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This paper aims to bridge the gap between processes where shocks are permanent

and those with transitory shocks by formulating a process in which the long run impact of

each innovation is time varying and stochastic. Frequent transitory shocks are

supplemented by occasional permanent shifts. The stochastic permanent breaks

(STOPBREAK) process is based on the premise that a shock is more likely to be

permanent if it is large than if it is small. This formulation is motivated by a class of

processes that undergo random structural breaks. Consistency and asymptotic normality

of quasi maximum likelihood estimates is established and locally best hypothesis tests of

the null of a random walk are developed. The model is applied to relative prices of pairs

of stocks and significant test statistics result.

KEYWORDS: Structural breaks, nonlinear moving average, unit roots, quasi maximum

likelihood estimation, Neyman-Pearson testing, locally best test, temporary cointegration.

1.  INTRODUCTION

Time series analysts tend to draw a sharp line between processes where shocks have a

permanent effect and those where they do not. The most notable example of this is the

distinction between stationary AR(1) processes, where all shocks are transitory, and the

random walk. As the autoregressive root approaches one, the rate at which shocks are

expected to decay decreases, but they remain transitory. This paper aims to bridge the gap

between transience and permanence by formulating a process in which the long run

impact of each observation is time varying and stochastic. At one extreme all innovations

are transitory and at the other, all shocks are permanent.
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The concept of varying the permanent impact of shocks is linked to the familiar topic

of structural change. Whenever a shock, or part of a shock, has a permanent effect we can

interpret this as a specific type of structural break. Under this definition, a random walk

has a break every period but a stationary ARMA process has no breaks. Processes such as

a threshold autoregressive (Tong (1983)) have no breaks. The parameters change values,

which causes the innovations decay at a different rate, but nonetheless they remain

transitory.

The stochastic permanent breaks (STOPBREAK) process is motivated by a class of

processes that incur random structural shifts at random intervals. Analysis of a structural

shift when the break point is known a priori generally involves standard test statistics and

estimators (Chow (1960)). When the break point is unknown the problem becomes more

difficult because the break point must be estimated and, under the null of no break, this

parameter is unidentified. Andrews, Lee and Ploberger (1996), Andrews (1993), Hansen

(1992), Christiano (1992) and others have studied this problem in various contexts. When

considering multiple break points the problem becomes further complicated since it

requires specification of the number of breaks and inclusion of enough parameters to

account for each regime. This becomes intractable when the number of break points

becomes large.

From a forecasting perspective, the errors of finding too many breaks and not enough

breaks are very different, resulting in either bias or imprecision. Linear moving average

smoothers often forecast this type of data relatively well, but lack flexibility. We

approach the problem from a different angle, treating the breaks endogenously by

inferring their magnitude and frequency from realizations on a single random variable.
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This allows the model enough flexibility to react to breaks without overloading on

parameters.

We apply the STOPBREAK model to relative prices of pairs of stocks, conjecturing

that a pair of stock prices may move together for periods of time and jump apart

occasionally. They may exhibit a type of temporary cointegration. We expect this

relationship to be strongest between stocks within the same industry, as they are likely to

have more common components in their stock price determinants.

The paper proceeds as follows. In the next section, we introduce the process and

discuss its properties and its relation to other non linear time series processes. Sections 3

and 4 treat hypothesis testing and Section 5 estimation issues. Empirical results follow in

Section 6.

2.  STOPBREAK PROCESS

In its simplest form, the STOPBREAK process is:

(1) yt = mt + εt (t = 0,1,…,T).

where mt = ( )1−ℑttyE  is a time varying conditional mean which is updated via

(2) mt ≡ mt-1 + qt-1 εt-1

    ∑
=

−−+=
t

i
ititqm

1
0  (t = 1,2,…,T).

We assume that m0 is fixed and known and that {εt, tℑ } is a martingale difference

sequence, where { tℑ } denotes an increasing sequence of F-fields. The function qt = q(εt)

is bounded by zero and one and defined such that ( ) 01 =ℑ −tttqE and
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t

q

∂
∂

is non-negative and finite2  wp 1.

This formulation is based on the assumption that the time series is less likely to mean

revert after a large shock than after a small one. If tq~  = 1, then the realized process at

time t is a random walk3. If tq~  = 0, the conditional mean does not change and

consequently neither does the long run forecast for yt. Thus we have a process where the

permanence of a shock is determined endogenously. For example, in the stock market,

investors may perceive large shocks as containing significant informational content and

small shocks as mere noise. Consequently, their valuations and expectations only react to

large shocks. Biological systems may fluctuate around some constant level of fitness with

occasional mutations having large permanent effects. An economy may be subject to

sporadic permanent supply shocks and frequent transitory demand shocks. Technology

growth and crime rates are examples of other series that could potentially behave

similarly.

Identification of permanent shocks by their magnitude should be viewed as a special

case of this process. In general, any factor that is part of the information set could be an

argument in the function qt. For example, if modeling stock prices, relevant variables may

include macroeconomic announcements, profit announcements, interest rates, exchange

rates etc. However it is unlikely that one could account for all potential factors that could

cause a permanent shift and even if it were possible, it would overload the process with

parameters.
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In this paper, we take an agnostic approach, assuming only that permanent shifts will

largely be reflected in an innovation that is larger than the norm. A model specified in this

manner may not pick up small shifts in the mean and thus will subsequently make

systematic errors until the mean moves sufficiently. It will also be prone to overreacting

to large transitory shocks, indicating equal and opposite breaks rather than no break.

Nonetheless we maintain that the simplicity and flexibility of the process more than offset

these negatives if the goal is to obtain conditional forecasts.

The STOPBREAK process can also be considered a type of error correction

mechanism in the sense that it is reactionary, rather than anticipatory. It makes no attempt

to predict when a permanent innovation will occur, but merely reacts to shocks by

forecasting their degree of permanence.

2.1.  Relation to Other Time Series Processes

The distinguishing feature of the STOPBREAK process is that the permanent effect

of shocks is time varying and stochastic. In some periods, breaks are permanent and in

other periods they are not.

DEFINITION:  Consider some stochastic process {yt}, t=0,1, ...., T. The permanent

effect of observation t is

( )
t

t

k

d

y

k,yf
  

∂
∂=λ

∞→
limt ,

where ( ) ( )t
ktt yyEk,yf +≡ , yt denotes the entire past history of {yt} and 

d

=  signifies

equality in distribution.
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A martingale has the property that all shocks have a permanent effect, i.e. λt = 1 wp 1

∀t. Conversely, if λt = 0 wp 1 ∀t, the process has no permanent breaks. Realizations, t

~
,

between zero and one indicate partial permanent breaks, so that some fraction of a shock

is remembered. An example is an integrated process with a negative invertible moving

average component. If t

~
 < 0, we have negative permanent breaking where the process

over corrects for shocks, and if t

~
 > 1, shocks are magnified, i.e. the permanent effect is

greater than the initial effect. A process with positively correlated first differences would

have λt > 1 wp 1 ∀t. A permanent break is deemed to have occurred at time t if the

realized permanent impact of that observation is non-zero i.e. if t

~
 ≠ 0.

A k period ahead forecast of the STOPBREAK process in (2) is:

( ) t1 qm  myyE ttt
t

kt +≡= ++

since ( ) 1++ = t
t

kt mymE . Differentiating with respect to εt gives the permanent impact of

observation t as

t
t

tt  
q

q
∂
∂+=

         ( )q,ttq += 1 .

Since both qt and 0q,t are non-negative wp 1, we have 8t $ 0 wp 1 ét. In the

STOPBREAK process, the long run impact of shocks varies over time.4

Compare this to a stationary autoregressive process in which the coefficients change

values, i.e. yt = Dt yt-1 + gt where gt is zero mean i.i.d. and Dt  is a random variable taking

the values D1 and D2 each with positive probablility. The mechanism that determines Dt
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could, for example, be governed by a markov chain as in Hamilton (1989) or a threshold

(Tong (1983)). As long as the process is stationary in all regimes, it will have 8t = 0 wp 1

ét. The rate at which shocks decay changes across regimes, but the time series remains

fully mean reverting. In fact, even if, say D1, is unity the permanent effect of all

observations will still be zero with probability one. This arises because, assuming that

each regime is realized with positive probability, there will eventually be enough periods

of stationarity for the effect of a shock to disappear.

The stochastic unit root process of Granger and Swanson (1997), where Dt varies

stochastically around one, is also an interesting case. Consider Dt = exp(<t) where <t is a

stationary Gaussian series with mean :v and variance 2
νσ . If <t contains some positive

temporal correlation and E(exp(<t)) = 1, then the effect of past shocks is magnified and 8t

is infinite wp 1. If <t is such that ( )( ) 1 1k    expE kt <∑∞
= + , all shocks eventually die away,

i.e. 8t = 0 wp 1 é t. Between these two extremes is a knife edge where the process

exhibits stochastic permanent breaks. However, the permanent impact of shocks tends to

fluctuate around one in this case, so the process does not bridge the gap between

permanence and transience as STOPBREAK does.

Consider the process:

(3) yt = mt + gt (t = 1,2,…,T)

where mt = mt-1 + ut, prob(ut=0) = (1!pu), prob(ut ~ N(0, 2
uσ )) = pu, m0 is fixed and

known and gt ~ N(0, 2
εσ ). We can rewrite (3) as

)yt = ut + gt ! gt-1.



8

When tu~  = 0, the innovation in period t is transitory, i.e. t

~
 = 0. Otherwise the ut

component of the period t innovation is permanent i.e. we have a partial permanent break.

Thus this process is similar to STOPBREAK in the sense that innovations vary

stochastically between permanence and transience.

The best linear representation for the process in (3) is an integrated moving average

or, by another name, the exponential smoother. The exponential smoother has constant

partial permanent breaks wp 1 in each period. A fixed proportion of each shock remains

permanent, where this proportion is determined by the probability of a permanent shock,

pu, and by the relative variances of the two innovation terms. We show in Section 6 that a

STOPBREAK model is able to forecast the process in (3) significantly better than the

exponential smoother.

2.2.  Properties of the STOPBREAK Process

We can rewrite the basic STOPBREAK in (1) and (2) process as

(4) 11 −−−= tttt\ (t = 1,2,…,T)

where 2t-1 = 1 ! qt-1. To forecast from this process, we require an estimate of εt-1 i.e. we

require the process to be invertible.

THEOREM 1:  The non-linear moving average process in (4) is invertible wp 1 if

prob(qt > 0) > 0 and if  qt(1+ηqt) < 2 wp 1 ét, where 
tt

t
qt

q

q ∂
∂= .

PROOF:   See Appendix.
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Invoking the conditions of Theorem 1, we have 8t < 2 wp 1 ét. However intuition

suggests that the majority of the probability mass for 8t would lie in the [0,1] interval.

Values between one and two may arise from second order effects through the function qt.

An increase in gt raises the long run forecast of yt+k firstly by proportion qt and secondly

by raising the value of qt. Thus, depending on the properties of the function qt, the final

effect of a change in gt may exceed the value of the change i.e. the permanent effect of

shocks may be greater than one.

In choosing a functional form for qt, we restrict our attention to functions that satisfy

the conditions in Theorem 1. The simplest example is a threshold function, where qt takes

the value one for values of gt greater in absolute value than some threshold, and zero

otherwise. Although the elasticity of qt with respect to gt is infinite at the threshold, we

can still claim invertibility wp 1 since this event occurs on a set of measure zero.

We choose to specify qt as a continuous function. This allows for partial permanent

breaks in the process, so that shocks in the gray area between large and small have only

some proportion that is permanent. Intuition suggests that this less rigid specification may

better represent much empirical data.

Suppose that a correctly specified model for qt is:

(5)
2
t

2
t

tq
+

=γ)( ,   γ > 0.

Under this specification, there is a smooth transition between the two extremes as shown

in Figure 1. A more rapid transition is obtained by increasing the exponent on εt to four.

Increasing it further to six leads to a violation of the conditions in Theorem 1.
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Along with its simplicity, an advantage of this specification is that it collapses to one

as γ goes to zero. This enables parametric testing of the random walk null hypothesis. A

number of other specifications, such as the logistic, can only collapse in this fashion if an

extra parameter is added. Then, under the null there is an unidentified parameter, which

introduces further complications to the testing problem.

Another useful property of the specification in (5) is that, for all ( > 0, qt(() = 0 if and

only if gt = 0 i.e. no non-zero shocks are completely transitory. Thus in periods of small

errors the process is only approximately stationary. This approximation proves beneficial

for hypothesis testing since it yields test statistics with the standard distributions. We

return to this topic in Section 3.

2.3.  Generalizations

The STOPBREAK process is a special case of the following general breaking

process:

(6) ( ) ( ) tttttt B(L)zA(L)zxyB(L) A(L) 11 1 −− −+=′− (t = 1,2,…,T)

p
p L    L  L    A(L) −−−−= ...1 2

21

s
s L    L  L    B(L) −−−−= ...1 2

21

where xt denotes a vector of explanatory variables, εt an innovation term, zt-1 some

measurable function of information up to t−1, and L the lag operator. When zt-1=0 wp 1

ét, B(L) is a common autoregressive and moving average factor which cancels out to

leave A(L)yt = εt. Similarly, the process reduces to B(L)yt  = εt when zt-1=1 wp 1 ét.
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Setting *=0, B(L) = 1−L, A(L) = 1, and zt-1=qt-1((0) obtains the basic STOPBREAK

process.

The general process in (6) will only exhibit a changing permanent effect of shocks if

one of the lag polynomials, say B(L), contains a unit root and if the other one has all roots

outside the unit circle. This causes the effect of innovations to range between permanent

and transitory. For example, consider *=0, B(L) = 1−L, A(L) = 1 and zt-1=1 wp 1 if t=t*

and zt-1=0 wp 1 if tût*. This process has a break in its mean at t = t*, i.e. 8t=1 wp 1 at t=t*

and 8t=0 wp 1 in all other periods.

The general formulation in (6) also reveals a number of possible generalizations to the

simple STOPBREAK process. For example, the process could have some temporal

correlation when in ‘non-breaking’ periods. This corresponds to *=0, B(L) = 1−L, A(L) =

1−α0L, and zt-1=qt-1((0), and implies the moving average representation:

(7) 1110 −−− −+= ttttt \\ (t = 1,2,…,T)

where θt-1 = 1−(1−α0)qt-1((0) and 0 ≤ α0 < 1. Now yt has an AR(1) and a random walk as

its two extremes.

Including explanatory variables implies a type of temporary cointegration since it

implies that a linear combination of variables follows a STOPBREAK process. This

linear combination is approximately stationary for periods of time before moving and

then remaining nearly stationary at a new level for a period of time. The cointegrating

coefficients do not change. This parallels the practice of intercept correction, which is

often used in forecasting (see Hendry and Clements (1996)). The intercept is allowed to
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shift to correct for mean shifts while keeping the fundamental relationship between the

variables constant.

There are other special cases of (6) where 8t is equal to some constant wp 1. For

example, if *=0, A(L) = 1−αL, B(L) = 1−$L, and if zt-1 = 0 wp 1 é t < t* and zt-1 = 0 wp 1

é t $ t*, we have an AR(1) process where the autoregressive parameter transforms from α

to $ at t=t*. This formulation is slightly different from a conventional parameter shift,

since the break in this case is not clean. Unless ty~  is equal to its unconditional mean at

the change point, the influence of that point decays away exponentially.

3.   HYPOTHESIS TESTING

In the long run, a STOPBREAK random variable has no tendency to return to any

previous point. With probability one, there will be a period with a non-zero permanent

break, after which point the past has no predictability. Thus the process is not covariance-

stationary and its spectral density at frequency zero is infinite. The long run properties of

the series are like those of a random walk.

THEOREM 2:  Suppose that {yt}, t=0,1…,T, is a stochastic process represented by (1)

and (2) with ( ) ( )2
0

2
0 tttq += , 0 < ( < 4. Let {εt, tℑ } be a strictly stationary ergodic

martingale difference sequence such that εt 1−ℑt  is symmetrically distributed. Then

( ) ( )
( )∫ −

∫ −−∫ −
→

∑

∑
=

=
−

−

=
−

−

2
00

000000

1

2
1

2

1
1

1

ˆ
0

000d
T

t
t

T

t
tt

WW

dWWW dWWW
   

yT

y\T
T
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where W and W( are standard Brownian motions on the unit interval, F0
2 = E(gt

2)<4 and

( )( )22
0

22
0 ttE εγεω += .

PROOF:  See Appendix.

The implication of Theorem 2 is that, even in large samples, Dickey Fuller (DF) type

tests never reject the unit root null with probability one, when the data is generated from a

STOPBREAK process. However there is some power because the downward bias in ˆ  is

increasing in (0. Table I lists the simulated power of a simple DF test against (0/F0
2 for a

sample size of 1000 using the specification in (7).

The inconsistency of the DF test arises due to the long run similarity between the

STOPBREAK and a random walk.5 Similar logic implies that unit root tests which have

stationarity as the null (e.g. Saikkonen and Luukkonen (1993)) will have power against a

STOPBREAK process. Thus, specific tests to distinguish between a random walk and a

STOPBREAK process are desirable. Essentially these tests will search for plateaus in yt

or, more specifically, periods where the permanent effect of shocks is low.

Using the parameterization in (5), we can write a model for the process in (1) and (2)

as

t
t

t
t    \ +

+
−=

−

−
2

1

1 .

From this we see that the random walk null can be formulated parametrically as a test of

H0: γ = 0. Consider testing against the point alternative = . From the Neyman-Pearson

lemma, the most powerful test rejects for large values of the likelihood ratio. Given
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Theorem 1, we can form the Gaussian conditional log likelihood functions under the null

and under the alternative, and write their difference as

( )  
2

1

1

2

2

2
1

1
201 ∑

= −

−













−





+

+−=−
T

t
t

t

t
t  \\LL

(8) ∑ 





+

−∑ 





+

−=
= −

−

= −

−
T

t t

t
T

t t

t
t   \ 

1

2

2
1

1
2

2

1
2

1

1
2 2

.

Thus the most powerful test of the random walk null is a linear combination of two

statistics, each of which depend on the values of the parameters under the alternative. It

follows that there is no uniformly most powerful test of a random walk against a

STOPBREAK model.

THEOREM 3:  Assume that εt is a strictly stationary tℑ -measurable random variable

with uniform mixing coefficient N(j) = o(j!6) where







−




 +=
ξ

ξ
η

ηκ
4/1

1

for 0 > 0 and 0 < > < 1/4 defined such that

( )
( )( )ηξ

η

ηε +
+

+

=












+
1

12

1

TO
Tc

E
t

t .

Then, for c>0,

( ) ( ) 0
1

1

1
22

2

22

2

→

























+
−













+
∑

=

L
T

t
t

t

t

t

Tc
 E 

TcT
,

where → 1L  denotes convergence in L1 norm.

PROOF:  See Appendix.
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Suppose that  is local to zero, i.e. Tc= . Then, from Theorem 3, the second

term in (8) is asymptotically equivalent to a constant. This implies that

∑ 





+= −

−
T

t t

t
t  \

1
2

1

1

is a sufficient statistic for the locally best test, which suggests using a t-test of H0: N=0

against a negative alternative in the following regression:

(9) t2
1

1 u
\

\
 \

t

t
t +

+
=

−

− .

The standard distribution theory applies to this t-statistic. This arises because the form of

qt-1 means that the process is never exactly stationary, implying that, under both the null

and the alternative, )yt contains no unit moving average roots. The result is formalized

below under general assumptions on gt.

THEOREM 4:  Suppose that {yt}, t=0,1…,T, is a stochastic process represented by (1) and

(2) with ( ) ( )2
0

2
0 ttt Tccq += , c0>0. Define

( )( )






++
=

22
0

2

tt

t
T

TcTc
E ,

( ) 












+
= −

22

2
1

2

t

tt
T

Tc
E

ε
σ ,

( )∑ +−=
−

−
−












+
= T

TT

ib

lbit
tT

tt
Ti

Tc

T
Y

)1( 2
1

1
2/1

εω
εε

γσ

,

where [ ]δTbT = , [ ]θTlT = , [v] denotes the largest integer less than v, and 2 < * < 1.
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Let {εt, tℑ } be a strictly stationary martingale difference sequence satisfying the

conditions of Theorem 3 except with 0 < > < 1/6 and 
[ ]

1
1

1
2 →∑

−

=
pT

i TiY
δ

. Then

( ) )N(c,cT,t d 1,00 →µ−γ

where

1/2
T

1t

2

2
1t

1tt

T

1t
2

1t

1t
t

\Tc

\u

\Tc

\
\

t


























+

+
=

∑

∑

= −

−

= −

−

ˆ

,

( )
T

Tc
 c,T,c 0

0 −= ,

and tû  denotes the least squares residuals from the regression in (9).

PROOF:  See Appendix.

The assumptions in Theorems 3 and 4 provide an interesting insight into the trade off

between moment and dependence restrictions in this problem. The allowable size of the

mixing coefficient is directly related to the rate at which the moments of

( ) 22/1
tt cT εε +−  diverge as ∞→T  (see Lemma A1 in the Appendix). This in turn

depends on the amount of leptokurtosis in gt. If the density function for gt is relatively

steep as tε  approaches zero, then ( ) 22/1
tt cTE εε +−  diverges faster and the required

dependence conditions are tighter.

From Theorem 4, comparing t  to a standard normal is the locally best test of a

random walk against the alternative c = c . However, in practice, researchers are unlikely
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to know the correct value for c . Further, they will not generally be interested in testing

against this specific alternative. They are interested in determining whether there exists a

value that provides a significantly better fit than a random walk.

Setting c = c  and assuming gt iid normal, we use Theorem 4 to compute the envelope

of maximum power. Then, by comparing the power of the test against c0 for a given c ,

we search for values of c  that yield power close to the envelope. From Figure 2, we see

that choosing c  such that power is optimized somewhere between 50% and 75% causes

little loss in overall power. This translates to a choice of ( )c,cT,  between !1.5 and

!2.5.  Given the Gaussianity assumption, we can integrate to find γσT , yielding

( ) ( ) ( )( ) 2

1

0 2

1
12exp2

1










−−+−=−= ∗∗

∗

∗
∗  T

c
c,cT, T

where Tc 0σ=∗  and M(z) is the standard normal CDF. Table II lists recommended

choices of ∗  for various sample sizes.

Since F0
2 is generally unknown, we recommend approximating it with ( )∑ =

− T
t t\T 1

21 .

This use of the data in determining ∗  will affect the distribution of the statistic, but we

speculate that the effect is small when compared to the benefit of choosing the right order

of magnitude for ∗ .

When c  is set to zero, the t  statistic is a variant of the Langrange Multiplier (LM)

statistic for a test of H0: (0=0. From Theorem 4, we see that γσT  is infinite and γγT  is

finite which implies that ( ) 000 =,cT,  for all c0 and therefore the test has no power. The

statistic is asymptotically distributed as standard normal under both the null and the
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alternative. This failure of the LM test results from the null being on the boundary of the

parameter space which causes the likelihood function to degenerate. In particular, the

derivatives of the likelihood have no finite moments.

All of the above analysis is performed under the assumption of Gaussianity, although

it is unlikely that the STOPBREAK disturbances will be Gaussian. Simulating the

asymptotic power curves under both a mixture of normals and a GARCH(1,1) reveals a

similar picture to that in Figure 2. In fact, the power of the test in these cases is slightly

higher due to the excess kurtosis, which helps by driving a wedge between small and

large shocks. The size remains correct, as both of these distributions satisfy the

assumptions of Theorem 4, given the use of heteroskedasticity consistent standard errors.

4.  TESTING IN A MORE GENERAL CONTEXT

In many cases, empirical data will exhibit some temporal correlation in all periods. In

the remainder of the paper, we analyze a more general process of the form in (7). This

introduces a complexity to the hypothesis testing problem as "0 is unidentified under the

random walk null, yet knowledge of it is required to compute the test statistic. Thus we

must choose a value for "0, despite the fact that it does not exist when the null is true.

Suppose we choose the value .

We compute the Neyman Pearson test statistic as the t-statistic on N in following

regression:

(10) t

t

i it

iti
t u

\

\
 \ +∑

+
=

= −

−−

1
2

1 .



19

As before, the test statistic has an asymptotic normal distribution. This result is given

below in Corollary 5.

COROLLARY 5:  Suppose that {yt}, t = 0, 1,…,T, is a stochastic process represented by

(7) under the assumptions of Theorem 4 except replacing uniform mixing with strong

mixing. Then

( ) )N(,,c,cT,t d 1,000 →−
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and tû  denotes least squares residuals from the regression in (10).

PROOF:  See Appendix.

We see that if " 0= 1, the asymptotic power of the test is equal to the size for all c0.

This also occurs when  = 1, since in this case 2
γαωT  is infinite. This lack of power arises
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because when "0 = 1, the null of a random walk is true. As "0 goes to one, the correlation

within the flat spots increases until they are no longer flat, i.e. the rate at which shocks are

expected to decay goes to zero. In contrast, when gamma goes to zero the plateaus shrink

in size, keeping the correlation within them at a given level, i.e. we decrease the

probability that an observation will have a low permanent impact. Thus, there are two

distinct ways of parametrically representing the random walk null.

In order to maximize power, we should choose  to be as close as possible to "0 as

often as possible.6 One strategy could be to choose it arbitrarily. This avoids using the

data and thus distorting the distribution of the test statistic. Since the power of the test

decreases as " goes to one, it would be advisable to weight this choice of  towards one.

However if we choose it too close to one, the distribution of the test statistic will be a

function of Brownian motions and no longer normal. This arises because the regressor in

the test equation becomes nearly integrated as  approaches one. A possible choice is

= 0.8.

A second strategy is to take the infimum of t  over feasible values of  as suggested

by Davies (1977) and elaborated on by Hansen (1996), Andrews (1993) and others. The

null distribution of this statistic is well defined but will depend on the correlation of t

across various different values of  which will in general depend on the distribution of

gt. In this case, the simulated values prove reasonably robust to GARCH(1,1) and excess

kurtosis. We conduct the test using 0 [0, 0.9].

Finally, we could approximate the test by regressing )yt on ( )2
i-tit \+\ − ,

i=1,2,…,p, where p is some predetermined number. Under the null hypothesis TR2 from
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this regression will be distributed as P2
(p). This procedure will lose power because of the

approximation and also because it is unable to test against a one sided alternative, but it is

relatively simple to perform.

5.   QUASI MAXIMUM LIKELIHOOD ESTIMATION

Given invertibility, we can specify the Gaussian conditional log likelihood function

for the process in (7) as

(11) ( ) ( ) ( )2
2

1
1112

2log
22

1 T
\\,yL

T

t
tttt

T −+−−= ∑
=

−−−ϕ ,

where )    ( ′= σϕ  and yT = (y1, y2, …, yT). The scores are given by
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(15) 1
1

1 )1( −
−

−− ∂
∂−−= t

t
t1tt

q
wbw ,

(16) 11111 −−−−− −+= tttttt \qvbv ,

(17) ( ) 11 1 111 −−− +−−= ttqt q�(b ,

and w0 = v0 = 0 wp 1.

Though the likelihood is constructed to be Gaussian, it is not necessary that this be the

true distribution. In fact, the presence of large permanent shocks would indicate that
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leptokurtic errors are likely. We derive consistency and asymptotic normality results

below under minimal assumptions on the errors.

THEOREM 6:  Suppose that {yt} is a stochastic process represented by (7) with {εt, tℑ }

a strictly stationary ergodic martingale difference sequence with finite variance σ0
2>0.

Assume that qt(() is a general function, bounded by zero and one, such that

( ) 01 =ℑ −tttqE  and that the conditions of Theorem 1 are satisfied. Let Q be a compact

subset of (!4,4) ),0()1,0[ ∞××  and define ( )ϕϕ ,yL Tmaxargˆ =′  and

( )( )ϕ=ϕ Ψ ,yLE Tmaxarg0 , where n 0 Q and n0 is unique. Then .0ˆ
.s.a

0 →ϕ−ϕ

PROOF:  See Appendix.

Given the regularity conditions of Theorem 6, asymptotic normality of QMLE

requires further restrictions on the memory of the process. We present this result for the

parameterization for qt given in (5).

THEOREM 7:  Given the conditions of Theorem 6, ( ) 2
0

..2
0 σε  →ℑ−

mq
mE  as ∞→m ,

and ( )∑∞
= ∞<ℜ0

2/1
0varj j  where ( ) ( )1

2
0

2
00 −−− ℑ−ℑ≡ℜ jjj EE εε . Then

( ) )0ˆ 0
21 I,N(HTV d1/2/ →−− ϕϕ ,

where ( )( )0
21 ,covlim ϕϕ

T/
T yLT V ∇= −

∞→ , LnL(yT,n) represents the vector of first

derivatives of L(yT,n), and
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







′

=
2

1

0

0

H

H
H

with ( )∑ =
−− ′−= T

t tt ssETH 1
2

0
1

1 , 2
02 σ=2H , and st = (wt, vt)N. Assume that H and V are

nonsingular and positive definite.

PROOF:  See Appendix.

The result in Theorem 7 may be of limited use in finite samples, especially if the

parameters are close to their bounds. For example, the gradient of the likelihood function

approaches infinity as ( goes to zero causing confidence intervals to become condensed

on the lower side. The linear approximation that yields the asymptotic normality result

may thus give misleading confidence regions. A similar scenario arises when " is close to

one.

Alternatively, confidence intervals can be formed by inverting a likelihood ratio

statistic as in Schoenberg (1997) and Cook and Weisburg (1990). This approach requires

finding the value of the parameter such that the likelihood is significantly different from

the unconstrained likelihood, where significance is determined by the usual chi-square

distribution. Since the likelihood is explicitly used, this method better accommodates the

nonlinearity and asymmetry in the model.

The consistency and asymptotic normality results presented above do not rely on the

function qt being correctly specified. From Assumption 2.3 of White (1994), all that is

required is that the model density is measurable with respect to the data generating

density. Thus if the chosen specification incorrectly represents the true function qt = q(gt),
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QMLE estimates remain consistent and asymptotically normal for the KLIC7 optimal

parameter values.

6.  APPLICATIONS

6.1.  Two Shock Process

Consider the process in (3), i.e. yt = mt + gt where mt = mt-1 + ut, prob(ut=0) =

(1!pu), prob(ut ~ N(0, 2
uσ )) = pu, and gt ~ N(0, 2

εσ ). Suppose 2
εσ = 1. Using simulated

data and a variety of values for the parameters pu and 2
uσ , we compare the mean square

forecast errors for a number of potential modeling approaches.

Forming conditional forecasts for this process is difficult because it is not invertible.

The parameters can be trivially estimated via method of moments, which enables

unconditional inference. Shephard (1994) and others have proposed computationally

intensive simulation techniques for computing the maximum likelihood estimates.

Though a STOPBREAK model is only an approximation, we contend that it is very

useful for producing conditional forecasts.

We consider three models; a random walk, an exponential smoother and

STOPBREAK. Each is compared to the result from an omniscient modeler who is able to

recognize both when a permanent shock has occurred and its magnitude.

The experiment is conducted over 100 trials of 6000 observations each. The

STOPBREAK model and the exponential smoother are estimated over the first 5000

observations. One step ahead forecasts are then computed for the next 1000 observations

without re-estimation of the model parameters. Mean square forecast errors (MSFE) are
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computed and compared with analytically calculated MSFEs from a random walk

forecast. The results are shown in Table III.

The far right column in Table III contains the difference between the average MSFEs

for the exponential smoother and STOPBREAK, with associated standard errors. We see

that the relative performance of the STOPBREAK improves with the variance of the

permanent shocks. When the variance of the permanent shocks is high, the exponential

smoother is penalized for it’s slow adjustment. In other words, this scenario highlights the

ability of the STOPBREAK model to react quickly to large permanent innovations. As

the permanent shocks become smaller on average, the performance of the two models

becomes insignificantly different. These results are largely independent of the frequency

of the breaks though in some cases, the superiority of the STOPBREAK model is less

significant at low break frequencies. This likely arises because the more permanent

breaks there are, the more opportunity the STOPBREAK model has to exercise its

comparative advantage.

6.2.  Relative Stock Prices

Individual stock prices have a tendency to move together, by virtue of their existence

in a common market. This empirical observation is backed up by a number of asset

pricing models, the most well known being the CAPM where individual stock returns are

proportional to the return on the market portfolio. However these models tell us little

about the dynamic features of relative stock prices. The goal of this analysis is to gain

insight into the dynamics of relations between stock prices over time.
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Many researchers have conducted cointegration tests amongst asset prices, with

mixed results. Chelley-Steeley and Pentecost (1994) and Cerchi and Havenner (1988)

both find evidence of cointegration among stock prices, while Stengos and Panas (1992)

and MacDonald and Power (1991) do not. Granger (1986) documents that the

predictability inherent in cointegrating relationships precludes them from existing in an

efficient market.

However it may be that such relationships could exist over short periods of time in a

market with imperfect information. Consider a market in which two stocks, A and B, are

traded. Suppose that firms A and B are in the same industry. Various types of information

will lead to a change in the value of just one stock or of both. Whenever the price of one

stock changes, investors must ascertain whether this information is relevant in

determining the value of the other stock. For example, if firm A announces better than

expected profits, it may indicate higher profits for the whole industry.  The price of stock

B will initially rise to reflect this possibility and then as more information becomes

available, it may go to a new ‘high profit’ level, in which case the ratio returns to its

original value. Otherwise stock B may return to its initial point leaving the ratio

permanently at a new level. Thus we observe serial correlation in the relative price of the

stocks with a time varying permanent impact of shocks.

As an example, the logarithm of the Mobil to Texaco relative share price is shown in

Figure 3. The presence of apparently stationary sections indicates periods where shocks

have a low permanent impact punctuated by episodes of a high impact. This is most

evident in the last five years of the sample where there are a number of three to six month

periods where the first order autocorrelation in the series is around 0.7.
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We apply the STOPBREAK model to daily data on a number of stocks over a sample

period of January 1988 through December 1995. The data were obtained from Datastream

International.

The results of tests of the random walk null are presented in Table IV, where each

column in the table contains the statistic computed using different methods of

accommodating the unidentified parameter, as outlined in Section 5. We see that the null

is rejected in almost all cases, with the conclusion generally invariant to the method of

setting the unidentified parameter.

QMLE estimates of the model over the full sample are given in Table V for four stock

pairs. The estimates of " and the standardized ( are broadly similar across the four pairs,

although confidence bands are wider for Coke/Pepsico and J&J/Merck. In both of these

cases, there is a high positive correlation between α̂  and γ̂ . Intuitively, the model is

having difficulty distinguishing between high temporal correlation with few breaks and

lower correlation with more breaks.

In all but one case the estimates of ( are within two standard deviations of zero, when

heteroskedasticity consistent standard errors are used. However 95% confidence intervals

computed through inverting the appropriate likelihood ratio statistic reveal a much shorter

interval on the lower end.

Comparing the estimated variance of the STOPBREAK errors with the estimated

variance of )yt reveals a low fit, with R2 often less than 1%. The low fit is not

unexpected, given the nature of financial data. However, it may possibly be improved by

a richer specification of the model. For example, we could estimate some equilibrium
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relationship between the stock prices rather than using the ratio. Incorporating features

such as conditional heteroskedasticity and more memory in qt could also prove fruitful.

A further indicator of the presence of stochastic permanent breaks in stock price ratios

is to compute potential profits from a trading strategy. The STOPBREAK model predicts

the direction that the price ratio will move, i.e. it forecasts whether the prices will move

towards or away from each other. If they are predicted to move apart, the investor will

buy the higher valued stock and sell the lower valued stock short. In a STOPBREAK

framework, such an investor is expected to make small gains regularly and then to make

either large gains or large losses when the unexpected permanent shocks occur. On

average, these large profits and losses will cancel each other out, leaving an accumulated

wealth with no money down.

We compute the profits gained from enacting the above pairs trading strategy for

January 1996 through June 1997. The model is not re-estimated during the forecast period

and standard errors are computed assuming that daily profits are iid. The results are given

in Table VI.

As a benchmark, we compare the STOPBREAK profits with those from using the

same strategy, but forecasting using an exponential smoother and a 20 day moving

average. For J&J/Merck and Mobil/Texaco, STOPBREAK outperforms the other models

both in terms of mean return and the Sharpe Ratio8. For the other two cases, the naïve

moving average model performs better. In no cases does the exponential smoother beat

the STOPBREAK model.9

7.  CONCLUSION

We have proposed a new approach to modeling processes where the effect of shocks

fluctuates between permanent and transient. Typically, such data exhibits periods of
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apparent stationarity punctuated by occasional permanent mean shifts. Rather than

attempting to individually characterize a number of different regimes, we allow the

process to predict whether part or all of a shock will be permanent or transitory. The

stochastic permanent breaks (STOPBREAK) process assumes that permanent shocks can

be identified by their larger magnitude, but this assumption should be viewed as a special

case rather than a necessity.

We considered two applications of a STOPBREAK model. Firstly, we analyzed

simulated iid data with random mean shifts of random amounts. The STOPBREAK

model can be viewed as an approximation to this type of process. Out of sample mean

square forecast errors reveal STOPBREAK to be on a par with the exponential smoother

when the variance of the permanent shifts is small. As the size of the permanent shock

increases, the relative performance of STOPBREAK improves and it becomes

significantly better.

The second application involved pairs of stock prices.  We posit that the relative price

of two stocks follows a STOPBREAK process.  The two prices tend to move together for

periods of time and jump apart occasionally. Hypothesis tests reveal evidence of

stochastic permanent breaks and maximum likelihood estimates are used to form a

profitable out of sample trading strategy.

Department of Economics, University of California, San Diego, La Jolla, CA 92093,

U.S.A.
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APPENDIX

PROOF OF THEOREM 1: Let { ty~ }, t = 0, 1,…, T, be a sequence of realizations from the process in (1)

and (2) and write

(A.1) ( ) tt-tt yq ~~~1~
11 +ε−=ε −     (t = 1, 2,…, T).

where { tε~ } denotes the sequence of realizations from {εt, tℑ } that generated { ty~ }.

Invertibility requires that the innovations can be computed uniquely from the observed time series.

Consider the sequence of real numbers, T,...,, εεε ˆˆˆ 10 , where

(A.2) ( ) tt-tt yq ~ˆˆ1ˆ
11 +ε−=ε −     (t = 1, 2,…, T).

and ( )11-
ˆˆ −ε= tt qq . Suppose that 0ε̂  is drawn from some unbounded continuous distribution.

From Granger and Andersen (1978), the process is invertible if the sequence { tt ˆ~ − } converges to

zero. Thus, since the recursions generating { tε~ } and { tε̂ } are identical, it is sufficient to show that the

starting value in (A.2) has no effect in the limit. The result here could be termed “weak invertibility”, as we

show only that convergence occurs wp 1.

Consider the effect on 1ε̂ of a change in 0ε̂ :
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Since 0 # qt ≤  1 ét and tq̂  is non-decreasing in tε̂ ,
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which implies qtη̂  ≥ 0 ét. Further, given that qt(1+ηqt) < 2 wp 1 ét, and since 0ε̂  is drawn from some

continuous distribution, sequences { tε̂ } such that tq̂ (1+ qtη̂ ) $ 2 for some t occur on a set of measure zero.

This yields
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and qt > 0 with positive probability, there exists k < 4 such that q(gt) > 0 for all tε >k. Thus, the process is
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PROOF OF THEOREM 2:   Write the STOPBREAK process in (1) and (2) as

0
11

10 muy
t

i
i

t

i
it ++−= ∑∑

==
− εγ

where ( )2
0 tttu εγε +=  and m0 is fixed and known. Since
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02
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γ
≤tu  ét,

all moments of ut exist. Symmetry of the distribution of εt 1−ℑt  about zero implies that ut 1−ℑt  is also

distributed symmetrically about zero. Thus {ut, tℑ } is a martingale difference sequence.

We use the functional central limit theorem in Phillips and Solo (1992, Theorem 2.6). This

requires verifying that 11
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Then invoking the functional central limit theorem yields

( ) ( ) ( )rWrWmyT d
t 0000

2/1 σωγ γ +−→−− ,

where t=[rT], [rT] denotes the largest integer below rT and W(r) and W((r) are dependent non-identical

standard Brownian motions on the unit interval. Henceforth, we define ( )rWW ≡  and ( )rWW γγ ≡  for

brevity.

We have
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from the continuous mapping theorem (see, for example, Davidson (1994, Theorem 26.13)). For the
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from the continuous mapping theorem and the result follows.    Q.E.D.

The following Lemma will be useful in proving Theorems 3, 4 and 5.

LEMMA A1:  Let Xt be some strictly stationary positively valued random variable defined on a

complete probability space. Consider the function

2
t

t
Tt

XTc

X
f

+
=

where 0 < c < 4. Then, for any 0 > 0, ( ) ( )( )ηξη ++ = 11 TOfE Tt  where 0 < > < 1/4.

PROOF OF LEMMA A1:  For T < 4, we have

2/1

4/1

2 2c

T

XTc

X

t

t ≤
+

.
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Let I(A>B) be a function taking the value one if A > B and zero otherwise. Now, for some 0 < * < 1/4,

consider
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where

( ) ( )( ) ( )4/12/124/12/1 11 / −−− =−−= δδδ TOTTcAT , and

( ) ( )( ) ( )4/12/124/12/1 11 / −−− =−+= δδδ TOTTcBT .

Now since [ ]( ) 1,Prob ≤∈ TTt BAX  there exists 2 > 0 such that [ ]( ) ( )( )θδ 4/1,Prob −=∈ TOBAX TTt . Thus we

have

( ) ( )( )( ) ( ) ( )( ) ( )( )ηξθδηηδη +−+++−+ =+≤ 14/114/114/11 TOTOTOfE Tt

where
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η
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PROOF OF THEOREM 3:  Define

( )22

2

t

t
Tt

Tc
w

+
=     (t = 0, 1,…, T),

where 0 < c < 4. We show that ( )( ){ }TtTtTt wEw ℑ− ,  is an L1-mixingale, and use the law of large numbers in

Theorem 1 of de Jong (1995). Since wTt is measurable- Ttℑ , ( )( ){ }TtTtTt wEw ℑ− ,  is an L1-mixingale if there

exists an array of non-negative constants { }∞
∞−Tts  and a non-negative sequence { }∞

0jζ  such that 0→ζ j  as

∞→j  and
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( )( ) jTtjtTtTt swEwEE ζ≤ℑ− −   

(see, for example, Davidson (1994, Definition 16.5)). From Davidson (1994, Theorem 14.4),

( ) ( ) ( )( ) ( ) ( ) ( )ηηηη φ +++
− ≤−ℑ 11/112 jwEwEwEE wTtTtjtTt

for some 0 > 0, where Nw(j) denotes the uniform mixing coefficient for wTt. Define

( )( ) ( )η+η+≡ 1/112 TtTt wEs  and ( ) ( )ηηφζ +≡ 1/jwj .

Now from Lemma A1,

( )( ) ( ) ( )ξηη 21/11 TOwE Tt =++

where > < 1/4.

Since wTt is an tℑ -measurable function of finite length, we have from White (1984, Theorem 3.49) that

{wTt, Ttℑ } is mixing of the same size as {gt, tℑ }. Then, given finite 0, 0→ζ j  as ∞→j  and therefore

( )( ){ }TtTtTt wEw ℑ− ,  is an L1-mixingale.

Given stationarity of {gt, tℑ }, the mixingale law of large numbers requires that, for some sequence
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∞→ TTt
T
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( )TtTtTt wEwX −= .
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from Davidson (1994, Theorem 9.29) and since ( ) ( )TtTtTtTt wEwwEw +≤−   by the triangle inequality.

Since

( )( ) ( ) ( )ξηη 21/11 TOwE Tt =++  and ( ) ( )( ) ( )η+η+≤ 1/11
TtTt wEwE ,
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we have ( ) ( )ξ2TOwE Tt =  and therefore there exist B and N such that ( ) ξ2BTwE Tt ≤  for all T $ N, i.e.

( ) ( )( )( ) 0 limsuplim 2 =>
∞→∞→

ξBTwEIwE TtTt
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.

Consider
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Thus condition (A) is satisfied.

For the second condition, we have
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Now, since sTt = ( )ξ2TO , we have

[ ]( ) 0  lim 12/1 =−

∞→ TTt
T
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and can apply the law of large numbers to obtain the result.   Q.E.D.

PROOF OF THEOREM 4:  We have
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Note that
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We analyze each of these four terms separately, labeling them (i), (ii), (iii), and (iv) respectively.
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where {gtUTt, Ttℑ } and {gtVTt, Ttℑ }  are martingale difference arrays. We proceed in a similar fashion to

the Proof of Theorem 3. One notable difference relates to terms with )yt
2 rather than gt

2 in the denominator.

Now since
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we have
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Thus this term is bounded and the bound and moments diverge at the same rate as the term in Lemma A1.

Now since {gtUTt, Ttℑ } is a martingale difference array, it is also a mixingale with
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where p > 1, q > 1 and 1/p + 1/q + 1/r = 1. This leads to
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where > < 1/4, from Lemma A1. However to use the weak law for mixingales as in the proof of Theorem 3

requires > < 1/6, which is true by assumption. Substituting gtUTt for wTt in the proof of Theorem 3 then

yields

0
1

1

1

→∑
=

L
T

t
TttUT

ε .

Similarly for gtVTt, we have

( )
( )

( )
( )

( )
( ) rr

t

t

qq

t

t

pp

t

Tt

Tc
E

yTc
E

Tc

T
EVE

1
1

22
2

2
2

1
1

2
1

1

1
1

2
1

2/1
1

















+













∆+













+
≤

+

−

−

+

−

−

+

−

−
+

ηηη
η

ε

εε
ε

Now ( ) ( )1/12
1

2/12/1 OcTcT t =≤+ −
−− ε , which implies that

( ) ( ) ( )ξηη 3
1/11

TOVE Tt =
++
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Thus, for term (i), we have
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We use the central limit theorem given in Theorem 1 of de Jong (1997). Define

( )2
1

1
2/1

−

−
−

+
=

tT

tt
Tt

Tc

T
Z

εω
εε

γσ

where

( )
2

1

22
1

2
1

2




























+
=

t-

t-t
T

Tc
Eσ .

Since {εt, tℑ } is a stationary martingale difference sequence, {ZTt, Ttℑ } is also a martingale difference

sequence for all c >0. From Davidson (1994, Theorem 14.4),
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Then, given that ( ) 0→jφ  as ∞→j , {ZTt, Ttℑ } is a L2-mixingale array of size –1/2 with sTt = 2T!1/2 and

.j= N(j)1/2.

 Use  of  de Jongs (1997) central  limit  theorem  requires that three further conditions be satisfied. The
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TtTt sZ  be uniformly integrable is true if E(ZTt /sTt)
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(ii) Consider
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( )( ) ( )( )ηξηξ ++−= 141 TOTO

We have ( )( )ηξη ++ = 131
TOUE Tt  and, since > < 1/6, we can substitute UTt for wTt in the proof of Theorem 3.
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Thus, for the numerator of t , we have
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where z ~ N(0, 1).

Consider the denominator of t . Now
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from above, the numerator of φ̂  converges to zero. Then replacing gt with )yt in the proof of Theorem 3,

we obtain that the denominator is asymptotically equivalent to a non-zero constant. Thus 0    ˆ 1→Lφ .
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and the result follows. Q.E.D.

PROOF OF COROLLARY 5:  We have
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The only change from the case in Theorem 4 is that, since xTt depends on the infinite past of gt, we

cannot directly map the mixing properties of gt to xTt. However we can utilize the concept of near epoch

dependence (NED). From Davidson (1994, Definition 17.1), xTt is Lp-NED if
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where 0 < > < 1/6. Given this, and the law of large numbers in de Jong (1995, Theorem 3) and the central

limit theorem in de Jong (1997, Theorem 2), the results go through in identical fashion to those in the proof

of Theorem 4. We present an outline below.
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where z ~ N(0, 1).

For the denominator, we have
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and the result follows.   Q.E.D.

PROOF OF THEOREM 6:  Gaussianity of ),L(yT ϕ  and compactness of Q provide sufficient regularity for

the existence of the QMLE (White (1994), Theorem 2.12).

We have
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To show consistency, we utilize the uniform law of large numbers (ULLN) for stationary ergodic

processes of Ranga Rao (1962, reprinted as Theorem A.2.2 in White (1994)).
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Since gt is stationary and ergodic and because ),L(yT ϕ  is a measurable function of gt, ),L(yT ϕ  is also

stationary and ergodic (see White (1984, Theorem 3.35)). Thus, the ULLN holds, i.e.
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0    Q.E.D.

The following Lemma will prove useful in completing the proof of Theorem 7.

LEMMA A2: Suppose that εt, t = 0, 1, …, T, is a random variable with a continuous density function

and variance σ0
2>0. Then ∞<ts  wp 1 and ∞<∂∂ 12ϕts  wp 1, where st = (wt vt)N as defined in

Equations (15)–(17), ( )αγ=ϕ   12  and ( ) ( )22
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PROOF OF THEOREM 7:  Consider a first order mean value expansion of the first order condition around

n0. Define Ln
2L(yT,n) as the hessian. The mean value expansion yields
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To verify this, we need to show that the hessian converges to H, which is nonsingular by assumption.
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Since st is a measurable function of gt, st and 12ϕ∂∂ ts  are stationary and ergodic (see White (1984,

Theorem 3.35)). Then, given that ∞<′tt ss  wp 1 from Lemma A2, there exists a dominating function, Dt
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Since F2 > 0 and ∞<ts  wp 1, we can define tt kD ε=  for some k < 4 and use the Ranga Rao ULLN to

obtain

( ) 0
2~

1

..
33

1 ∑
=

− →−
T

t

sa
ttsE

T
HT ε

σ
   uniformly on Q.

From the law of iterated expectations, we have

( )( ) 0
2

1
13

=ℑ∑
=

−

T

t
ttt EsE

T
ε

σ
.

Thus, ( ) ( )( ) 02121 →∇−∇ −− a.s.TT ,yLTE,yLT ϕϕ ϕϕ  uniformly on Q, and we must now verify that

( )( ) 021 →∇ −− a.s.T H,yLT ϕϕ
&& . Consider

( )( ) ( ) ( )( )( ) ( )( )( )H,yLTE,yLTE,yLTH,yLT TTTT −∇+∇−∇=∇ −−−− − ϕϕϕϕ ϕϕϕϕ ˆˆˆˆ 21212121 .

Now, the first term goes to zero from the above results on uniform convergence of the hessian to its

expected value. Since ( )ϕϕ ,yLT T21∇−  is a continuous function of n, consistency of ϕ̂  for n0 ensures that

the second term goes to zero almost surely (see White (1984, Proposition 2.11)). Thus

( )( ) 0ˆ21 →∇ −− a.s.T H,yLT ϕϕ

=> ( )( ) 021 →∇ −− a.s.T H,yLT ϕϕ
&& ,

since the arguments of ( )ϕ,yL T&&  always lie between ϕ̂ and n0.

Now consider

( )
( ) ∑

∑

∑
=

−

=

−−

=

−−

− ≡



















−

−
=∇

T

t
tT

t
t

T

t
tt

/

T/ ZT
T

sT
,yLT

1

2/1

1

2
0

22/13
0

1

212
0

0
21

σεσ

ε
ϕϕ .
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Since ( )0
21 ϕϕ ,yLT T/ ∇−  is a measurable function of gt, which is stationary and ergodic, ( )0

21 ϕϕ ,yLT T/ ∇−

is also stationary and ergodic (see White (1984, Theorem 3.35)). Thus we use Theorem 5.15 of White

(1984), to show asymptotic normality. This requires ( ) 0..
0  →ℑ−

mq
mZE  as ∞→m ,

( )∑∞
= ∞<ℜ0

2/1
0varj j  where ( ) ( )1000 −−− ℑ−ℑ≡ℜ jjj ZEZE .

Since {stgt, tℑ } is a martingale difference sequence with finite variance, these conditions follow

trivially for the first term in ( )0ϕϕ ,yL T∇ . For the second term, they hold by assumption. Thus we have

( ) ( )1,00
212/1 N,yLTV dT/ →∇−− ϕϕ ,

and the result follows.    Q.E.D.

REFERENCES

ANDREWS, D.W.K. (1993): “Tests for Parameter Instability and Structural Change with an Unknown

Change Point,” Econometrica, 61, 821-856.

ANDREWS, D.W.K., I. LEE, AND W. PLOBERGER (1996): “Optimal Changepoint Tests for Normal Linear

Regression,” Journal of Econometrics, 70, 9-38.

CERCHI, M., AND A. HAVENNER (1988): “Cointegration and Stock Prices: The Random Walk on Wall

Street Revisited,” Journal of Economic Dynamics and Control, 12, 333-346.

CHELLEY-STEELEY, P.L., AND E.J. PENTECOST (1994): “Stock Market Efficiency, the Small Firm Effect and

Cointegration,” Applied Financial Economics, 4, 405-411.

CHOW, G.C. (1960): “Tests of Equality Between Sets of Coefficients in Two Linear Regressions,”

Econometrica, 28, 591-605.

CHRISTIANO, L.J. (1992): “Searching for a Break in GDP,” Journal of Business and Economic Statistics,

10, 237-249.

COOK, R.D. AND S. WEISBURG (1990): “Confidence Curves in Nonlinear Regression,” Journal of the

American Statistical Association, 85, 544-551.

DAVIDSON, J. (1994): Stochastic Limit Theory: An Introduction for Econometricians, New York: Oxford

University Press.



52

DAVIES, R.B. (1977): “Hypothesis Testing When a Nuisance Parameter is Present Only Under the

Alternative,” Biometrika, 64, 247-254.

DE JONG, R.M. (1995): “Laws of Large Numbers for Dependent Heterogeneous Processes,” Econometric

Theory, 11, 347-358.

DE JONG, R.M. (1997): “Central Limit Theorems for Dependent Heterogeneous Random Variables,”

Econometric Theory, 13, 353-367.

GRANGER, C.W.J. (1986): “Developments in the Study of Cointegrated Economic Variables,” Oxford

Bulletin of Economics and Statistics, 48, 213-228.

GRANGER, C.W.J. AND A. ANDERSEN (1978): “On the Invertibility of Time Series Models,” Stochastic

Processes and their Applications, 8, 87-92.

GRANGER, C.W.J., AND N.R. SWANSON (1997): “An Introduction to Stochastic Unit Root

Processes,” Journal of Econometrics, 80, 35-62.

HAMILTON, J.D. (1989): “A New Approach to the Economic Analysis of Nonstationary Time Series and the

Business Cycle,” Econometrica, 57, 357-384.

HANSEN, B.E. (1992): “Testing for Parameter Instability in Regressions with I(1) Process,” Journal of

Business and Economic Statistics, 10, 321-335.

���� (1996): “Inference When a Nuisance Parameter is Not Identified Under the Null Hypothesis,”

Econometrica, 64, 413-430.

HENDRY, D.F., AND M.P. CLEMENTS (1996): “Intercept Corrections and Structural Change,” Journal of

Applied Econometrics, 11, 475-494.

PHILLIPS, P.C.B., AND V. SOLO (1992): “Asymptotics for Linear Processes”, Annals of Statistics, 20, 971-

1001.

RANGA RAO, R. (1962): “Relations Between Weak and Uniform Convergence of Measures with

Applications,” Annals of Mathematical Statistics, 33, 659-680.

SAIKKONEN, P., AND R. LUUKKONEN (1993): “Testing for a Moving Average Unit Root in Autoregressive

Moving Average Models,” Journal of the American Statistical Association, 88, 596-601.

SCHOENBERG, R. (1997): “Constrained Maximum Likelihood,” Computational Economics, 10, 251-266.

SHEPHARD, N. (1994): “Partial non-Gaussian State Space,” Biometrika, 81, 115-131.



53

STENGOS, T., AND E. PANAS (1992): “Testing the Efficiency of the Athens Stock Exchange: Some Results

from the Banking Sector,” Empirical Economics, 17, 239-252.

TONG, H. (1983): Threshold Models in Non-linear Time Series Analysis, Lecture Notes in Statistics, 21,

Berlin: Springer.

WHITE, H. (1984): Asymptotic Theory for Econometricians, New York: Academic Press.

���� (1994): Estimation, Inference and Specification Analysis, New York: Cambridge University Press.



54

    γ = 1 γ = 5

Figure 1 ! QT(() PLOTTED AGAINST gT
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Notes: (i) Curves plot asymptotic power against (* for T=200.
(ii) The “TRUE” curve is optimal everywhere and the other curves are derived for fixed
c  such that power is optimized at the indicated level.

Figure 2 !ASYMPTOTIC POWER CURVES
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FIGURE 3: Log Share Price Ratio - Mobil/Texaco

-0 .2

-0 .1

0

0 .1

0 .2

0 .3

0 .4

0 .5

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95



57

TABLE I

 POWER OF DF TEST AGAINST STOPBREAK

(/F2 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Power 0.05 0.15 0.23 0.30 0.41 0.45 0.56 0.62 0.65 0.68 0.72

Monte Carlo experiment conducted at nominal size of 5% using 5000 repetitions
on samples of 1000 observations.

TABLE II

CHOOSING LOCAL POINT ALTERNATIVE

(* 0.79 0.52 0.40 0.18 0.10 0.074 0.060 0.035 0.018 0.011

T 50 75 100 250 500 750 1000 2000 5000 10000
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TABLE III

Modeling the Two Shock Process: Average Mean Square Forecast Errors

p 2
uσ Omniscient Random

Walk
Exp.

Smoother
STOPBREAK (Exp.Smoother !

STOPBREAK)
0.01 2 1.02 2.02 1.16

(0.07)
1.16

(0.06)
0.00

(0.02)

0.05 2 1.10 2.10 1.38
(0.09)

1.38
(0.08)

0.00
(0.02)

0.1 2 1.20 2.20 1.58
(0.09)

1.58
(0.09)

0.00
(0.03)

0.01 5 1.05 2.05 1.26
(0.10)

1.22
(0.07)

0.04
(0.04)

0.05 5 1.25 2.25 1.66
(0.13)

1.59
(0.11)

0.07
(0.03)

0.1 5 1.50 2.50 2.03
(0.14)

1.95
(0.13)

0.08
(0.04)

0.01 10 1.10 2.10 1.38
(0.14)

1.28
(0.09)

0.09
(0.06)

0.05 10 1.50 2.50 2.02
(0.19)

1.86
(0.16)

0.15
(0.05)

0.1 10 2.00 3.00 2.66
(0.23)

2.49
(0.21)

0.16
(0.05)

0.01 20 1.20 2.20 1.57
(0.21)

1.39
(0.14)

0.18
(0.08)

0.05 20 2.00 3.00 2.64
(0.31)

2.38
(0.28)

0.26
(0.06)

0.1 20 3.00 4.00 3.79
(0.40)

3.52
(0.38)

0.26
(0.06)
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TABLE IV

TESTING THE NULL OF A SIMPLE RANDOM WALK AGAINST STOPBREAK

Supα tγ Approx. (p=5) Approx. (p=10) α = 0.8

Coke/Pepsi -2.98** 15.08** 21.94** -2.88**

J&J/Merck -4.02** 18.00** 28.65** -4.01**

GM/Ford -3.23** 17.91** 20.78** -3.08**

Mobil/Texaco -5.11** 22.55** 33.20** -5.11**

ITT/Hilton -2.12** 16.25** 19.22** -1.96**

AT&T/MCI -2.24** 8.93 13.47 -2.24**

McDD/Boeing -0.03 5.29 11.62 0.28

IBM/Microsoft -2.60** 7.37 13.46 -2.60**

Coors/Anheuser-Busch -3.70** 13.63** 21.48** -3.66**

Critical Values: 10% -1.72 9.23 15.99 -1.28

Critical Values: 5% -2.07 11.07 18.31 -1.65

Notes: (i) ** indicates significance at 5% and * significance at 10%
(ii) Critical values for the supα tγ  test were simulated using 1000 repetitions

on 1000 observations and α ∈[ ,0. ].0 9
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TABLE V

QMLE ESTIMATION

Coke/Pepsico Mobil/Texaco J&J/Merck Coors/Anheuser

α̂

95% C.I.

Usual s.e.
Het. Cons. s.e.

0.711

(0.476, 0.966)

(0.089)
(0.172)

0.746

(0.623, 0.842)

(0.037)
(0.044)

0.739

(0.495, 0.970)

(0.088)
(0.200)

0.830

(0.681, 0.925)

(0.041)
(0.060)

γ̂ (×103)

95% C.I.

Usual s.e.
Het. Cons. s.e.

0.065

(0.019, 0.323)

(0.023)
(0.040)

0.101

(0.044, 0.195)

(0.025)
(0.038)

0.090

(0.025, 1.210)

(0.038)
(0.082)

0.308

(0.088, 0.782)

(0.114)
(0.184)

2ˆˆ σγ 0.384 0.766 0.517 0.617
2σ̂ 0.169 × 10-3 0.131 × 10-3 0.175 × 10-3 0.500 × 10-3

( )∑ =
− T

t t\T 1
21 0.170 × 10-3 0.133 × 10-3 0.177 × 10-3 0.504 × 10-3

Notes: (i) Optimization performed using BFGS algorithm in GAUSS.
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TABLE VI

TRADING STRATEGY PROFITS

Coke/

Pepsico

Mobil/

Texaco

J&J/

Merck

Coors/

An-Busch

STOPBREAK:

Average Annual Wealth 0.188
(0.296)

0.242
(0.180)

0.471
(0.229)

0.365
(0.447)

‘Sharpe Ratio’ 0.634 1.342 2.057 0.818
Ave. Days Between Changes 2.62 1.96 1.96 2.36

Exponential Smoother:

Average Annual Wealth 0.162
(0.296)

0.214
(0.181)

0.302
(0.230)

0.301
(0.447)

‘Sharpe Ratio’ 0.568 1.185 1.314 0.674
Ave. Days Between Changes 2.16 1.94 1.99 2.05

20 Day Moving Average:

Average Annual Wealth 0.307
(0.296)

0.121
(0.181)

0.442
(0.229)

0.406
(0.446)

‘Sharpe Ratio’ 1.039 0.671 1.927 0.909
Ave. Days Between Changes 1.42 1.29 1.32 3.91
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1 This work has benefited from useful conversations with Graham Elliott, Clive Granger and Hal White. All

remaining errors are our own.

2 The abbreviation “wp 1” is used throughout the paper to abbreviate “with probability one.”

3 Throughout the paper, the notation tx~  will be used to indicate a realization on the random variable xt.

4 At this point there is no upper bound on 8t. However, sufficient conditions for invertibility of the moving

average representation of the process will be shown to suggest some logical bounds.

5  Since the best linear representation of a STOPBREAK process is an integrated MA(1), the result in

Theorem 2 could be interpreted as relating the size distortion of the DF test to (, rather than giving the

power of the test against (.

6  If gt is distributed independently, the value that we choose for  has no relation to the optimal choice of

c  since changing  serves only to scale the power against a non-zero c0 value proportionally. Otherwise,

we speculate that changing  will have little effect on the optimal c .

7  Kullback-Leibler Information Criterion (see White (1994), Definition 2.2).

8  The Sharpe Ratio is usually computed as the ratio of annual return to annual standard deviation. In this

case, since there is no initial investment, we do not have a return but rather an accumulated wealth. Thus the

use of the term “Sharpe Ratio” here is not strictly correct.

9  It should be noted that this trading strategy requires regular transactions, as evidenced by the “average

days between changes” in Table VI being around two in most cases. This means that the investor must

reverse her position to go long in the other stock on average once every two days. For this reason

transactions costs could potentially be high.


