Lecture 6, 4/1/10

The Second Welfare Theorem in the Arrow Debreu Economy

Theorem 1 (Second Welfare Theorem) (Pure Exchange Case) If x^* is Pareto Optimal in a pure exchange economy, with strongly monotone, continuous, convex preferences, there exists a price vector p^* and an income transfer T such that (p^*, x^*, T) is a Walrasian Equilibrium with Transfers.

Outline of Proof:

• Let

$$A_{i} = \{x'_{i} - x^{*}_{i} : x'_{i} \succ_{i} x^{*}_{i}\}$$
$$A = \sum_{i=1}^{I} A_{i} = \{a_{1} + \dots + a_{I} : a_{i} \in A_{i}\}$$

Then $0 \notin A$ (if it were, we'd have a Pareto improvement).

• By Minkowski's Theorem, find $p^* \neq 0$ such that

$$\inf p^* \cdot A \ge 0$$

- Show $\left(\mathbf{R}^{L}_{+} \setminus \{0\}\right) \subset A_{i}$ and hence $p^{*} \geq 0$.
- Show $\inf p^* \cdot A_i = 0$ for each *i*.
- Define T to make x_i^* affordable at p^* :

$$T_i = p^* \cdot x_i^* - p^* \cdot \omega_i$$

Show $\sum_{i=1}^{I} T_i = 0$ and

$$x_i^* \in Q_i(p^*, T)$$

- Use strong monotonicity to show that $p^* \gg 0$.
- Show

$$p^* \gg 0 \Rightarrow Q_i(p^*, T) = D_i(p^*, T)$$

Now, for the details:

• Let

$$A_{i} = \{x'_{i} - x^{*}_{i} : x'_{i} \succ_{i} x^{*}_{i}\}$$
$$A = \sum_{i=1}^{I} A_{i} = \{a_{1} + \dots + a_{I} : a_{i} \in A_{i}\}$$

Claim:

 $0\not\in A$

If $0 \in A$, there exists $a_i \in A_i$ such that

$$\sum_{i=1}^{I} a_i = 0$$

Let

 $x_i' = x_i^* + a_i$

Since $x'_i - x^*_i = a_i \in A_i$, we have

$$x'_{i} \succ_{i} x^{*}_{i}$$

$$\sum_{i=1}^{I} x'_{i} = \sum_{i=1}^{I} (x^{*}_{i} + a_{i})$$

$$= \sum_{i=1}^{I} x^{*}_{i} + \sum_{i=1}^{I} a_{i}$$

$$= \sum_{i=1}^{I} x^{*}_{i}$$

$$= \bar{\omega}$$

Therefore, x' is a feasible allocation, x' Pareto improves x^* , so x^* is not Pareto Optimal, contradiction. Therefore, $0 \notin A$.

$$\exists_{p^* \neq 0} \inf p^* \cdot A \ge 0$$

 A_i is convex, so A is convex (easy exercise). By Minkowski's Theorem, there exists $p^* \neq 0$ such that

$$0 = p^* \cdot 0 \le \inf p^* \cdot A = \sum_{i=1}^{I} \inf p^* \cdot A_i$$

The fact that $\inf p^* \cdot A = \sum_{i=1}^{I} \inf p^* \cdot A_i$ is an exercise; once you figure out what you have to prove, it is obvious.

• We claim that $p^* \ge 0$.

Suppose not, so $p_\ell^* < 0$ for some $\ell,$ WLOG $p_1^* < 0.$ Let

$$x'_i = x^*_i + \left(-\frac{1}{p^*_1}, 0, \dots, 0\right)$$

By strong monotonicity, $x'_i \succ_i x^*_i$, so

$$\left(-\frac{1}{p_1^*}, 0, \dots, 0\right) \in A_i$$

 So

$$\inf p^* \cdot A_i \leq p^* \cdot \left(-\frac{1}{p_1^*}, 0, \dots, 0\right)$$
$$= -1 < 0$$
$$\inf p^* \cdot A = \sum_{i=1}^{I} \inf p^* \cdot A_i$$
$$\leq -I$$
$$< 0$$

a contradiction that shows $p^* \ge 0$.

• We claim that $\inf p^* \cdot A_i = 0$ for each *i*:

Suppose $\varepsilon > 0$. By strong monotonicity,

$$x_i^* + (\varepsilon, \dots, \varepsilon) \succ_i x_i^*$$

$$(\varepsilon,\ldots,\varepsilon)\in A_i$$

 \mathbf{SO}

$$\inf p^* \cdot A_i \le p^* \cdot (\varepsilon, \dots, \varepsilon)$$

Since
$$\varepsilon$$
 is an arbitrary positive number, $\inf p^* \cdot A_i$ is less than every positive number, so

 $\inf p^* \cdot A_i \le 0$

Since $\sum_{i=1}^{I} \inf p^* \cdot A_i \ge 0$,

$$\inf p^* \cdot A_i = 0 \ (i = 1, \dots, I)$$

• Define T to make x_i^* affordable at p^* . We claim that T is an income transfer and

$$x_i^* \in Q_i(p^*, T)$$

Let

$$T_{i} = p^{*} \cdot x_{i}^{*} - p^{*} \cdot \omega_{i}$$

$$\sum_{i=1}^{I} T_{i} = \sum_{i=1}^{I} (p^{*} \cdot x_{i}^{*} - p^{*} \cdot \omega_{i})$$

$$= p^{*} \cdot \left(\sum_{i=1}^{I} x_{i}^{*} - \sum_{i=1}^{I} \omega_{i}\right)$$

$$= p^{*} \cdot (\bar{\omega} - \bar{\omega})$$

$$= 0$$

so T is an income transfer.

$$p^* \cdot x_i^* = p^* \cdot (\omega_i + (x_i^* - \omega_i))$$
$$= p^* \cdot \omega_i + p^* \cdot (x_i^* - \omega_i)$$
$$= p^* \cdot \omega_i + T_i$$

$$x_i^* \in B_i(p^*, T)$$

If $x'_i \succ_i x^*_i$, then $x'_i - x^*_i \in A_i$, so

$$p^* \cdot x'_i = p^* \cdot (x^*_i + (x'_i - x^*_i))$$
$$= p^* \cdot x^*_i + p^* \cdot (x'_i - x^*_i)$$
$$\ge p^* \cdot x^*_i + \inf p^* \cdot A_i$$
$$= p^* \cdot x^*_i$$
$$= p^* \cdot \omega_i + T_i$$

 \mathbf{SO}

 $x_i^* \in Q(p^*, T)$

• Use strong monotonicity to show that $p^* \gg 0$.

Lemma 2 If \succeq_i is continuous and complete, and $x \succ_i y$, then there exists $\varepsilon > 0$ such that

$$(B(x,\varepsilon)\cap X_i)\succ_i y$$

Proof: If not, we can find $x_n \to x$, $x_n \in X_i$, $x_n \not\succeq_i y$; by completeness, we have $y \succeq_i x_n$ for each n. Since \succeq_i is continuous, $y \succeq_i x$, so $x \not\neq_i y$, a contradiction which proves the lemma. Since $p^* \ge 0$ and $p^* \ne 0$, $p^* > 0$; since in addition $\bar{\omega} \gg 0$, $p^* \cdot \bar{\omega} > 0$, so

$$p^* \cdot \omega_i + T_i > 0$$
 for some *i*

If $p_{\ell}^* = 0$ for some ℓ (WLOG $\ell = 1$), let

$$x'_i = x^*_i + (1, 0, \dots, 0)$$

By strong monotonicity, $x'_i \succ_i x^*_i$.

$$p^* \cdot x'_i = p^* \cdot x^*_i = p^* \cdot \omega_i + T_i > 0$$

Find ℓ (WLOG $\ell = 2$) such that

$$p_{\ell}^* > 0, \ x_{2i}' > 0$$

Since $x'_i \succ_i x^*_i$, let $\varepsilon > 0$ be chosen to satisfy the conclusion of the Lemma. If necessary, we may make ε smaller to ensure that $\varepsilon \leq 2x'_{2i}$. Let

$$x_i'' = x_i' - (0, \varepsilon/2, 0, \dots, 0)$$

Since $X_i = \mathbf{R}_+^L$, $x_i'' \in X_i$, so by the Lemma, $x_i'' \succ_i x_i^*$. But $p^* \cdot x_i'' , which shows that <math>x_i^* \notin Q_i(p^*, T)$, a contradiction which proves that $p^* \gg 0$.

• Show

$$p^* \gg 0 \Rightarrow Q_i(p^*, T) = D_i(p^*, T)$$

- Case 1: $p^* \cdot \omega_i + T_i = 0$. Since $p^* \gg 0$, $B_i(p^*, T) = \{0\}$, so

$$Q_i(p^*, T) = D_i(p^*, T) = \{0\}$$

- Case 2: $p^* \cdot \omega_i + T_i > 0$

Suppose $x \in Q_i(p^*, T)$ but $x \notin D_i(p^*, T)$ Then there exists $z \succ_i x$ such that $z \in B_i(p^*, T)$, hence $p^* \cdot z \leq p^* \cdot \omega_i + T_i$. Since $x \in Q_i(p^*, T)$, $p^* \cdot z \geq p^* \cdot \omega_i + T_i$, so

$$p^* \cdot z = p^* \cdot \omega_i + T_i > 0$$

By Lemma 2, there exists $\varepsilon > 0$ such that

$$|z'-z| < \varepsilon, z' \in \mathbf{R}^L_+ \Rightarrow z' \succ x$$

Let

$$z' = z\left(1 - \frac{\varepsilon}{2|z|}\right)$$

Since $z \in \mathbf{R}_{+}^{L}, z' \in \mathbf{R}_{+}^{L}$.

$$|z'-z| = \left|\frac{\varepsilon z}{2|z|}\right| = \frac{\varepsilon}{2} < \varepsilon$$

so $z' \succ x$.

$$p^* \cdot z' = p^* \cdot z \left(1 - \frac{\varepsilon}{2|z|} \right)$$
$$= \left(p^* \cdot \omega_i + T_i \right) \left(1 - \frac{\varepsilon}{2|z|} \right)$$
$$< p^* \cdot \omega_i + T_i$$

which contradicts the assumption that $x \in Q_i(p^*, T)$. This shows $Q_i(p^*, T) \subset D_i(p^*, T)$; since clearly $D_i(p^*, T) \subset Q_i(p^*, T), Q_i(p^*, T) = D_i(p^*, T)$.

What if preferences are not convex?

- Second Welfare Theorem may fail if preferences are nonconvex.
- Diagram gives an economy with two goods and two agents, and a Pareto optimum x^* so that so that the utility levels of x^* cannot be approximated by a Walrasian Equilibrium with Transfers.
- If p^* is the price which locally supports x^* , and T is the income transfer which makes x affordable with respect to the prices p^* , there is a unique Walrasian equilibrium with transfers (z^*, q^*, T) ; z^* is much more favorable to agent I and much less favorable to agent II than x^* is.

FIGURE 1.

there were an approximate Walrasian allocation g, it would have the property that $f(a) \neq {}_{a}g(a)$ for all a (observe that f(a) is in the budget set). However, as in the convex case, allowing the government to dictate f as the initial allocation destroys the interpretation of the Second Welfare Theorem as a story of decentralized allocation.

In Theorem 3.3, we show that the government can achieve the utility levels desired for all but k agents, where k is the dimension of the commodity space. In other words, the pathology illustrated in Figure 1 disappears (at least for most agents) provided that the number of agents is large relative to the number of commodities. The proof is elementary, relying primarily on the Shapley-Folkman Theorem. We focus on a particular choice of decentralizing price \bar{p} ; this price is used by Mas-Colell in the proof of his theorem, and is closely related to the so-called gap-minimizing price studied in Anderson (1987); essentially, \bar{p} is the price which minimizes the measure by which support fails in Mas-Colell's Theorem. Given any Pareto optimum f, there is an income transfer t and a quasiequilibrium f with respect to t such that all but k agents are indifferent between f and \tilde{f} . If preferences are monotone and a mild assumption on the distribution of goods at f is satisfied, then we may show that \overline{p} is strictly positive, and hence \tilde{f} is a Walrasian equilibrium with respect to t. As an alternative, we can achieve an approximate equilibrium (i.e., total excess demand is bounded, independent of the number of agents) \hat{f} such that all agents are indifferent between f and \hat{f} . It is worth emphasizing that Theorem 3.3 is a universal theorem, applying to all exchange economics, rather than a generic theorem. However, there is no guarantee that $\tilde{f}(a)$ is close to f(a) for any a. A • This is the worst that can happen under standard assumptions on preferences. Given a Pareto optimum x^* , there is a Walrasian quasiequilibrium with transfers (z^*, p^*, T) such that all but L people are indifferent between x^* and z^* . Those L people are treated quite harshly (they get zero consumption). One could be less harsh and give these L people carefully chosen consumption bundles in the convex hull of their quasidemand sets, but one would then have to forbid them from trading, a prohibition that would in practice be difficult to enforce.