Economics 201B-Second Half

Lecture 2 3/11/10

Two Graphical "Proofs" of the Existence of Walrasian Equilibrium in the Edgeworth Box

Demand: $D_{i}(p)=\left\{x \in B_{i}(p): \forall_{y \in B_{i}(p)} x \succeq_{i} y\right\}$
Walrasian Equilibrium (in the Edgeworth Box) is a pair (p, x) where

- x is an exact allocation
- $x_{i} \in D_{i}(p)(i=1,2)$

In the following Edgeworth Box Diagram, we give a graphical representation of Walrasian Equilibrium. In fact, there are (at least) three Walrasian Equilibria in the drawing, and there is nothing apparently pathological in the preferences of the two agents. Note that if the demands of the two agents at a single price p are represented by the same point in the Edgeworth Box, it indicates that the sum of the demands equals the total supply, so we have Walrasian Equilibrium; on the other hand, if the demands of the two agents at a price p are represented by different points in the Edgeworth Box, the sum of the demands does not equal the total supply; p is not an equilibrium price.

Why the quotes on "Proofs"? Why the Proofs inside the quotes?

- graphical arguments prone to introduction of tacit assumptions
- these arguments can be turned into proofs; our real proof later follows the first of the two "proofs"

Price Normalization: $p \in \Delta^{0}=\left\{p \in \mathbf{R}_{++}^{2}: p_{1}+p_{2}=1\right\} ; \Delta=\left\{p \in \mathbf{R}_{+}^{2}: p_{1}+p_{2}=1\right\}$

Notation:

- $D(p)=D_{1}(p)+D_{2}(p)$ Market Demand
- $E_{i}(p)=D_{i}(p)-\omega_{i}$ Excess Demand of i
- $E(p)=E_{1}(p)+E_{2}(p)=D(p)-\bar{\omega}$ Market Excess Demand
- Offer Curve:
- $O C_{i}=\left\{x: \exists_{p \in \Delta^{0}} x \in D_{i}(p)\right\}$ This is a curve in the Edgeworth Box Diagram; $O C_{1}$ measured from $O_{1}, O C_{2}$ from O_{2}.
$-O C=\left\{x: \exists_{p \in \Delta^{0}} x \in E(p)\right\}$ This is a curve in \mathbf{R}^{2}.
$-0 \in O C \Leftrightarrow$ there is a Walrasian Equilibrium: straightforward.
$-\left(O C_{1} \cap O C_{2}\right) \backslash\{\omega\} \neq \emptyset \Rightarrow$ there is a Walrasian Equilibrium; we'll see why.

Items Common to the two "Proofs:"

- Lemma 1 If $p_{n} \in \Delta^{0}$ and $p_{n \ell} \rightarrow 0$ as $n \rightarrow \infty$, then $\left|D_{i}\left(p_{n}\right)\right| \rightarrow \infty$.

This follows from strong monotonicity, and was likely proved in 201A. We'll prove later in a more general case.

- Walras' Law:
$-p \cdot D_{i}(p) \leq p \cdot \omega_{i}$. Comes from definition, with no assumptions on preferences.
- By strong monotonicity, can't have $p \cdot D_{i}(p)<p \cdot \omega_{i}$, so $p \cdot D_{i}(p)=p \cdot \omega_{i}$, so $p \cdot E_{i}(p)=0$, so $p \cdot E(p)=0$. In particular,

$$
\begin{gather*}
\nexists_{p \in \Delta^{0}}\left(D_{i}(p)<\omega_{i} \vee D_{i}(p)>\omega_{i}\right) \tag{1}\\
\nexists_{p \in \Delta^{0}}(E(p)<0 \vee E(p)>0)
\end{gather*}
$$

CANT BE OFFER CURVE

PoSS IBLE OC: MULTIPLE EQUILIBRD

- Observe that this is where we use the fact that $D_{i}(p) \geq 0$, equivalently $E_{i}(p) \geq-\omega_{i}$:

$$
\begin{aligned}
\left(p_{n}\right)_{2} D\left(p_{n}\right)_{2} & \leq p_{n} \cdot D\left(p_{n}\right) \\
& =p_{n} \cdot \bar{\omega} \\
& \leq \max \left\{\bar{\omega}_{1}, \bar{\omega}_{2}\right\}
\end{aligned}
$$

If $p_{n 1} \rightarrow 0, p_{n 2} \rightarrow 1$, so for n sufficienly large, $D\left(p_{n}\right)_{2} \leq 2 \max \left\{\bar{\omega}_{1}, \bar{\omega}_{2}\right\}$, so $D\left(p_{n}\right)_{2} \nrightarrow \infty$. Therefore,

$$
\begin{align*}
& p_{n 1} \rightarrow 0 \Rightarrow D\left(p_{n}\right)_{1} \rightarrow \infty \Rightarrow E\left(p_{n}\right)_{1} \rightarrow \infty \tag{2}\\
& p_{n 2} \rightarrow 0 \Rightarrow D\left(p_{n}\right)_{2} \rightarrow \infty \Rightarrow E\left(p_{n}\right)_{2} \rightarrow \infty
\end{align*}
$$

- Given $p \in \Delta^{0}, D_{1}(p), D_{2}(p)$ and $E(p)$ each consist of a single element. In other words, every ray through the origin with negative slope intersects $O C$ in exactly one point other than zero. In the Edgeworth Box diagram, each ray through ω with negative slope intersects $O C_{1}$ and $O C_{2}$ in exactly one point, other than ω, each. Given a point $x \in O C, x \neq 0$, there is a unique $p \in \Delta^{0}$ such that $x \in E(p) ; p$ is the perpendicular to the ray through 0 and x. Given a point $x \in O C_{i}, x \neq \omega$, there is a unique $p \in \Delta^{0}$ such that $x \in D_{i}(p) ; p$ is the perpendicular to the ray through ω and x.
"Proof 1:" (In Consumption Space, using $O C$)

$$
\begin{aligned}
0 \in O C & \Leftrightarrow \exists_{p \in \Delta^{0}} E(p)=0 \\
& \Leftrightarrow \text { Walrasian Equilibrium exists }
\end{aligned}
$$

Hence, it suffices to show that $0 \in O C$

$$
\begin{equation*}
E(p)=D(p)-\bar{\omega} \geq-\bar{\omega} \tag{3}
\end{equation*}
$$

- In the following diagram, Equations (2) and (3) tell us that $O C$ goes from the region (A) (when p_{1} is small) to the region (B) (when p_{2} is small).
- Equation (1) tells us that $O C$ avoids the first (northeast) and third (southwest) quadrants, so $O C$ must pass through zero, so Walrasian Equilibrium exists!
- However, it appears that $O C$ may go through the origin more than once, reinforcing the earlier conclusion that Walrasian Equilibrium need not be unique.
"Proof 2" (uses $O C_{1}$ and $O C_{2}$ as in diagrams in MWG, assumes preferences are smooth)
- Suppose $x \in O C_{1} \cap O C_{2}, x \neq \omega$. Then $x_{i}=D_{i}\left(p_{i}\right)$ for some $p_{i} \in \Delta^{0}(i=1,2)$, so $x_{i} \geq 0$, and hence x lies in the Edgeworth Box; although each offer curve can go outside the Edgeworth Box, any intersection of the offer curves must lie in the Edgeworth Box. There is a unique ray going through x and ω, and p_{1} and p_{2} are both perpendicular to it, so $p_{1}=p_{2}$. Since x is a point in the Edgeworth Box, $x_{1}+x_{2}=\bar{\omega}$, so p_{1} is a Walrasian Equilibrium Price. In other words, it suffices to show that $O C_{1} \cap O C_{2}$ contains at least one $x \neq \omega$.

$$
\begin{equation*}
\omega \in O C_{1} \cap O C_{2} \tag{4}
\end{equation*}
$$

To see this, let p_{i} be the "support price" to \succeq_{i} at ω_{i}. In other words,

$$
y \succeq_{i} \omega_{i} \Rightarrow p_{i} \cdot y \geq p_{i} \cdot \omega_{i}
$$

We'll explain more carefully later why the support price exists. Then $\omega_{i}=D_{i}\left(p_{i}\right)$ so $\omega_{i} \in O C_{i}$, so $\omega \in O C_{1} \cap O C_{2}$.

- If preferences are smooth, then

$$
\begin{aligned}
p_{i} & \cdot\left(D_{i}(p)-\omega_{i}\right) \\
= & p \cdot\left(D_{i}(p)-\omega_{i}\right)+\left(p_{i}-p\right) \cdot\left(D_{i}(p)-D_{i}\left(p_{i}\right)\right) \\
= & 0(\text { by Walras' Law })+O\left(\left|p_{i}-p\right|^{2}\right)
\end{aligned}
$$

which shows that p_{i} is tangent to $O C_{i}$ at ω_{i}.

- If it turns out that $p_{1}=p_{2}$, then this common price is a Walrasian Equilibrium Price and ω is a Walrasian Equilibrium allocation. If $p_{1} \neq p_{2}$, then
$-O C_{1}$ and $O C_{2}$ cross at ω.
- By Equation (1), $O C_{1} \cup O C_{2}$ cannot enter the quadrant northeast of ω or the quadrant southwest of ω.
- By Equation (2), as the price of the first good moves from 0 to $1, O C_{1}$ and $O C_{2}$ travel from (A) to (B). Notice that $O C_{1}$ at (A) lies northeast of $O C_{2}$ at (B), and $O C_{1}$ at (B) lies northeast of $O C_{2}$ at (A). Thus, $O C_{1}$ and $O C_{2}$ "must" cross an even number of times, hence they cross at some $x \neq \omega$, so Walrasian Equilibrium exists.

