZZ is uniformly mixing with mixing

coe�cients satisfying �(i) � const:(1 � �)i for all i 2 IN.

The Proposition follows from known results for �nite Markov chains, cf. Doukhan
(1994, Th.1, Ch.2.4).

The geometrical decay of the mixing coe�cients is typical for �xed, �nite dimensional
parametric models or for semiparametric models with a �nite dimensional parametric part.

It should not lead to a wrong conclusion that only very short range phenomena could be
modelled with QVLMC's. Indeed, Theorem 2.1 in the next section discusses the broadness
of the model class.

2.4 Range of QVLMC's

The class of stationary ergodic QVLMC's is broad enough to be weakly dense in the set
of stationary processes on (IRd)ZZ. Denote by

�t1;:::;tm : (IRd)ZZ ! (IRd)m; �t1;:::;tm(y) = yt1 ; : : : ; ytm (t1; : : : ; tm 2 ZZ; m 2 IN)

the coordinate function and by `)' weak convergence.

Theorem 2.1 Let P be a stationary process on (IRd)ZZ (d � 1). Then, there exists a

sequence (Pn)n2IN of stationary, ergodic, IRd-valued QVLMC's, such that

Pn � �
�1
t1;:::;tm ) P � ��1t1;:::;tm for all t1; : : : ; tm 2 ZZ; for all m 2 IN:

A proof is given in the Appendix. For smooth P , a coarse quantization in the QVLMC

is expected to be `good' yielding a less complex model and typically a better approximation

of P .
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2.5 Prediction with QVLMC's

In principle, any predictor can be computed in a QVLMC model. From now on, we focus

only on the optimal mean squared error m-step ahead predictor IE[Yn+mjY n
�1] for Yn+m,

given the past values Y n
�1 and its corresponding estimate. For a QVLMC it is easy to see

that

IEQV LMC[Yn+mjY
n
�1] = IEQV LMC[Yn+mjc(X

n
�1)]

=
X

xn+m
n+1 2X

m

IE[Yn+mjXn+m = xn+m]
m�1Y
j=0

Pc(xn+m�jjc(x
n+m�j�1
n+1 Xn

�1)); (2.8)

where x
n+m�j�1
n+1 Xn

�1 = xn+m�j�1; xn+m�j�2; : : : ; xn+1;Xn;Xn�1; : : : for j � 1 and

xn+m�j�1n+1 Xn
�1 = Xn

�1 for j = m � 1. The QVLMC thus models the conditional ex-

pectation as a function of (�nitely many) past quantized values Xn
�1 rather than Y n

�1.
It is a remarkable property of the QVLMC model that it allows easily multi-step ahead
predictions. This is in contrast to other nonlinear prediction techniques where multi-step
forecasts can become intractable, for example for parametric SETAR and nonparametric

AR models or also for the adaptive partitioning TSMARS scheme (Lewis and Stevens,
1991).

It is sometimes of interest to predict an instantaneous function of a future observa-

tion g(Yn+m) or to estimate the conditional expectation IE[g(Yn+m)jY n
�1] for a �xed g :

IRd ! IRq (d; q 2 IN). As an example, consider prediction of the volatility IE[Y 2
n+mjY

n
�1]�

IE[Yn+mjY n
�1]

2 in �nancial time series; in fact, for m = 1 the ARCH- and GARCH-models
are describing such a conditional variance within a given parametric function class. For an

overview about ARCH- and GARCH-models, cf. Shephard (1996). The QVLMC predictor
is then

IEQV LMC[g(Yn+m)jY
n
�1] = IEQV LMC[g(Yn+m)jc(X

n
�1)]

=
X

xn+m
n+1 2X

m

IE[g(Yn+m)jXn+m = xn+m]
m�1Y
j=0

Pc(xn+m�jjc(x
n+m�j�1
n+1 Xn

�1))

(2.9)

2.6 Interpretation as dynamic adaptive partitioning

For notational simplicity we consider here a stationary real-valued process (Yt)t2ZZ and
discuss in more details the issues (1) and (2) from section 1.

In general, a partition scheme for a stationary Markov process of order p models

IE[YtjY
t�1
�1 ] as

IEpartition[YtjSt�1] =
JX
j=1

cj1[St�12Rj ] =
JX
j=1

cj1[Vt�1=Rj ]; (2.10)

with St�1 = Y t�1
t�p the state vector, fRj ; j = 1; : : : ; Jg a partition of IRp and (Vt)t2ZZ

the partition cell process de�ned by Vt�1 =
PJ

j=1Rj1[St�12Rj ]. The coe�cients cj (j =

1; : : : ; J) are constants, depending only on the index j of the partition element Rj . The

8



model in (2.10) is thus a step function from IRp to IR (we exclude here partitioning schemes
like MARS which uses splines instead of step functions). For a static partitioning scheme,
these coe�cients are of the form

cj = IE[YtjVt�1 = Rj] = mp(Rj); mp : B
p ! IR (2.11)

with Bp the Borel �-algebra of IRp. The fact that (Vt)t2ZZ is a stochastic process (where
information form the past could be non-trivial) is not used with such general static parti-

tioning.
Dynamic partitioning as proposed here with QVLMC's corresponds to formula (2.10)

as follows, compare with formula (2.8). The dimension p of the state vector St�1 is the
order of the VLMC (Xt)t2ZZ, J = j�cj is the size of the minimal state space of the VLMC

(Xt)t2ZZ and the partition elements Rj are given by

Rj = fyp1 2 IRp; c(xp1) = wj 2 �cg; xt = q(yt); j = 1; : : : ; J:

The coe�cients are

cj =
X
x2X

IE[YtjXt = x]IPV LMC[Xt = xjVt�1 = Rj ]

with IPV LMC[Xt = xjVt�1 = Rj ] = IP[Xt = xjc(Xt�1
t�p) = wj ] (wj 2 �c) the probability

induced by the VLMC (Xt)t2ZZ. To make the correspondence to (2.11) more explicit, this
can also be written as

cj =
X

vt2fRj ; j=1;:::;Jg

m1(vt)IPV LMC[Vt = vtjVt�1 = Rj];

m1(vt) = m1(v1;t) = IE[YtjYt 2 v1;t]; vt = v1;t � : : :� vp;t; m1 : B
1 ! IR (2.12)

with B1 the Borel �-algebra of IR1 and IPV LMC [Vt = vtjVt�1 = vt�1] the probability

induced by the VLMC (Xt)t2ZZ, i.e., IPV LMC [Vt = vtjVt�1 = vt�1] = IP[Xt = xtjc(X
t�1
t�p) =

wj ] with xt; wj such that q(yt) = xt for all yt 2 v1;t and c((q(ys))
t�1
s=t�p) = wj for all

yt�1t�p 2 vt�1. Dynamic partitioning essentially di�ers from static partitioning in the model
for the coe�cients cj (j = 1; : : : ; J). As described by (2.12), our dynamic partitioning
models (Vt)t2ZZ as a Markov chain and uses a nonparametric function m1(:) with domain

B1, involving only a one-dimensional structure. This is in contrast to static partitioning as

described in (2.11) where no dynamic model for (Vt)t2ZZ is assumed and a nonparametric
function mp(:) with p-dimensional domain Bp is used.

When estimating the coe�cients cj (j = 1; : : : ; J) we then observe the following. Static
partitioning is exposed to the curse of dimensionality with the nonparametric function
mp(:): the partitions should be derived in a clever data-adaptive way in order to escape
as much as possible from the curse of dimensionality, cf. Breiman et al. (1984) or Gersho

and Gray (1992). In our approach here, dynamic partitioning is exposed to the curse of
dimensionality with the model for the quantized process (Xt)t2ZZ, and not because of the
nonparametric functions m1(:). The parsimonious VLMC model for (Xt)t2ZZ, yielding a

Markov model for the partition cell process, is a good way to escape from the curse of
dimensionality, cf. Rissanen (1983), Weinberger at al. (1995) or B�uhlmann & Wyner
(1997).

For dynamic partitioning of a stationary Markov process as proposed here we conclude

the following.
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(1) The geometry of the partition fRj; j = 1; : : : ; Jg is often not so important for
estimation of the nonparametric function m1(:) with one-dimensional domain B1,
see formula (2.12). Quantization of single variables as proposed here can then be

viewed as some sort of canonical operation for dynamic partitioning.

(2) The model for the partition cell process (Vt)t2ZZ should be parsimonious. A natural

parameterization is given by a VLMC for the quantized process (Xt)t2ZZ.

Accepting the informal statements (1) and (2) then says that the QVLMC model is with
the above interpretation a natural and kind of canonical model for dynamic partitioning.
Estimation of a QVLMC in section 3 also shows that such a dynamic partitioning scheme

is adaptive, mainly in terms of �nding adaptively a VLMC model for (Xt)t2ZZ but also
with a data-driven quantization. Last, �tting a QVLMC is a white box mechanism with
well interpretable dynamic structure in terms of a context tree (see De�nition 2.3) and a
one-dimensional (and thus simple) nonparametric structure for IE[YtjXt], for example in

terms of a scatter plot.

2.7 Equivalence to quantized state VLMC's

Consider a stationary IRd-valued process (Yt)t2ZZ whose memory is (of variable length as)

a function of the quantized values of the past only, that is IP[Y1 � y1jY 0
�1] = IP[Y1 �

y1jX0
�1] for all y1 2 IRd, where Xs = q(Ys) with q(:) as in (2.1). Assume that the

conditional distributions have densities f(y1jx0�1) with respect to Lebesgue. Analogously
to the De�nitions 2.1 and 2.2 for an X -valued VLMC we de�ne

~c(x0�1) = x0
�~̀+1

;

~̀= minfk; f(y1jx
0
�1) = f(y1jx

0
�k+1) for Lebesgue almost all y1 2 IRdg

(~̀� 0 corresponds to independence): (2.13)

We say that (Yt)t2ZZ is a stationary quantized state variable length Markov chain (QSVLMC)
of order p if maxx0�1

j~c(x0�1)j = p.

The notion of a QSVLMC is more general than of a QVLMC from section 2.2. In

connection with partitioning, which always reduces the state space of a Markov chain to a
�nite structure, the QSVLMC is in some sense even the most general. We argue now that

it needs only little additional restrictions so that a QSVLMC is equivalent to the simpler
QVLMC. Let us assume the following.

(B) The conditional densities of the stationary QSVLMC satisfy f(y1jx
1
�1) = f(y1jx1)

for Lebesgue almost all y1 2 IRd and all x0�1 2 X1 with xs = q(ys) (s 2 ZZ).

This assumption (B) says that the variable Yt given the instantaneous quantized informa-

tion Xt = q(Yt) is independent from the past. A QVLMC satis�es (B).

Theorem 2.2 Let (Yt)t2ZZ be a QSVLMC with context function ~c(:). Then the following

holds.

(i) The quantized process (Xt)t2ZZ with Xt = q(Yt) is a VLMC with context function c(:)
such that

`(x0�1) = jc(x0�1)j � ~̀(x0�1) = j~c(x0�1)j for all x
0
�1 2 X1:
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(ii) If in addition assumption (B) holds, then (Yt)t2ZZ is a QVLMC with c(:) = ~c(:).

A proof is given in the Appendix. Theorem 2.2 explains that when insisting on as-
sumption (B), a QVLMC is as general as a QSVLMC and hence in some sense the most
general in the set-up of partitioning schemes.

3 Fitting of QVLMC's

We �rst have to �nd an appropriate quantizer q. In the univariate case, a practical
procedure of choosing q when N = jX j � 2 is speci�ed is given by the sample quantiles
F̂�1(:) of the data,

q̂(y) =

8><
>:
0; if �1 < y � F̂�1(1=N)
x; if F̂�1(x=N) < y � F̂�1(x+1

N ) (x = 1; : : : ; N � 2)

N � 1; if F̂�1(N�1N ) < y <1.

; (3.1)

yielding an interval partition with equal number of observations per partition cell. In the

multivariate case, we could use a quantizer as in (2.6) with qj estimated as in (3.1) in
terms of the quantiles of the j-th individual series. The choice of an appropriate q or
an appropriate size N of X could be given by the application. As examples we mention
extreme events in engineering or �nance with N = 2 for coding extreme or N = 3 for

coding lower- and upper-extreme. Or, the choice of an appropriate q can be viewed as
a model selection problem, this is discussed in section 5. We assume in the rest of this
section that q is given and proceed as it would be correct. Given data Y1; : : : ; Yn from a

QVLMC, it then remains to estimate the cell densities ffx(:); x = 0; 1; : : : ; N � 1g and
the probability structure of the quantized (Xt)t2ZZ, modelled as a VLMC.

3.1 Context algorithm

Given data X1; : : : ;Xn from a VLMC Pc on X ZZ (assuming that q is the correct quantizer),
the aim is to �nd the underlying context function c(:) and an estimate of Pc. (We identify
the VLMC (Xt)t2ZZ with its probability measure Pc). In the sequel we always make
the convention that quantities involving time indices t =2 f1; : : : ; ng equal zero (or are

irrelevant). Let

N(w) =
nX
t=1

1
[X

t+jwj�1
t =w]

; w 2 X jwj; (3.2)

denote the number of occurrences of the string w in the sequence Xn
1 . Moreover, let

P̂ (w) = N(w)=n; P̂ (xjw) =
N(xw)

N(w)
; xw = (xjxj; : : : ; x2; x1; wjwj; : : : ; w2; w1): (3.3)

The algorithm below constructs the estimated context tree �̂ to be the biggest context
tree (with respect to the order `�' de�ned in Step 1 below) such that

�wu =
X
x2X

P̂ (xjwu) log(
P̂(xjwu)

P̂ (xjw)
)N(wu) � K for all wu 2 �̂T (u 2 X ) (3.4)

with K = Kn � C log(n); C > 2jX j+ 3 a cut-o� to be chosen by the user.
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Step 1 Given X -valued data X1; : : : ;Xn, �t a maximal context tree, i.e., search for the
context function cmax(:) with terminal node context tree representation �Tmax (see
De�nition 2.3), where �Tmax is the biggest tree such that every element (terminal

node) in �Tmax has been observed at least twice in the data. This can be formalized
as follows:

w 2 �Tmax implies N(w) � 2;

�Tmax � �T ; where w 2 �T implies N(w) � 2:

(�1 � �2 means: w 2 �1 ) wu 2 �2 for some u 2 [1m=0X
m (X 0 = ;)). Set

�T(0) = �Tmax.

Step 2 Examine every element (terminal node) of �T(0) as follows (the order of examining is

irrelevant). Let c(:) be the corresponding context function of �T(0) and let

wu = x0�`+1 = c(x0�1); u = x�`+1; w = x0�`+2;

be an element (terminal node) of �T(0), which we compare with its pruned version

w = x0�`+2 (if ` = 1, the pruned version is the empty branch, i.e., the root node).
Prune wu = x0�`+1 to w = x0�`+2 if

�wu =
X
x2X

P̂ (xjwu) log(
P̂ (xjwu)

P̂ (xjw)
)N(wu) < K;

withK = Kn � C log(n); C > 2jX j+3 and P̂ (:j:) as de�ned in (3.3). Decision about
pruning for every terminal node in �T(0) yields a (possibly) smaller tree �(1) � �T(0).

Construct the terminal node context tree �T(1).

Step 3 Repeat Step 2 with �(i); �
T
(i) instead of �(i�1); �

T
(i�1) (i = 1; 2; : : :) until no more

pruning is possible. Denote this maximal pruned context tree (not necessarily of

terminal node type) by �̂ = �ĉ and its corresponding context function by ĉ(:).

Step 4 If interested in probability sources, estimate the transition probabilitiesPc(x1jc(x
0
�1))

by P̂ (x1jĉ(x0�1)), where P̂ (:j:) is de�ned as in (3.3).

The pruning in the context algorithm can be viewed as some sort of hierarchical back-
ward selection. Dependence on some values further back in the history should be weaker,
so that deep nodes in the tree are considered, in a hierarchical way, to be less relevant.

Consistency for �nding the underlying true context function c(:) and the VLMC prob-
ability distribution Pc goes back to Weinberger et al. (1995). For the algorithm described

here, consistency even in an asymptotically in�nite dimensional setting has been given in
B�uhlmann &Wyner (1997), where also more detailed descriptions of the context algorithm
and cross-connections can be found. For deriving these results, we need some technical

assumptions which we state in section 4.
The estimated minimal state space �ĉ from the context algorithm determines a data-

adaptive partition of the space of past values f(xs)
t�1
�1; (xs)

t�1
�1 2 X1g for the variable
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Xt. The partitioning scheme is non-recursive and the tree growing architecture, namely
the construction of the maximal tree �max in Step 1 of the context algorithm, covers very
many imaginable models for categorical variables. This is in contrast to recursive tree

growing procedures which sometimes exclude interesting sub-models due to the recursive
partitioning. For an overview see Gersho & Gray (1992).

The estimation of the minimal state space �c is done solely on the basis of the quantized

data X1; : : : ;Xn. The question is if equivalence to �tting with IRd-valued data holds. Let
us assume the following.

(C) Estimation of the minimal state space �c of the QVLMC (or the underlying VLMC)
is exclusively based on (possibly multiple) use of the log-likelihood ratio statistic

~��c1 ;�c2
(Y n

1 ) = log(
f̂�c1(Y

n
1 )

f̂�c2(Y
n
1 )

);

where �c1; �c2 are (possibly di�erent pairs of) context trees as in De�nition 2.3 and

log(f̂�ci(Y
n
1 )) =

nX
t=p+1

log(f̂(Ytjci(X
t�1
t�p))) (i = 1; 2)

is the log-likelihood of an estimated QVLMCmodel with ci(:) induced by � = �ci (i =
1; 2), p the maximal order of c1(:) and c2(:), and f̂(Ytjci(X

t�1
t�p)) = f̂Xt

(Yt)P̂ (Xtjci(X
t�1
t�p))

an estimate in the QVLMC model for f(Ytjci(X
t�1
t�p)) = fXt

(Yt)Pci(Xtjci(X
t�1
t�p))

(i = 1; 2) with f̂x(:) arbitrary and P̂ (:j:) as in (3.3).

Assumption (C) is quite natural in the set-up of model selection. Neglecting the (minor)
e�ect of di�erent orders p for di�erent �ci's, the context algorithm in section 3.1 with any
estimator for fx(:) satis�es (C).

Proposition 3.1 Assume that (Yt)t2ZZ is a QVLMC with minimal state space �c. Then,

any estimate of �c satisfying (C) is solely based on the quantized data X1; : : : ;Xn.

A proof is given in the Appendix. Proposition 3.1 also justi�es to use the context

algorithm as given in section 3.1 for estimation of the minimal state space �c. This is

in contrast to many static partitioning schemes where the predictor variables are used
in a quantized form but the response variable goes into the �tting of a partition as an

IRd-valued variable. As an example, we mention CART (Breiman et al., 1984).

3.2 Estimation of cell densities and cumulative probabilities

The cell densities ffx(:);x 2 Xg can be estimated by some smoothing technique, e.g., a
kernel estimator

f̂x(y) =
n�1h�d

Pn
t=1K( y�Yth )1[Xt=x]

n�1N(x)
; y 2 IRd (3.5)

with N(x) as in (3.2), K(:) a probability density function in IRd and h a bandwidth with

h = h(n) ! 0 and typically nhd+4 ! C (n ! 1) with 0 < C < 1 a constant. See
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for example Silverman (1986, Ch.4). Asymptotic properties of the estimates are given in
section 4.

Instead of the densities fx(:), the cumulative probabilities of the observations are often

of more interest. Then, one can use directly empirical distribution functions which makes
smoothing, and thus selection of a bandwidth h, unnecessary. We estimate IP[Yt 2 EjXt =
x] and IP[Yt 2 E] for some (measurable) set E by

ÎP[Yt 2 EjXt = x] =
n�1

Pn
t=1 1[Yt2E]1[Xt=x]

n�1N(x)
; (3.6)

ÎP[Yt 2 E] = n�1
nX
t=1

1[Yt2E] =
X
x2X

ÎP[Yt 2 EjXt = x]n�1N(x): (3.7)

Asymptotic properties of these estimates are also discussed in section 4.

3.3 Estimated predictors

For the theoretical predictor in (2.8), we estimate IE[YtjXt = x] with Y x = N(x)�1
Pn

t=1 Yt1[Xt=x],
and using the estimated context function and transition probabilities for the VLMC
(Xt)t2ZZ from Step 4 in section 3.1, we construct the plug-in estimator

Ŷn+m = ÎEQV LMC [Yn+mjY
n
1 ] =

X
xn+m
n+1 2X

m

Y xn+m

m�1Y
j=0

P̂ (xn+m�jjĉ(x
n+m�j�1
n+1 Xn

1 )) (3.8)

(see formula (2.8) for a proper de�nition of xn+m�j�1n+1 Xn
1 ).

We use here the notation Ŷn+m exclusively for the predictor which is estimated from the

data. Asymptotic properties of Ŷn+m are given in section 4.

The estimation of the predictor in (2.9) is constructed analogously,

ÎEQV LMC[g(Yn+m)jY
n
1 ] =

X
xn+m
n+1 2X

m

g(Y )xn+m

m�1Y
j=0

P̂ (xn+m�jjĉ(x
n+m�j�1
n+1 Xn

1 )); (3.9)

with g(Y )x = N(x)�1
Pn

t=1 g(Yt)1[Xt=x].

4 Asymptotic inference

In order to analyze the asymptotic behavior of the estimates in section 3 we tacitly assume
that the involved quantizer q is correct and make the following assumptions for the data

generating process (Yt)t2ZZ.

(D1) (Yt)t2ZZ is an IRd-valued QVLMC satisfying condition (A) from section 2.3 and
minw2�c Pc(w) > 0; minwu2�c;u2X

P
x2X jPc(xjwu)� Pc(xjw)j > 0,

minx2X ;w2�c Pc(xjw) > 0.

(D2) For all x 2 X corresponding to the IRd-valued QVLMC,
R
IRd kzk

2fx(z)dz <1.
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Condition (D1) is a regularity condition for the true underlying VLMC (Xt)t2ZZ which is
also employed in B�uhlmann & Wyner (1997). Condition (D2) implies IEkYtk

2 <1.
Assuming (D1), we then can show,

IP[ĉ(:) = c(:)] = o(1) (n!1): (4.1)

Since the event ĉ(:) 6= c(:) has probability tending to zero, the estimated transition
probabilities P̂ (x1jĉ(x0�1)) behave asymptotically like the maximum likelihood estimator
P (x1jc(x0�1)) when the context function c(:) would be known. Thus under the assump-

tions in (D1), for every x1�1 2 X1,

n1=2(P̂ (x1jĉ(x
0
�1))� P (x1jw)))N (0; (I�1)x1w;x1w) (n!1); w = c(x0�1); (4.2)

where I�1 is the inverse Fisher informationmatrix, whose values are given in the Appendix,

formula (A.7).
For the cumulative probabilities as in (3.6) and (3.7) we obtain, assuming (D1),

n1=2(ÎP[Yt 2 EjXt = x]� IP[Yt 2 EjXt = x])) N (0; �2as(E; x)) (n!1); (4.3)

n1=2(ÎP[Yt 2 E]� IP[Yt 2 E]))N (0; �2as(E)) (n!1): (4.4)

A description of the values �2as(E; x) and �2as(E) is given in the Appendix, formulae (A.8)

and (A.9). From the formulae (4.2) and (4.3) we also can state the asymptotic behavior of
the m step ahead predictor in (3.8). Assuming (D1) and (D2), for yn1 �xed and m �nite,

n1=2(ÎEQV LMC[Yn+mjY
n
1 = yn1 ]� IEQV LMC[Yn+mjs])) Nd(0; �

2
as(m; s)) (n!1); (4.5)

where s = c(q(ynn�p+1)) is the state of the VLMC at time n and p the order of the VLMC.

A discussion of the value �2as(m; s) and justi�cation of the formulae (4.1)-(4.5) are given
in the Appendix.

Finally, we can also obtain results for the estimated cell densities. We assume that for
all x 2 X , fx(:) is bounded and twice continuously di�erentiable. The kernel K(:) is a

probability density in IRd with compact support, bounded and continuously di�erentiable,R
kzk2K(z)dz < 1,

R
zjK(z)dz = 0 (j = 1; : : : ; d) and kzkdK(z) ! 0 (kzk ! 1). The

bandwidth h is of the order n�1=(d+4), balancing asymptotic bias Bas(x; y) and variance

�2as(x; y). Assuming in addition (D1), we obtain for all x 2 X and y 2
�
Ix (y an interior

point of Ix),

(nhd)1=2(f̂x(y)� fx(y)))N (Bas(x; y); �
2
as(x; y)) (n!1); (4.6)

A precise description of the values Bas(x; y) and �
2
as(x; y) is given in the Appendix, formula

(A.11). The assumption about the kernel K(:) and the boundedness of the densities fx(:)
can be modi�ed, cf. Boente & Fraiman (1995).

The expressions for the asymptotic variances �2as(E; x); �
2
as(E) and �

2
as(m; s) are quite

complicated and particularly for the latter almost impossible to estimate analytically.
The block bootstrap (K�unsch, 1989) is here a powerful machinery to estimate the limiting

distributions of the discussed quantities, say for the sake of constructing con�dence regions.
Asymptotic inference is given here if the data is a �nite realization of a QVLMC

satisfying (D1) and (D2) and if the quantizer q (viewed as a nuisance parameter) is correct.
The latter is of course quite a hypothetical assumption: we aim to do further research on

asymptotic theory when considering the quantizer q as an estimate from the data.

15



5 Model selection

Choosing a quantizer q : IRd ! X and a minimal state space �c (or equivalently the
context function c(:)) is here proposed in a data-driven fashion. For obtaining simplicity
and manageability in selecting a model we assume a Gaussian component quasi-likelihood
structure which allows us then to develop a strategy in a parametric set-up, although the

original problem is of semi- or nonparametric nature.

We focus �rst on the univariate case. The log-likelihood function of a QVLMC (con-
ditional on the �rst p observations) is

`(Y1; : : : ; Yn) =
nX

t=p+1

log(fXt
(Yt)) +

nX
t=p+1

log(Pc(Xtjc(X
t�1
t�p));

where p is the order of the underlying VLMC. Denote by �x = IE[YtjXt = x] and
�2x = Var(YtjXt = x). By assuming fx(y) = (2��2x)

�1=2 exp(�(y � �x)
2=(2�2x)) (although

supp(fx) = IR) we then consider the Gaussian component quasi-log-likelihood function

`quasi(�;Y1; : : : ; Yn) =
nX

t=p+1

logf(2��2Xt
)�1=2 exp(�(Yt � �Xt

)2=(2�2Xt
))g

+
nX

t=p+1

log(Pc(Xtjc(X
t�1
t�p)); (5.1)

where � = (�0; : : : ; �N�1; �) with �wx = IP[Xt = xjc(Xt�1
t�p) = w], w 2 �c; x 2 f0; : : : ; N �

2g. The maximum quasi-likelihood estimator (MQLE)

�̂MQLE = argmin�(�`quasi(�;Y1; : : : ; Yn) (5.2)

yields then the parameter values which are used for the estimated predictor in (3.8). For
the prediction problem we thus can restrict our attention to the quasi-likelihood function

in (5.1) and the MQLE estimator in (5.2). The quasi-likelihood function itself is not
meant to describe the whole underlying distribution of the observations but rather the
characteristics of the conditional expectation IE[YtjY

t�1
1 ], cf. McCullagh & Nelder (1989,

Ch.9). In the parametric case, in which we are now due to the Gaussian component

quasi-likelihood assumption, it is known that a proper AIC-type criterion is of the form

�2`quasi(�̂;Y1; : : : ; Yn) + penalty-term:

The penalty term is generally of the form 2trjIJ�1j where I is the asymptotic variance

of the score statistic and J the expectation of the Hessian of the log-likelihood at the
observations Y n

1 , cf. Shibata (1989) or B�uhlmann (1997). Generally, it is quite complicated
to estimate trjIJ�1j from the data. For the simpler case of an X -valued VLMC alone (with

no quantization involved) a bootstrap approach has been proposed in B�uhlmann (1997)
which is computationally already quite expensive. To obtain a manageable criterion we
further assume that the di�erence between I and J is negligible, since I = J if the model
under consideration is the correct one. With such a commonly made assumption, the

penalty term becomes 2dim(�). In our case, dim(�) = N + j�cj(N � 1) (N = jX j). By
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replacing �2x with �̂
2
x = (N(x)� 1)�1

Pn
t=1(Yt� Y x)

21[Xt=x], our model selection criterion
then becomes

M2 = �2`quasi(�̂;Y1; : : : ; Yn) + 2(N + j�cj(N � 1))

=
nX

t=p+1

f(Yt � Y Xt
)2=�̂2Xt

+ log(2��̂2Xt
)g

� 2
nX

t=p+1

log(P̂ (Xtjc(X
t�1
t�p))) + 2(N + j�cj(N � 1));

where P̂ (:j:) is given in (3.3). Note that the quantizer q enters implicitly. Theoretically we
would then search for the model, i.e, the quantizer q and the context function c(:) = cq(:)
(depending on q) which minimize M2. However, the search over all context functions is

infeasible. A remedy proposed in B�uhlmann (1997) is to search for an optimal cut-o�
parameter K in the context algorithm, see Step 2 in section 3.1. Then, the optimal model,
or now the optimal tuning of the algorithm, is speci�ed by the quantizer q and the cut-o�

parameter K which minimize

M2(q;K) =
nX

t=p+1

f(Yt � Y Xt
)2=�̂2Xt

+ log(2��̂2Xt
)g

� 2
nX

t=p+1

log(P̂ (XtjĉK(X
t�1
t�p))) + 2(N + j�ĉK j(N � 1)):

where ĉK is the estimated context function for the X -valued VLMC (depending on K)
and P̂ (:j:) as in (3.3). Note that for given q, the search for an optimal cut-o� K is only

a�ected by the term and �2
Pn

t=p+1 log(P̂ (XtjĉK(X
t�1
t�p))), thus being exactly the same as

when tuning the context algorithm for categorical valued VLMC, see B�uhlmann (1997).
For the multivariate QVLMC model, we propose to choose the quantizer q and the

optimal cut-o� K of the context algorithm as the minimizer of

M2
d (q;K) =

nX
t=p+1

f(Yt � Y Xt
)0�̂�1Xt

(Yt � Y Xt
) + d log(2�) + log(j�̂Xt

j)g

� 2
nX

t=p+1

log(P̂ (XtjĉK(X
t�1
t�p))) + 2(N + j�ĉK j(N � 1))

where �̂x = (N(x)� 1)�1
Pn

t=1(Yt � Y x)(Yt � Y x)
01[Xt=x] and P̂ (:j:) as in (3.3).

6 Numerical examples

We study the predictive performance of the dynamic adaptive QVLMC scheme for simu-

lated and real data by considering the one-step ahead predictor from (3.8). The sample
size is denoted by n. We then compute a predictor for the next m observations: we do
not re-estimate the predictor, it is always based on the �rst n observations. We calculate

PE = n�1
n+mX
t=n+1

(Ŷt � Yt)
2 (6.1)
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with Ŷt the predictor estimated on the �rst variables Y1; : : : ; Yn and evaluated on Y t�1
1 .

By ergodicity and the mixing property, the quantity PE approximates (as the numberm of
predicted observations grows) the �nal prediction error conditioned on the observed data

IE[(Ẑt�Zt)
2jY n

1 ], where (Zt)t2ZZ is an independent copy of (Yt)t2ZZ and Ẑt is the predictor
estimated from the data Y n

1 and evaluated as a function of the past values Zt�1
�1.

We compute the measure PE of actual predictive performance for the QVLMC pre-
dictor in (3.8) for various quantizers q and cut-o� parameter K in the context algorithm
in section 3.1 being always �2N�1;0:95=2 which is often a reasonable value, cf. B�uhlmann
& Wyner (1997) and B�uhlmann (1997). In the following examples, the quantizer q = q̂

is estimated from the data as in (3.1), unless speci�ed otherwise. Varying over q̂ then
results in varying over N = jX j. For comparison, we also compute PE for the predictor
of an AR(p) model with p chosen by the minimum AIC criterion in the range 10 log10(n).

In the case of the QVLMC predictor, we also give the measure M2(q;K) (= M2(N) by
our choice of q = q̂ and K) for model selection from section 5 as an estimate of predictive
performance.

6.1 Simulated data

We consider various data-generating models representing di�erent kinds of stationary

processes. Most often, we consider n = 4000 (once n = 500) and we predict m = 1000
values.

Univariate QVLMC with N = 4. Let the true quantizer q be given by the partition in

(2.2) with

I0 = (�1;�0:396]; I1 = (�0:396; 0]; I2 = (0; 1:189]; I3 = (1:189;1):

The distribution of YtjXt = x � fx(y)dy is given by

Yt =

8>><
>>:

min(Zt;�0:396); Zt � N (�0:793; 0:039) if Xt = 0,
min(max(Zt;�0:395); 0); Zt � N (�0:198; 0:020) if Xt = 1,
min(max(Zt; 0:001); 1:189); Zt � N (0:594; 0:039) if Xt = 2,

max(Zt; 1:190); Zt � N (1:585; 0:039) if Xt = 3.

The underlying VLMC (Xt)t2ZZ is given by Figure 6.1 in terms of the context tree and
transition probabilities (P (0jw); : : : ; P (3jw)) with w the terminal nodes in the tree. The
QVLMC model is speci�ed so that Var(Yt) � 1. The true model is not found by our

restricted QVLMC scheme in this simulation study: the quantizer q̂ with N = 4 as in
(3.1) is not approaching the true q because of the location of the true quantiles of the
one-dimensional marginal distribution.

Table 6.1 summarizes the results for n = 4000. We abbreviate with `QVLMC, N' the
QVLMC predictor with quantizer as in (3.1) determined by N ; `QVLMC, true q' is the
QVLMC scheme with the true quantizer q; `oracle' is the predictor with known probability

distribution of the underlying data generating process. The model-dimension indicates the
complexity of the scheme; for an AR(p) predictor, the model-dimension is p + 1 due to
the fact that we apply a mean-correction �rst. The e�ciency of the best selected QVLMC
scheme according toM2(q;K) (which is also the best among the fully data-driven QVLMC

cases in Table 6.1) relative to the oracle, de�ned as the ratio of the corresponding PE's,
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Figure 6.1: Context tree of QVLMC model.

method model-dimension PE M2(q;K)

QVLMC, N = 16 1861 0:506 7592:6

QVLMC, N = 12 1068 0:446 6625:2

QVLMC, N = 9 553 0:489 6839:4
QVLMC, N = 6 211 0:435 5564:2
QVLMC, N = 4 193 0:528 6552:7
QVLMC, true q 148 0:423 3425:0

AR 5 0:528 {
oracle { 0:416 {

Table 6.1: Performances for QVLMC model, n = 4000.

is 0:435=0:416 = 1:05 and thus close to optimal. For comparison, the e�ciency of the
best selected QVLMC scheme relative to the AR predictor is 0:435=0:528 = 0:82 which is
a substantial gain. Interestingly, the performance of the QVLMC scheme with known q

having N = 4 is most competing with the QVLMC scheme with q̂ as in (3.1) and N = 6,
and not N = 4: as mentioned above, this can be explained with the fact that q̂ in (3.1)
with N = 4 is never approximating the true q.

Univariate TAR(1). Consider a threshold autoregressive model of order 1,

Yt =

�
0:9Yt�1 + Zt if Yt�1 � �1:143
�0:9Yt�1 + Zt if Yt�1 > �1:143

with (Zt)t2ZZ an i.i.d. sequence, Zt � N (0; 0:209) and Zt independent from Ys for all s < t.
Again, the model is speci�ed so that Var(Yt) � 1.

The results for n = 4000 (with the same notation as in Table 6.1) are given in Table

6.2. The e�ciency of the best selected QVLMC scheme according to M2(q;K) (which is
not, but almost the best among the QVLMC cases in Table 6.2) relative to the oracle is
0:256=0:209 = 1:22. The e�ciency of the best selected QVLMC scheme relative to the AR

predictor is 0:256=0:728 = 0:35 which is a huge gain.
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method model-dimension PE M2(q;K)

QVLMC, N = 24 576 0:251 7588:9
QVLMC, N = 20 400 0:256 7352:2

QVLMC, N = 16 256 0:261 7358:7
QVLMC, N = 12 144 0:266 7415:8
QVLMC, N = 9 97 0:327 7794:5

QVLMC, N = 6 81 0:413 8480:6
AR 5 0:728 {
oracle { 0:209 {

Table 6.2: Performances for TAR model, n = 4000.

method model-dimension PE M2(q;K)

QVLMC, N = 24 599 0:666 9990:9
QVLMC, N = 20 761 0:653 10095:1

QVLMC, N = 16 796 0:642 9863:0

QVLMC, N = 12 639 0:640 10036:6
QVLMC, N = 9 321 0:671 10195:3

QVLMC, N = 6 201 0:806 11436:5
AR 2 0:999 {

oracle { 0:523 {

Table 6.3: Performances for nonparametric AR(2) in (6.2), n = 4000.

Univariate nonparametric AR(2). We consider here two types of general nonparametric
AR(2) models, the �rst one being additive for the mean function in the lagged variables

and with conditional heteroscedastic errors,

Yt = 0:863 sin(4:636Yt�1) + 0:431 cos(4:636Yt�2) + (0:023 + 0:5Y 2
t�1)

1=2Zt (6.2)

with (Zt)t2ZZ an i.i.d. sequence, Zt � N (0; 1) and Zt independent from Ys for all s < t.

Again, the model is speci�ed so that Var(Yt) � 1.
The results for n = 4000 (with the same notation as in Table 6.1) are given in Table

6.3. The e�ciency of the best selected QVLMC scheme according to M2(q;K) relative

to the oracle is 0:642=0:523 = 1:23. The e�ciency of the best selected QVLMC scheme
relative to the AR predictor is 0:642=0:999 = 0:64 which is a big gain.

The other nonparametric autoregressive model has an interaction term in the mean

function,

Yt = (0:5 + 0:9 exp(�2:354Y 2
t�1))Yt�1� (0:8� 1:8 exp(�2:354Y 2

t�1))Yt�2 + Zt (6.3)

with (Zt)t2ZZ an i.i.d. sequence, Zt � N (0; 0:425) and Zt independent from Ys for all

s < t. Again, the model is speci�ed so that Var(Yt) � 1. Such a model is also known as

`Exponential AR(2)'.
The results for n = 4000 and n = 500 (with the same notation as in Table 6.1) are

given in Tables 6.4 and 6.5, respectively. The e�ciencies of the best selected QVLMC
scheme according to M2(q;K) relative to the oracle are 0:474=0:425 = 1:16 (n = 4000)

and 0:592=0:425 = 1:39 (n = 500). The e�ciencies of the best selected QVLMC scheme
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method model-dimension PE M2(q;K)

QVLMC, N = 24 829 0:779 12381:3
QVLMC, N = 20 932 0:700 12056:1

QVLMC, N = 16 1126 0:558 11524:1
QVLMC, N = 12 870 0:482 10953:9
QVLMC, N = 9 489 0:474 10732:1

QVLMC, N = 6 196 0:521 10833:6
AR 10 0:842 {
oracle { 0:425 {

Table 6.4: Performances for nonparametric AR(2) in (6.3), n = 4000.

method model-dimension PE M2

QVLMC, N = 9 89 0:805 1677:0
QVLMC, N = 7 109 0:650 1637:0

QVLMC, N = 6 81 0:584 1563:1
QVLMC, N = 5 57 0:592 1488:0
QVLMC, N = 4 40 0:601 1500:6
QVLMC, N = 3 27 0:646 1548:0

AR 7 0:868 {
oracle { 0:425 {

Table 6.5: Performances for nonparametric AR(2) in (6.3), n = 500.

relative to the AR predictor are 0:474=0:842 = 0:56 (n = 4000) and 0:592=0:868 = 0:68

(n = 500) which are big gains. We see here, that even for the smaller sample size n = 500,
the QVLMC scheme clearly outperforms the AR predictor.

Univariate AR(2). We consider here a Gaussian AR(2),

Yt = 0:5Yt�1 � 0:8Yt�2 + Zt

with (Zt)t2ZZ an i.i.d. sequence, Zt � N (0; 0:341) and Zt independent from Ys for all s < t.
Again, the model is speci�ed so that Var(Yt) � 1.

The results for n = 4000 are given in Table 6.6. We abbreviate with `AR(2)' the
predictor based on an AR(2) with the true order; otherwise, the notation is as in Table
6.1. The e�ciency of the best selected QVLMC scheme according to M2(q;K) relative
to the oracle is 0:430=0:341 = 1:26. The e�ciency of the best selected QVLMC scheme

relative to the AR predictor is 0:430=0:356 = 1:21 which is a moderate loss.

Bivariate nonparametric AR(1). We consider here a bivariate nonparametric AR(1),

Y1;t = 1:107 sin(3:629Y1;t�1) + 0:554 cos(3:598Ut�1) + (0:038 + 0:200U2
t�1)

1=2Z1;t;

Ut = 1:107 sin(3:598Ut�1) + 0:554 cos(3:629Y1;t�1) + (0:038 + 0:200Y 2
1;t�1)

1=2Z2;t;

Y2;t = 4:721(
exp(Ut)

1 + exp(Ut)
� 0:5)

with (Z1;t)t2ZZ, (Z2;t)t2ZZ independent i.i.d. sequences, Z1;t � N (0; 1); Z2;t � N (0; 1) and

Z1;t; Z2;t independent from Y1;s; Us for all s < t. The series (Ut)t2ZZ is only auxiliary for the
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method model-dimension PE M2(q;K)

QVLMC, N = 24 806 0:854 12901:5
QVLMC, N = 20 1179 0:743 12761:0

QVLMC, N = 16 1846 0:520 11779:4
QVLMC, N = 12 1387 0:410 10628:4
QVLMC, N = 9 657 0:407 10043:1

QVLMC, N = 6 261 0:430 9940:5
AR 7 0:356 {
AR(2) 3 0:356 {
oracle { 0:341 {

Table 6.6: Performances for AR(2), n = 4000.

method model-dimension (PE1;PE2) PEtot M2
2 (q;K)

QVLMC, (N1 = N2 = 5) 625 (0:594; 0:578) 1:172 21048:6
QVLMC, (N1 = N2 = 4) 271 (0:628; 0:596) 1:224 20740:7
QVLMC, (N1 = N2 = 3) 249 (0:960; 0:966) 1:962 24223:1

AR 6 (1:000; 0:996) 1:996 {

Table 6.7: Performances for bivariate nonparametric AR(1), n = 4000.

de�nition of (Y1;t; Y2;t)t2ZZ. Again, the model is speci�ed so that Var(Y1;t) � 1; Var(Y2;t) �
1.

The results for n = 4000 are given in Table 6.7. We abbreviate with `QVLMC,
(N1; N2)' the QVLMC predictor with quantizer as in (2.7) with qj and corresponding val-

ues Nj (j = 1; 2) as in (3.1) for the two individual series. We restrict here attention to the
case N1 = N2 which is not a necessity. Denote by PEj = n�1

Pn+m
t=n+1(Ŷj;t�Yj;t)

2 (j = 1; 2)
and by PEtot = PE1 + PE2. Due to the non-Markovian character of (Yt)t2ZZ, the oracle
PE is di�cult to obtain. The minimum AIC AR approximation is given by a bivariate

AR(1). The e�ciency for PEtot of the best selected QVLMC scheme according toM2
2 (q;K)

relative to the AR predictor is 1:224=1:996 = 0:61 which is a big gain.

Summary. For the models studied here, the QVLMC scheme is substantially better
than the linear AR technique, except for the AR(2) model where the loss against the
AR predictor is not very big. Maybe most important in practice, the QVLMC is not very

sensitive to the speci�cation of the size N of the space X , and the model selection criterion
M2(q;K) works well.

6.2 Return-volume data from New York stock exchange

The data is about daily return of the Dow Jones index and daily volume of the New York
Stock Exchange (NYSE) from the period July 1962 through June 1988, corresponding to
6430 days. � What we term `volume' is the standardized aggregate turnover on the NYSE,

�This data is publicly available via the internet:
http://ssdc.ucsd.edu/ssdc/NYSE.Date.Day.Return.Volume.Vola.text
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Figure 6.2: Daily return and volume.

Volt = log(Ft)� log(
t�1X

s=t�100

Fs=100);

where Fs equals the fraction of shares traded on day s. The return is de�ned as

Rett = log(Dt)� log(Dt�1);

where Dt is the index of the Dow Jones on day t. Figure 6.2 shows these standardized
time series; the time t=6253, where return Rett < �0:2, corresponds to the 1987 crash.
Besides this special structure around the crash, both series look stationary. The association
between return and volume is an established fact, cf. Karpo� (1987).

We �t a bivariate QVLMC to the �rst n = 6000 observations. The quantizer q is as in

(2.7) with qj as in (3.1) for the two individual series.
In a �rst analysis we consider the actual predictive performance as in section 6.1,

although there is probably little predictive information for the return series. We evaluate
m = 250 one-step ahead predictors for the variables at times 6001; : : : ; 6250, thus excluding
the 1987 crash and the period afterwards. The results are given in Table 6.8. We use the
same notation as in Table 6.7, PEtot does not make much sense since the two series are on

two very di�erent scales. The best selected QVLMC model according to M2
2 (d;K) uses

N1 = N2 = 5. The di�erences by using other class sizes N1; N2 are not so big. E�ective
prediction of the return series is here not possible, the best selected QVLMC predictor is

just as good as the global arithmetic mean; the AR predictor is even slightly worse than
the global mean. It is questionable whether forecasting of these returns is even a possible
task. Prediction of the volume series is successful: the e�ciencies of the best selected
QVLMC relative to the AR predictor and the global mean are 0:0583=0:0620 = 0:94 and

0:0583=0:0783 = 0:74, respectively.
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method model-dimension (PERet;PEVol) M2
2 (q;K)

QVLMC, (N1 = N2 = 5) 625 (1:22 e-04; 0:0583) �39347:3
QVLMC, (N1 = N2 = 4) 466 (1:23 e-04; 0:0600) �39044:1
QVLMC, (N1 = 3; N2 = 9) 755 (1:23 e-04; 0:0589) �39200:8
QVLMC, (N1 = 3; N2 = 8) 622 (1:23 e-04; 0:0594) �39315:7
QVLMC, (N1 = 9; N2 = 3) 703 (1:23 e-04; 0:0602) �38455:6
QVLMC, (N1 = 8; N2 = 3) 622 (1:23 e-04; 0:0605) �38750:6
AR 126 (1:25 e-04; 0:0620) {
global mean 1 (1:22 e-04; 0:0783) {

Table 6.8: Performances for return-volume data, estimation on n = 6000.

Regarding the return series, it is of interest to predict the volatility: given time t,
we want to estimate Var(Rett+1jRet

t
�1;Vol

t�1
�1). With the estimated bivariate QVLMC
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Figure 6.3: Predicted volatility V̂arQV LMC(Rett+1jRet
t
1;Vol

t
1). The vertical line indicates

the 1987 crash point at t = 6253.

model with N1 = N2 = 5, based on the �rst 6000 observations, we computed

V̂arQV LMC(Rett+1jRet
t
1;Vol

t
1)

= ÎEQV LMC[Ret
2
t+1jRet

t
1;Vol

t
1]� ÎEQV LMC[Rett+1jRet

t
1;Vol

t
1]
2; t = 6001; : : : ; 6430:

given by formula (3.9). The result is plotted in Figure 6.3. There is a clear indication for
a non-constant volatility, a feature which cannot be re
ected with a multivariate ARMA
model. A magni�cation around the 1987 crash shows that the one-step ahead predicted

volatility was already high two days before the crash happened and is predicted to be
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high at the crash and its next day: among the time points t = 6001; : : : ; 6430, the period
around the crash is the longest with constantly high predicted volatility (4 days in a row).
Note that because of using a partitioning scheme, there is only a �nite number of (but

still many) values for the predicted volatility V arQV LMC(Rett+1jRet
t
�1;Vol

t
�1) (t 2 ZZ):

extracting more information, in particular in the tails, is very di�cult without making a
strong parametric extrapolation.

7 Conclusions

The new notion of dynamic adaptive partitioning is here realized with �tting of QVLMC's.
Of course, other approaches for dynamic adaptive partitioning are possible. However,
the issues (1) and (2) from section 2.6 and the results in Theorem 2.2 and Proposition
3.1 indicate the special position of QVLMC's in dynamic adaptive partitioning. This

is achieved by insisting on the mathematical, but rather natural, assumptions (B) and
(C) in sections 2.7 and 3.1, respectively: weakening these assumptions could yield other
dynamic adaptive partitioning schemes whose practical and theoretical potential has not

been explored yet.

The range of asymptotic validity for the QVLMC class is larger than of adaptive
(static) partitioning schemes like CART (Breiman et al., 1984) or MARS (Friedman, 1991)

which are candidates for consistently estimating a high order nonparametric autoregressive
model (for the conditional mean) but not directly for more complicated models, e.g., in
the presence of conditional heteroscedastic errors. The QVLMC scheme allows also in a

straightforward way the handling of multivariate data.

We do not believe that there is a uniformly best (or good) technique for the very
broad framework of nonlinear stationary time series. The dynamic adaptive QVLMC

scheme should be viewed as a potentially useful technique which is here justi�ed by some
theoretical arguments and some numerical results. It is an additional proposal being
rather di�erent from other known methodologies. In contrast to a black box mechanism,

the components of the QVLMC scheme have a well interpretable structure.

Appendix

Proof of Theorem 2.1. For notational simplicity we give only the proof for the univariate
case with d = 1. Let P be a stationary process on IRZZ.

Step 1. Show that P can be approximated by a sequence of discrete, stationary distrib-
utions (Pk)k2IN with Pk on �

ZZ
k , where �k is a �nite space. By the Lebesgue decomposition

Theorem, write P = Ps + Pr with Ps discrete (singular with respect to Lebesgue) and Pr
continuous. Trivially, Ps can be approximated by a sequence (Ps;k)k2IN with Ps;k on �ZZ

s;k,
�s;k a �nite space. Next we show that Pr can be approximated by a sequence of discrete,
stationary distributions (Pr;k)k2IN with Pr;k on �ZZ

r;k , where �r;k = fv0; : : : ; vk�1g. Choose
vi as one-dimensional Pr-quantiles,

vi = F�1
Pr

(
i+ 1=2

k
); i = 0; : : : ; k � 1;
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where FPr(y) = IPPr [Yt � y]. We then partition the space IR as

IR = [k�1i=0 Ivi;

Ivi = (F�1
Pr

(
i

k
); F�1

Pr
(
i+ 1

k
)]; i = 0; : : : ; k� 2; Ivk�1 = (F�1

Pr
(
k� 1

k
);1):

Our partition here is in terms of `mid-values' vi rather than some ordered numbers in
f0; : : : ; k � 1g as in (2.2). Every y 2 IRm is then an element of I�(y1) � : : : � I�(ym) with

yi 2 I�(yi); � : IR! �r;k. Let

� : IRZZ ! �ZZ
r;k � IRZZ; y 7! (�(yt))t2ZZ:

Then de�ne

Pr;k = P � ��1:

We also extend Pr;k from �ZZ
r;k to IRZZ by de�ning

Pext;k = Pr;k � �: (A.1)

In the sequel, we always write Pk instead of Pext;k. Abbreviate by Q
(m) = Q � ��1t1;:::;tm for

any distribution Q on IRZZ. De�ne `�' componentwise and let y 2 IRm. Then,

F
P
(m)
r;k

(y) =
X

z�y;z2�m
r;k

P
(m)
r;k (z) = F

P
(m)
r

(y) + 
(y);

where


(y) = F
P
(m)
r;k

(y�r;k)� F
P
(m)
r

(y)

with y�m
r;k

being the closest point in �mr;k to y such that y�m
r;k
� y. But

j
(y)j �
mX
i=1

P (1)
r ((y�m

r;k
)i; yi])! 0 (k!1);

since P
(1)
r is continuous and j(y�m

r;k
)i � yij ! 0 (k!1). Thus, we have shown

Pr;k � �
�1
t1;:::;tm ) Pr � �

�1
t1;:::;tm (k!1) 8t1; : : : ; tm 2 ZZ; 8m 2 IN (A.2)

with Pr;k stationary on �ZZ
r;k . Finally, set Pk = Ps;k + Pr;k. Then, by the �rst argument in

Step 1 and (A.2) we get

Pk � �
�1
t1;:::;tm ) P � ��1t1;:::;tm (k!1) 8t1; : : : ; tm 2 ZZ; 8m 2 IN (A.3)

with Pk stationary on �ZZ
k , �k = �s;k [ �r;k .

Step 2. Show that Pk on �ZZ
k can be approximated by a sequence of stationary, ergodic

Markov chains (Pk;`)`2IN on �ZZ
k . Pk;` will be constructed as a Markov chain of order
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p = pk;` = pk !1 (k!1). We denote for a set E in �k and z0�p+1 2 �
p
k the transition

kernel as P k(Ejz
0
�p+1) =

P
z12E P k(z1jz

0
�p+1), where

P k(z1jz
0
�p+1) =

8<
:

Pk(z
1
�p+1)

Pk(z
0
�p+1)

if Pk(z
0
�p+1) 6= 0

0 if Pk(z
0
�p+1) = 0

Now, modify P k(:j:), denoted by Pk;`(:j:) such that

max
E;z0�p+1 ;~z

0
�p+1

jPk;`(Ejz
0
�p+1)� Pk;`(Ej~z

0
�p+1)j < 1;

max
z1�p+1

jPk;`(z1jz
0
�p+1)� P k(z1jz

0
�p+1)j � `�1; (A.4)

Then, Pk;`(:j:) generates a stationary ergodic Markov chain of order p = pk on �ZZ
k which

we denote by Pk;`, cf. Doukhan (1994). Moreover, the stationary distribution of any
p-tuple zp1 is given by

Pk;`(z
p
1) = gzp1 (Pk;`(:j:)); (A.5)

where all the g's are continuous (in fact, they are solutions of a linear system of equations).
On the other hand for the stationary Pk we have,

Pk(z
p
1) =

X
z0

P k(zpjz
p�1
1 z0)Pk(z

p�1
1 z0)

and hence by (A.4),

Pk(z
p
1) =

X
z0

Pk;`(zpjz
p�1
1 z0)Pk(z

p�1
1 z0) + 
k;`; 
k;` ! 0 (`!1):

This is approximately of the form de�ning the stationary probabilities in the Markov chain
Pk;`, implying that

Pk(z
p
1) = gzp1 (Pk;`(:j:)) + ~
k;`; ~
k;` ! 0 (`!1)

with g's as in (A.5). Then, by (A.5),

Pk;`(z
p
1)! Pk(z

p
1) (`!1) 8zp1 2 �pk:

Thus, by extending Pk;` and Pk to IR
ZZ as in (A.1) in Step 1,

Pk;` � �
�1
t+1;:::;t+m ) Pk � �

�1
t+1;:::;t+m (`!1) 8t 2 ZZ; 81 � m � p = pk;` = pk: (A.6)

Step 3. Show that Pk;` on �ZZ
k can be approximated by a sequence (Pk;`;m)m2IN of

stationary, ergodic QVLMC's with Pk;`;m on IRZZ. The process (Zt;k;`)t2ZZ � Pk;` with
Zt;k;` in �k can be approximated by

(Yt;k;`;m)t2ZZ = (Zt;k;`)t2ZZ + ("t;m)t2ZZ � Pk;`;m;

with ("t;m)t2ZZ a sequence of i.i.d. Uniform([�1=(2m); 1=(2m)] variables, independent of

(Zt;k;`)t2ZZ. Then, for m su�ciently large, Pk;`;m is a stationary, ergodic QVLMC of order
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pk;`;m = pk and with q : IR ! f0; : : : ; N � 1g (N = j�kj). This, because supp("t;m) =
[�1=(2m); 1=(2m)] ! 0 (m ! 1) and by the construction in Steps 1 and 2. Moreover,
�nite-dimensional weak convergence of Pk;`;m to Pk;` follows immediately by the de�nition

of "t;m. This, together with (A.3) and (A.6) completes the proof by using a diagonal
argument to choose a sequence (Pn)n2IN from (Pk;`;m)k;`;m2IN. 2

Proof of Theorem 2.2. Observe that for a QSVLMC with context function ~c(:),

IP[q(Y1) = x1jx
0
�1] =

Z
Ix1

f(y1j~c(x
0
�1))dy1 = IP[q(Y1) = x1j~c(x

0
�1)] 8x

1
�1 2 X1:

Therefore, (Xt)t2ZZ with Xt = q(Yt) is a VLMC with context function c(:) such that

jc(x0�1)j � j~c(x0�1)j for all x
0
�1. This proves assertion (i). (Note that it is possible to

construct a QSVLMC process with jc(x0�1)j < j~c(x0�1)j for some x
0
�1).

For assertion (ii) we have by assumption (B),

f(y1jx
0
�1) =

X
x12X

f(y1jx1)Pc(x1jc(x
0
�1))

with c(:) the context function of the quantized VLMC (Xt)t2ZZ, as described by (i). Clearly,
c(:) = ~c(:) with ~c(:) the context function of the QSVLMC. Moreover, the formula above
characterizes a QVLMC: thus (Yt)t2ZZ is a QVLMC with context function ~c(:) equal to the

context function c(:) of the quantized VLMC (Xt)t2ZZ. 2

Proof of Proposition 3.1. Observe that by assumption (C) and assuming f̂Xt
(Yt) 6= 0

for t = p+ 1; : : : ; n (i.e., the non-trivial case),

log(P̂�ci(Y
n
1 )) =

nX
t=p+1

log(f̂Xt
(Yt)) +

nX
t=p+1

log(P̂ (Xtjci(X
t�1
t�p))) (i = 1; 2):

Therefore,

~��c1 ;�c2
(Y n

1 ) =
nX

t=p+1

�
log(P̂ (Xtjc1(X

t�1
t�p)))� log(P̂ (Xtjc2(X

t�1
t�p)))

�
:

2

Justi�cation of formula (4.1). Since the quantized process (Xt)t2ZZ is a VLMC, the

result follows immediately from B�uhlmann & Wyner (1997) (here, the true underlying
VLMC is �xed and the conditions (A1)-(A3) from B�uhlmann & Wyner (1997) are met by
our assumption (D1)).

Proof of formula (4.2). By (4.1) it is easy to see that

n1=2fP̂ (x1jĉ(x
0
�1))� Pc(x1jc(x

0
�1))g = n1=2fP̂ (x1jc(x

0
�1))� Pc(x1jc(x

0
�1))g+ oP (1):

Since the VLMC (Xt)t2ZZ is geometrically �-mixing (see Proposition 2.1, the result follows

then from well known results for the maximum likelihood estimator P̂ (x1jc(x0�1)) in a
�nite state Markov chain, cf. Basawa & Rao (1980, Ch.2.2). For x1; x2 2 X ; w1; w2 2 �c,
the inverse Fisher-information is given by

I�1(x1w1; x2w2) = �w1;w2

1

P (w1)
(�x1;x2P (x1jw1)� P (x1jw1)P (x2jw2)): (A.7)
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Proof of formula (4.3). By a Taylor expansion we get

n1=2(ÎP[Yt 2 EjXt = x]� IP[Yt 2 EjXt = x])

= P (x)�1n�1=2
nX
t=1

(1[Yt2E;Xt=x] � IP[Yt 2 E;Xt = x])

� IP[Yt 2 EjXt = x]P (x)�1n1=2(n�1N(x)� P (x)) + oP (1):

Now asymptotic normality follows by the geometric �-mixing property of (Yt)t2ZZ, see

Proposition 2.1. The asymptotic variance �2as(E; x) is given by

�2as(E; x) = �21 + �22 � 2�1;2;

�21 = P (x)�2
1X

k=�1

Cov(1[Y02E;X0=x]; 1[Yk2E;Xk=x]);

�22 = P (x)�2IP[Yt 2 EjXt = x]2
1X

k=�1

Cov(1[X0=x]; 1[Xk=x]);

�1;2 = P (x)�2IP[Yt 2 EjXt = x]
1X

k=�1

Cov(1[Y02E;X0=x]; 1[Xk=x]): (A.8)

Proof of formula (4.4). Since ÎP[Yt 2 E] = n�1
Pn

t=1 1[Yt2E] we obtain the result by the

geometric �-mixing property for (Yt)t2ZZ, see Proposition 2.1. The asymptotic variance is
given by

�2as(E) =
1X

k=�1

Cov(1[Y02E]; 1[Yk2E]): (A.9)

Proof of formula (4.5). By the geometric �-mixing property of (Yt)t2ZZ, see Proposition
2.1, we obtain

n1=2(Y x � IE[YtjXt = x]))N (0; �21(x)) (n!1); (A.10)

where �21(x) has an analogous formula to (A.8), replacing 1[Yt2E;Xt=x] by Yt1[Xt=x] and

IP by IE. By formulae (3.8), (A.10) and (4.2) we obtain the required result. The value
�2as(m; s) is a linear combination of covariances in (A.7) and of the expression in (A.10).

Justi�cation of formula (4.6). Assumption (D1), implying the geometric �-mixing
property for (Yt)t2ZZ, says that n

�1N(x)� P (x) = OP (n
�1=2) converges faster than the

(unconditional) kernel density estimator. We can thus asymptotically replace n�1N(x) by

P (x). Moreover, since K(:) has compact support and y 2
�
Ix we can asymptotically replace

(nhd)�1
Pn

t=1K( y�Yth )1[Xt=x] by
~f(y) = (nhd)�1

Pn
t=1K( y�Yth ). We thus asymptotically

replace f̂x(y) by
1

P (x)
~f(y). Note also that for y 2

�
Ix, fx(y) = f(y)=P (x) with f(y) =

d
dtIP[Yt � y]. Regularity conditions for fx(:) then carry over to f(:). Assuming the
regularity assumptions preceding (4.6), the results in Boente & Fraiman (1995) imply

(nhd)1=2( ~f(y)� f(y))) N (Bas(y); �
2
as(y));
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Bas(y) = lim
n!1

n1=2h2+d=2
Z
IRd

K(z)z0Hf(y)zdz=2; Hf(y) =
@2f

@yi@yj
(y);

�2as(y) =

Z
IRd

K2(z)dzf(y):

By the asymptotic replacement of f̂x(y) with
1

P (x)
~f(y) we get the convergence in (4.6)

with

Bas(x; y) = lim
n!1

n1=2h2+d=2
Z
IRd

K(z)z0Hfx(y)zdz=2; Hfx(y) =
@2fx
@yi@yj

(y);

�2as(x; y) =

Z
IRd

K2(z)dz
fx(y)

P (x)
: (A.11)
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