
Economics 201B–Second Half

Lecture 2 3/11/10

Two Graphical “Proofs” of the Existence of Walrasian Equilibrium in the Edgeworth Box

Demand: Di(p) = {x ∈ Bi(p) : ∀y∈Bi(p)x �i y}

Walrasian Equilibrium (in the Edgeworth Box) is a pair (p, x) where

• x is an exact allocation

• xi ∈ Di(p) (i = 1, 2)

In the following Edgeworth Box Diagram, we give a graphical representation of Walrasian Equilibrium.

In fact, there are (at least) three Walrasian Equilibria in the drawing, and there is nothing apparently

pathological in the preferences of the two agents. Note that if the demands of the two agents at a single

price p are represented by the same point in the Edgeworth Box, it indicates that the sum of the demands

equals the total supply, so we have Walrasian Equilibrium; on the other hand, if the demands of the two

agents at a price p are represented by different points in the Edgeworth Box, the sum of the demands does

not equal the total supply; p is not an equilibrium price.

Why the quotes on “Proofs”? Why the Proofs inside the quotes?

• graphical arguments prone to introduction of tacit assumptions

• these arguments can be turned into proofs; our real proof later follows the first of the two “proofs”

Price Normalization: p ∈ Δ0 = {p ∈ R2
++ : p1 + p2 = 1}; Δ = {p ∈ R2

+ : p1 + p2 = 1}
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Notation:

• D(p) = D1(p) + D2(p) Market Demand

• Ei(p) = Di(p) − ωi Excess Demand of i

• E(p) = E1(p) + E2(p) = D(p) − ω̄ Market Excess Demand

• Offer Curve:

– OCi = {x : ∃p∈Δ0 x ∈ Di(p)} This is a curve in the Edgeworth Box Diagram; OC1 measured

from O1, OC2 from O2.

– OC = {x : ∃p∈Δ0 x ∈ E(p)} This is a curve in R2.

– 0 ∈ OC ⇔ there is a Walrasian Equilibrium: straightforward.

– (OC1 ∩ OC2) \ {ω} �= ∅ ⇒ there is a Walrasian Equilibrium; we’ll see why.

Items Common to the two “Proofs:”

• Lemma 1 If pn ∈ Δ0 and pn� → 0 as n → ∞, then |Di(pn)| → ∞.

This follows from strong monotonicity, and was likely proved in 201A. We’ll prove later in a more

general case.

• Walras’ Law:

– p · Di(p) ≤ p · ωi. Comes from definition, with no assumptions on preferences.

– By strong monotonicity, can’t have p · Di(p) < p · ωi, so p · Di(p) = p · ωi, so p · Ei(p) = 0, so

p · E(p) = 0. In particular,

� ∃p∈Δ0 (Di(p) < ωi ∨ Di(p) > ωi)

� ∃p∈Δ0 (E(p) < 0 ∨ E(p) > 0)

(1)
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• Observe that this is where we use the fact that Di(p) ≥ 0, equivalently Ei(p) ≥ −ωi:

(pn)2D(pn)2 ≤ pn · D(pn)

= pn · ω̄

≤ max{ω̄1, ω̄2}

If pn1 → 0, pn2 → 1, so for n sufficienly large, D(pn)2 ≤ 2max{ω̄1, ω̄2}, so D(pn)2 �→ ∞. Therefore,

pn1 → 0 ⇒ D(pn)1 → ∞ ⇒ E(pn)1 → ∞

pn2 → 0 ⇒ D(pn)2 → ∞ ⇒ E(pn)2 → ∞
(2)

• Given p ∈ Δ0, D1(p), D2(p) and E(p) each consist of a single element. In other words, every ray

through the origin with negative slope intersects OC in exactly one point other than zero. In the

Edgeworth Box diagram, each ray through ω with negative slope intersects OC1 and OC2 in exactly

one point, other than ω, each. Given a point x ∈ OC, x �= 0, there is a unique p ∈ Δ0 such that

x ∈ E(p); p is the perpendicular to the ray through 0 and x. Given a point x ∈ OCi, x �= ω, there is

a unique p ∈ Δ0 such that x ∈ Di(p); p is the perpendicular to the ray through ω and x.

“Proof 1:” (In Consumption Space, using OC)

•

0 ∈ OC ⇔ ∃p∈Δ0 E(p) = 0

⇔ Walrasian Equilibrium exists

Hence, it suffices to show that 0 ∈ OC

•

E(p) = D(p) − ω̄ ≥ −ω̄ (3)
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• In the following diagram, Equations (2) and (3) tell us that OC goes from the region (A) (when p1

is small) to the region (B) (when p2 is small).

• Equation (1) tells us that OC avoids the first (northeast) and third (southwest) quadrants, so OC

must pass through zero, so Walrasian Equilibrium exists!

• However, it appears that OC may go through the origin more than once, reinforcing the earlier

conclusion that Walrasian Equilibrium need not be unique.

“Proof 2” (uses OC1 and OC2 as in diagrams in MWG, assumes preferences are smooth)

• Suppose x ∈ OC1 ∩ OC2, x �= ω. Then xi = Di(pi) for some pi ∈ Δ0 (i = 1, 2), so xi ≥ 0, and

hence x lies in the Edgeworth Box; although each offer curve can go outside the Edgeworth Box, any

intersection of the offer curves must lie in the Edgeworth Box. There is a unique ray going through

x and ω, and p1 and p2 are both perpendicular to it, so p1 = p2. Since x is a point in the Edgeworth

Box, x1 + x2 = ω̄, so p1 is a Walrasian Equilibrium Price. In other words, it suffices to show that

OC1 ∩ OC2 contains at least one x �= ω.

•

ω ∈ OC1 ∩ OC2 (4)

To see this, let pi be the “support price” to �i at ωi. In other words,

y �i ωi ⇒ pi · y ≥ pi · ωi

We’ll explain more carefully later why the support price exists. Then ωi = Di(pi) so ωi ∈ OCi, so

ω ∈ OC1 ∩ OC2.
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• If preferences are smooth, then

pi · (Di(p) − ωi)

= p · (Di(p) − ωi) + (pi − p) · (Di(p) − Di(pi))

= 0 (by Walras’ Law) + O(|pi − p|2)

which shows that pi is tangent to OCi at ωi.

• If it turns out that p1 = p2, then this common price is a Walrasian Equilibrium Price and ω is a

Walrasian Equilibrium allocation. If p1 �= p2, then

– OC1 and OC2 cross at ω.

– By Equation (1), OC1∪OC2 cannot enter the quadrant northeast of ω or the quadrant southwest

of ω.

– By Equation (2), as the price of the first good moves from 0 to 1, OC1 and OC2 travel from (A)

to (B). Notice that OC1 at (A) lies northeast of OC2 at (B), and OC1 at (B) lies northeast of

OC2 at (A). Thus, OC1 and OC2 “must” cross an even number of times, hence they cross at

some x �= ω, so Walrasian Equilibrium exists.
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