Economics 201B-Second Half

Lecture 6, 4/1/10

The Second Welfare Theorem in the Arrow Debreu Economy

Theorem 1 (Second Welfare Theorem) (Pure Exchange Case) If x^{*} is Pareto Optimal in a pure exchange economy, with strongly monotone, continuous, convex preferences, there exists a price vector p^{*} and an income transfer T such that $\left(p^{*}, x^{*}, T\right)$ is a Walrasian Equilibrium with Transfers.

Outline of Proof:

- Let

$$
\begin{aligned}
A_{i} & =\left\{x_{i}^{\prime}-x_{i}^{*}: x_{i}^{\prime} \succ_{i} x_{i}^{*}\right\} \\
A & =\sum_{i=1}^{I} A_{i}=\left\{a_{1}+\cdots+a_{I}: a_{i} \in A_{i}\right\}
\end{aligned}
$$

Then $0 \notin A$ (if it were, we'd have a Pareto improvement).

- By Minkowski's Theorem, find $p^{*} \neq 0$ such that

$$
\inf p^{*} \cdot A \geq 0
$$

- Show $\left(\mathbf{R}_{+}^{L} \backslash\{0\}\right) \subset A_{i}$ and hence $p^{*} \geq 0$.
- Show $\inf p^{*} \cdot A_{i}=0$ for each i.
- Define T to make x_{i}^{*} affordable at p^{*} :

$$
T_{i}=p^{*} \cdot x_{i}^{*}-p^{*} \cdot \omega_{i}
$$

Show $\sum_{i=1}^{I} T_{i}=0$ and

$$
x_{i}^{*} \in Q_{i}\left(p^{*}, T\right)
$$

- Use strong monotonicity to show that $p^{*} \gg 0$.
- Show

$$
p^{*} \gg 0 \Rightarrow Q_{i}\left(p^{*}, T\right)=D_{i}\left(p^{*}, T\right)
$$

Now, for the details:

- Let

$$
\begin{aligned}
A_{i} & =\left\{x_{i}^{\prime}-x_{i}^{*}: x_{i}^{\prime} \succ_{i} x_{i}^{*}\right\} \\
A & =\sum_{i=1}^{I} A_{i}=\left\{a_{1}+\cdots+a_{I}: a_{i} \in A_{i}\right\}
\end{aligned}
$$

Claim:

$$
0 \notin A
$$

If $0 \in A$, there exists $a_{i} \in A_{i}$ such that

$$
\sum_{i=1}^{I} a_{i}=0
$$

Let

$$
x_{i}^{\prime}=x_{i}^{*}+a_{i}
$$

Since $x_{i}^{\prime}-x_{i}^{*}=a_{i} \in A_{i}$, we have

$$
\begin{aligned}
& x_{i}^{\prime} \succ_{i} x_{i}^{*} \\
& \sum_{i=1}^{I} x_{i}^{\prime}=\sum_{i=1}^{I}\left(x_{i}^{*}+a_{i}\right) \\
&=\sum_{i=1}^{I} x_{i}^{*}+\sum_{i=1}^{I} a_{i} \\
&=\sum_{i=1}^{I} x_{i}^{*} \\
&=\bar{\omega}
\end{aligned}
$$

Therefore, x^{\prime} is a feasible allocation, x^{\prime} Pareto improves x^{*}, so x^{*} is not Pareto Optimal, contradiction. Therefore, $0 \notin A$.

$$
\exists_{p^{*} \neq 0} \inf p^{*} \cdot A \geq 0
$$

A_{i} is convex, so A is convex (easy exercise). By Minkowski's Theorem, there exists $p^{*} \neq 0$ such that

$$
0=p^{*} \cdot 0 \leq \inf p^{*} \cdot A=\sum_{i=1}^{I} \inf p^{*} \cdot A_{i}
$$

The fact that $\inf p^{*} \cdot A=\sum_{i=1}^{I} \inf p^{*} \cdot A_{i}$ is an exercise; once you figure out what you have to prove, it is obvious.

- We claim that $p^{*} \geq 0$.

Suppose not, so $p_{\ell}^{*}<0$ for some ℓ, WLOG $p_{1}^{*}<0$. Let

$$
x_{i}^{\prime}=x_{i}^{*}+\left(-\frac{1}{p_{1}^{*}}, 0, \ldots, 0\right)
$$

By strong monotonicity, $x_{i}^{\prime} \succ_{i} x_{i}^{*}$, so

$$
\left(-\frac{1}{p_{1}^{*}}, 0, \ldots, 0\right) \in A_{i}
$$

So

$$
\begin{aligned}
\inf p^{*} \cdot A_{i} & \leq p^{*} \cdot\left(-\frac{1}{p_{1}^{*}}, 0, \ldots, 0\right) \\
& =-1<0 \\
\inf p^{*} \cdot A & =\sum_{i=1}^{I} \inf p^{*} \cdot A_{i} \\
& \leq-I \\
& <0
\end{aligned}
$$

a contradiction that shows $p^{*} \geq 0$.

- We claim that $\inf p^{*} \cdot A_{i}=0$ for each i :

Suppose $\varepsilon>0$. By strong monotonicity,

$$
x_{i}^{*}+(\varepsilon, \ldots, \varepsilon) \succ_{i} x_{i}^{*}
$$

SO

$$
(\varepsilon, \ldots, \varepsilon) \in A_{i}
$$

SO

$$
\inf p^{*} \cdot A_{i} \leq p^{*} \cdot(\varepsilon, \ldots, \varepsilon)
$$

Since ε is an arbitrary positive number, $\inf p^{*} \cdot A_{i}$ is less than every positive number, so

$$
\inf p^{*} \cdot A_{i} \leq 0
$$

Since $\sum_{i=1}^{I} \inf p^{*} \cdot A_{i} \geq 0$,

$$
\inf p^{*} \cdot A_{i}=0(i=1, \ldots, I)
$$

- Define T to make x_{i}^{*} affordable at p^{*}. We claim that T is an income transfer and

$$
x_{i}^{*} \in Q_{i}\left(p^{*}, T\right)
$$

Let

$$
\begin{aligned}
T_{i} & =p^{*} \cdot x_{i}^{*}-p^{*} \cdot \omega_{i} \\
\sum_{i=1}^{I} T_{i} & =\sum_{i=1}^{I}\left(p^{*} \cdot x_{i}^{*}-p^{*} \cdot \omega_{i}\right) \\
& =p^{*} \cdot\left(\sum_{i=1}^{I} x_{i}^{*}-\sum_{i=1}^{I} \omega_{i}\right) \\
& =p^{*} \cdot(\bar{\omega}-\bar{\omega}) \\
& =0
\end{aligned}
$$

so T is an income transfer.

$$
\begin{aligned}
p^{*} \cdot x_{i}^{*} & =p^{*} \cdot\left(\omega_{i}+\left(x_{i}^{*}-\omega_{i}\right)\right) \\
& =p^{*} \cdot \omega_{i}+p^{*} \cdot\left(x_{i}^{*}-\omega_{i}\right) \\
& =p^{*} \cdot \omega_{i}+T_{i}
\end{aligned}
$$

SO

$$
x_{i}^{*} \in B_{i}\left(p^{*}, T\right)
$$

If $x_{i}^{\prime} \succ_{i} x_{i}^{*}$, then $x_{i}^{\prime}-x_{i}^{*} \in A_{i}$, so

$$
\begin{aligned}
p^{*} \cdot x_{i}^{\prime} & =p^{*} \cdot\left(x_{i}^{*}+\left(x_{i}^{\prime}-x_{i}^{*}\right)\right) \\
& =p^{*} \cdot x_{i}^{*}+p^{*} \cdot\left(x_{i}^{\prime}-x_{i}^{*}\right) \\
& \geq p^{*} \cdot x_{i}^{*}+\inf p^{*} \cdot A_{i} \\
& =p^{*} \cdot x_{i}^{*} \\
& =p^{*} \cdot \omega_{i}+T_{i}
\end{aligned}
$$

SO

$$
x_{i}^{*} \in Q\left(p^{*}, T\right)
$$

- Use strong monotonicity to show that $p^{*} \gg 0$.

Lemma 2 If \succeq_{i} is continuous and complete, and $x \succ_{i} y$, then there exists $\varepsilon>0$ such that

$$
\left(B(x, \varepsilon) \cap X_{i}\right) \succ_{i} y
$$

Proof: If not, we can find $x_{n} \rightarrow x, x_{n} \in X_{i}, x_{n} \nsucc_{i} y$; by completeness, we have $y \succeq_{i} x_{n}$ for each n.
Since \succeq_{i} is continuous, $y \succeq_{i} x$, so $x \nsucc_{i} y$, a contradiction which proves the lemma.
Since $p^{*} \geq 0$ and $p^{*} \neq 0, p^{*}>0$; since in addition $\bar{\omega} \gg 0, p^{*} \cdot \bar{\omega}>0$, so

$$
p^{*} \cdot \omega_{i}+T_{i}>0 \text { for some } i
$$

If $p_{\ell}^{*}=0$ for some $\ell($ WLOG $\ell=1)$, let

$$
x_{i}^{\prime}=x_{i}^{*}+(1,0, \ldots, 0)
$$

By strong monotonicity, $x_{i}^{\prime} \succ_{i} x_{i}^{*}$.

$$
p^{*} \cdot x_{i}^{\prime}=p^{*} \cdot x_{i}^{*}=p^{*} \cdot \omega_{i}+T_{i}>0
$$

Find $\ell($ WLOG $\ell=2)$ such that

$$
p_{\ell}^{*}>0, x_{2 i}^{\prime}>0
$$

Since $x_{i}^{\prime} \succ_{i} x_{i}^{*}$, let $\varepsilon>0$ be chosen to satisfy the conclusion of the Lemma. If necessary, we may make ε smaller to ensure that $\varepsilon \leq 2 x_{2 i}^{\prime}$. Let

$$
x_{i}^{\prime \prime}=x_{i}^{\prime}-(0, \varepsilon / 2,0, \ldots, 0)
$$

Since $X_{i}=\mathbf{R}_{+}^{L}, x_{i}^{\prime \prime} \in X_{i}$, so by the Lemma, $x_{i}^{\prime \prime} \succ_{i} x_{i}^{*}$. But $p^{*} \cdot x_{i}^{\prime \prime}<p \cdot x_{i}^{\prime}=p^{*} \cdot \omega_{i}+T_{i}$, which shows that $x_{i}^{*} \notin Q_{i}\left(p^{*}, T\right)$, a contradiction which proves that $p^{*} \gg 0$.

- Show

$$
p^{*} \gg 0 \Rightarrow Q_{i}\left(p^{*}, T\right)=D_{i}\left(p^{*}, T\right)
$$

- Case 1: $p^{*} \cdot \omega_{i}+T_{i}=0$. Since $p^{*} \gg 0, B_{i}\left(p^{*}, T\right)=\{0\}$, so

$$
Q_{i}\left(p^{*}, T\right)=D_{i}\left(p^{*}, T\right)=\{0\}
$$

- Case 2: $p^{*} \cdot \omega_{i}+T_{i}>0$

Suppose $x \in Q_{i}\left(p^{*}, T\right)$ but $x \notin D_{i}\left(p^{*}, T\right)$ Then there exists $z \succ_{i} x$ such that $z \in B_{i}\left(p^{*}, T\right)$, hence $p^{*} \cdot z \leq p^{*} \cdot \omega_{i}+T_{i}$. Since $x \in Q_{i}\left(p^{*}, T\right), p^{*} \cdot z \geq p^{*} \cdot \omega_{i}+T_{i}$, so

$$
p^{*} \cdot z=p^{*} \cdot \omega_{i}+T_{i}>0
$$

By Lemma 2, there exists $\varepsilon>0$ such that

$$
\left|z^{\prime}-z\right|<\varepsilon, z^{\prime} \in \mathbf{R}_{+}^{L} \Rightarrow z^{\prime} \succ x
$$

Let

$$
z^{\prime}=z\left(1-\frac{\varepsilon}{2|z|}\right)
$$

Since $z \in \mathbf{R}_{+}^{L}, z^{\prime} \in \mathbf{R}_{+}^{L}$.

$$
\left|z^{\prime}-z\right|=\left|\frac{\varepsilon z}{2|z|}\right|=\frac{\varepsilon}{2}<\varepsilon
$$

so $z^{\prime} \succ x$.

$$
\begin{aligned}
p^{*} \cdot z^{\prime} & =p^{*} \cdot z\left(1-\frac{\varepsilon}{2|z|}\right) \\
& =\left(p^{*} \cdot \omega_{i}+T_{i}\right)\left(1-\frac{\varepsilon}{2|z|}\right) \\
& <p^{*} \cdot \omega_{i}+T_{i}
\end{aligned}
$$

which contradicts the assumption that $x \in Q_{i}\left(p^{*}, T\right)$. This shows $Q_{i}\left(p^{*}, T\right) \subset D_{i}\left(p^{*}, T\right)$; since clearly $D_{i}\left(p^{*}, T\right) \subset Q_{i}\left(p^{*}, T\right), Q_{i}\left(p^{*}, T\right)=D_{i}\left(p^{*}, T\right)$.

What if preferences are not convex?

- Second Welfare Theorem may fail if preferences are nonconvex.
- Diagram gives an economy with two goods and two agents, and a Pareto optimum x^{*} so that so that the utility levels of x^{*} cannot be approximated by a Walrasian Equilibrium with Transfers.
- If p^{*} is the price which locally supports x^{*}, and T is the income transfer which makes x affordable with respect to the prices p^{*}, there is a unique Walrasian equilibrium with transfers $\left(z^{*}, q^{*}, T\right) ; z^{*}$ is much more favorable to agent I and much less favorable to agent II than x^{*} is.

Figure 1.
there were an approximate Walrasian allocation g, it would have the property that $f(a) \not{ }_{a} g(a)$ for all a (observe that $f(a)$ is in the budget set). However, as in the convex case, allowing the government to dictate f as the initial allocation destroys the interpretation of the Second Welfare Theorem as a story of decentralized allocation.

In Theorem 3.3, we show that the government can achieve the utility levels desired for all but k agents, where k is the dimension of the commodity space. In other words, the pathology illustrated in Figure 1 disappears (at least for most agents) provided that the number of agents is large relative to the number of commodities. The proof is elementary, relying primarily on the Shapley-Folkman Theorem. We focus on a particular choice of decentralizing price \bar{p}; this price is used by Mas-Colell in the proof of his theorem, and is closely related to the so-called gap-minimizing price studied in Anderson (1987); essentially, \bar{p} is the price which minimizes the measure by which support fails in Mas-Colell's Theorem. Given any Pareto optimum f, there is an income transfer t and a quasiequilibrium \tilde{f} with respect to t such that all but k agents are indifferent between f and \tilde{f}. If preferences are monotone and a mild assumption on the distribution of goods at f is satisfied, then we may show that \bar{p} is strictly positive, and hence \tilde{f} is a Walrasian equilibrium with respect to t. As an alternative, we can achieve an approximate equilibrium (i.e., total excess demand is bounded, independent of the number of agents) \hat{f} such that all agents are indifferent between f and \hat{f}. It is worth emphasizing that Theorem 3.3 is a universal theorem, applying to all exchange economics, rather than a generic theorem. However, there is no guarantee that $\tilde{f(} a)$ is close to $f(a)$ for any a. A

- This is the worst that can happen under standard assumptions on preferences. Given a Pareto optimum x^{*}, there is a Walrasian quasiequilibrium with transfers $\left(z^{*}, p^{*}, T\right)$ such that all but L people are indifferent between x^{*} and z^{*}. Those L people are treated quite harshly (they get zero consumption). One could be less harsh and give these L people carefully chosen consumption bundles in the convex hull of their quasidemand sets, but one would then have to forbid them from trading, a prohibition that would in practice be difficult to enforce.

