
Economics 201B–Second Half

Lecture 7, 4/6/10

Existence of Walrasian Equilibrium

Review of Upperhemicontinuity in Rn

Definition 1 Let X ⊆ Rn, Y ⊆ Rm. Suppose Ψ : X → Y is a correspondence. Ψ is upper hemicontinuous

(uhc) at x0 ∈ X if, for every open set V ⊇ Ψ(x0), there is an open set U with x0 ∈ U such that

Ψ(x) ⊆ V for every x ∈ U ∩ X

This says Ψ doesn’t “implode in the limit” at x0

Definition 2 Suppose X ⊆ Rm, Y ⊆ Rn. A correspondence Ψ : X → Y is called closed-valued if Ψ(x) is

a closed subset of Rn for all x; Ψ is called compact-valued if Ψ(x) is compact for all x.

Theorem 3 (Not in de la Fuente) Suppose X ⊆ Rn and Y ⊆ Rm, and Ψ : X → Y is a correspndence.

• If Ψ is closed-valued and uhc, then Ψ has closed graph.

• If Y is compact and Ψ has closed graph, then Ψ is uhc.

Theorem 4 (Brouwer’s Fixed Point Theorem) Suppose

A ⊂ RL is nonempty, convex, compact, and f : A → A is continuous. Then f has a fixed point, i.e.

∃x∗∈A f(x∗) = x∗

Review material from Lecture 13 in Econ 204. Recall that the Scarf Algorithm gives a constructive way

to find approximate fixed points: given any ε > 0, the algorithm will eventually find a point x∗
ε such that

|f(x∗
ε) − x∗

ε| < ε
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Theorem 5 (Kakutani’s Fixed Point Theorem) Suppose A ⊂ RL is nonempty, compact, convex,

and f : A → A is a correspondence (recall f(a) ∈ 2A) such that

1. f is nonempty-valued: ∀a∈A f(a) 
= ∅.

2. f is convex-valued: ∀a∈A f(a) is convex.

3. f is closed-valued.

4. f is upper hemicontinuous.

Then f has a fixed point, i.e.

∃x∗∈A x∗ ∈ f(x∗)

Now, we turn to existence: Let

Δ =

{
p ∈ RL

+ :
L∑

�=1

p� = 1

}

Δ0 =

{
p ∈ RL

++ :
L∑

�=1

p� = 1

}

Proposition 6 (17.C.1) Debreu-Gale-Kuhn Nikaido Lemma Suppose z : Δ0 → RL is a function satisfy-

ing

1. continuity

2. Walras’ Law

∀p∈Δ0 p · z(p) = 0

3. bounded below:

∃x∈RL∀p∈Δ0 z(p) ≥ x
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4. Boundary Condition: If pn → p where p ∈ Δ \ Δ0, then

|z(pn)| → ∞

Then there exists p∗ ∈ Δ0 such that

z(p∗) = 0

Remark: A common misperception is that the boundary condition says that if the price of a good goes

to zero, then excess demand for that good goes to infinity. If the price of good � goes to zero and the

prices of the other goods are all bounded away from zero, then the demand for good � goes to infinity.

However, if the prices of two goods are going to zero, it is entirely possible for the demand for one of them

to stay bounded, or for there to be two subsequences such that the demand for one is bounded on the first

subsequence and the demand for the second is bounded on the second subsequence.

Outline of proof:

• Define a correspondence f : Δ0 → Δ (so f(p) ∈ 2Δ) by

f(p) = {q ∈ Δ : q · z(p) ≥ q′ · z(p) for all q′ ∈ Δ}

f identifies the goods in highest excess demand.

• Since Δ0 is not compact, we extend f to Δ which is compact in such a way that f is upper hemi-

continuous.

• Verify that if p∗ ∈ f(p∗), then p∗ ∈ Δ0 and z(p∗) = 0.

• Check that f satisfies the hypotheses of Kakutani’s Theorem.

• By Kakutani’s Theorem, there exists p∗ ∈ Δ such that p∗ ∈ f(p∗), so p∗ ∈ Δ0 and z(p∗) = 0.

Will prove this in detail on Thursday.

3





Corollary 7 In a pure exchange economy (recall, Xi = RL
+, ω̄ � 0, preferences complete, transitive,

locally nonsatiated) in which preferences are continuous, strictly convex and strongly monotone, there is a

Walrasian Equilibrium.

Proof: Define z : Δ0 → RL by

z(p) =

(
I∑

i=1

Di(p)

)
− ω̄

We need to show that z satisfies the hypotheses of Debreu-Gale-Kuhn-Nikaido.

• z is a continuous function: 201A

• Walras’ Law: holds with equality because of strong monotonicity, although we’ve also seen that local

nonsatiation is enough.

• Bounded below: Di(p) ≥ 0, so z(p) ≥ −ω̄.

• Boundary Condition: We must show the following: if pn ∈ Δ0 and pn → p, where p ∈ Δ\Δ0, then

|z(pn)| → ∞. We have ω̄ =
∑

i ωi >> 0, so p ·∑i ωi > 0, so p · ωi > 0 for some i, WLOG i = 1. We

claim that |D1(p
n)| → ∞.

– If not, we can find a subsequence pnk s.t. D1(p
nk) is bounded; by the Bolzano-Weierstrass

Theorem, there is a further subsequence (still denoted pnk) such that D1(p
nk) → x for some

x ∈ RL.

–

p · x = lim
k→∞

pnk · D1(p
nk)

= lim
k→∞

pnk · ω1 (Walras’ Law with Equality)
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= p · ω1

> 0

– Without loss of generality, assume p1 = 0. Since p · x > 0, there is a good � (WLOG � = 2)

such that p� > 0 and x� > 0. By strong monotonicity, x + (1, 0, ..., 0) �1 x. Further, by the

continuity of �1, there exists ε > 0 such that

x + (1,−ε, ..., 0) ≥ 0

x + (1,−ε, ..., 0) �1 x

Let y = x + (1,−ε, ..., 0). Since D1(p
nk) → x, there exists K1 such that y �1 D1(p

nk) for every

k > K1. Note that

lim
k→∞

pnk · y = p · y

= p · (x + (1,−ε, ..., 0))

= p · x− p2ε

< p · x

= p · ω1

= lim
k→∞

pnk · ω1

Thus, there exists K2 such that pnk · y < pnk · ω1 for every k > K2. Thus, for every k >

max{K1, K2}, we have y �1 D1(p
nk) and pnk · y < pnk · ω1, a contradiction that shows that

|D1(p
n)| → ∞.

Since

I∑
i=1

Di(p
n) ≥ D1(p

n) ≥ 0

so

∣∣∣∣∣
I∑

i=1

Di(p
n)

∣∣∣∣∣ ≥ |D1(p
n)| → ∞
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so |z(pn)| =

∣∣∣∣∣
I∑

i=1

Di(p
n) − ω̄

∣∣∣∣∣
≥

∣∣∣∣∣
I∑

i=1

Di(p
n)

∣∣∣∣∣− |ω̄|

→ ∞

which proves the Boundary Condition.

Since z satisfies the hypotheses of D-G-K-N, there exists p∗ ∈ Δ0 such that z(p∗) = 0. Let x∗
i = Di(p

∗).

Then (p∗, x∗) is a Walrasian Equilibrium.
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