
Economics 201B–Second Half

Lecture 8, 4/8/10

Existence of Walrasian Equilibrium (Continued)

Proposition 1 (17.C.1) Debreu-Gale-Kuhn-Nikaido Lemma Suppose z : Δ0 → RL is a function satisfy-

ing

1. continuity

2. Walras’ Law

∀p∈Δ0 p · z(p) = 0

3. bounded below:

∃x∈RL∀p∈Δ0 z(p) ≥ x

4. Boundary Condition: If pn → p where p ∈ Δ \ Δ0, then

|z(pn)| → ∞

Then there exists p∗ ∈ Δ0 such that

z(p∗) = 0

Outline of proof:

• Define a correspondence f : Δ0 → Δ (so f(p) ∈ 2Δ) by

f(p) = {q ∈ Δ : q · z(p) ≥ q′ · z(p) for all q′ ∈ Δ}

f identifies the goods in highest excess demand.

• Extend the domain of f to Δ to get a compact domain, in such a way that f has closed graph. The

extension is designed so that there can’t be any fixed points in Δ \Δ0.

• Verify that if p∗ ∈ f(p∗), then p∗ ∈ Δ0 and z(p∗) = 0.
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• Check that f satisfies the hypotheses of Kakutani’s Theorem.

• By Kakutani’s Theorem, there exists p∗ ∈ Δ such that p∗ ∈ f(p∗), so p∗ ∈ Δ0 and z(p∗) = 0.

Details of proof:

• Define a correspondence f : Δ0 → Δ (so f(p) ∈ 2Δ) by

f(p) = {q ∈ Δ : q · z(p) ≥ q′ · z(p) for all q′ ∈ Δ}

f identifies the goods in highest excess demand.

∀��=�0 z(p)�0 > z(p)� ⇒

f(p) = {(0, . . . , 0, 1 , 0, . . . , 0)}

↑

�0

z(p)�0 = z(p)�1 > z(p)� for all � 
∈ {�0, �1} ⇒

f(p) = {(0, . . . , 0, α , 0, . . . , 0, 1 − α , 0, . . . , 0) : α ∈ [0, 1]}

↑ ↑

�0 �1

Notice that f(p) ∩ Δ0 = ∅ unless z(p)1 = z(p)x = · · · = z(p)L, but if that happens, z(p) = 0 by

Walras’ Law. Notice also that if p� is close to 1, then the other prices are small and the boundary

condition should tell us that there is some �′ such that z(p)�′ > z(p)�, so q ∈ f(p) ⇒ q� = 0; if p� is

close to zero and all the other prices are far from zero, then � should be the good in highest excess

demand, so q ∈ f(p) ⇒ q� = 1; this tells us heuristically that fixed points shouldn’t be close to the

boundary of Δ0.

• Extend the domain of f to Δ to make it have closed graph. For p ∈ Δ \ Δ0, let

f(p) = {q ∈ Δ : p · q = 0}

= {q ∈ Δ : p� > 0 ⇒ q� = 0}
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We will verify f has closed graph on Δ in the fourth step.

• Verify that if p∗ ∈ f(p∗), then p∗ ∈ Δ0 and z(p∗) = 0.

– We claim that

p∗ ∈ Δ0

If p∗ ∈ Δ \ Δ0, then

∀q∈f(p∗) p∗ · q = 0 (definition of f)

⇒ p∗ · p∗ = 0 (since p∗ ∈ f(p∗))

⇒ p∗ = 0

t ⇒ p∗ 
∈ Δ

contradiction. Therefore,

p∗ ∈ Δ0

– We claim that

p∗ ∈ f(p∗), p∗ ∈ Δ0 ⇒ z(p∗) = 0

We can’t have z(p∗) < 0, for then p∗ · z(p∗) < 0, contradicting Walras’ Law. Fix � ∈ {1, . . . , L}

Let

e� = (0, . . . , 0, 1 , 0, . . . , 0)}

↑

�

z(p∗)� = e� · z(p∗)

≤ p∗ · z(p∗) (p∗ ∈ f(p∗), definition of f)

= 0 (Walras’ Law)

Therefore, z(p∗) ≤ 0 but z(p∗) 
< 0, so

z(p∗) = 0
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• Check that f satisfies the hypotheses of Kakutani’s Theorem.

– Δ is a compact convex nonempty subset of RL.

– f : Δ → Δ is

∗ nonempty-valued: If p ∈ Δ0,

f(p) = {q ∈ Δ : ∀q′∈Δ q · z(p) ≥ q′ · z(p)}

q · z(p) is a continuous function of q ∈ Δ, which is compact, so the function achieves its

maximum, so f(p) 
= ∅.

If p ∈ Δ \ Δ0,

f(p) = {q ∈ Δ : q · p = 0}

Since p ∈ Δ \ Δ0, p� = 0 for some �, so if we let

q = (0, . . . , 0, 1 , 0, . . . 0)

↑

�

then q ∈ Δ and q · p = 0, so f(p) 
= ∅.

– convex-valued: Suppose q, q̂ ∈ f(p), α ∈ (0, 1). Since Δ is convex,

αq + (1 − α)q̂ ∈ Δ

If p ∈ Δ0, and q′ ∈ Δ,

(αq + (1 − α)q̂) · z(p) = αq · z(p) + (1 − α)q̂ · z(p)

≥ αq′ · z(p) + (1 − α)q′ · z(p)

(definition of f ; q, q̂ ∈ f(p))

= q′ · z(p)

so

αq + (1 − α)q̂ ∈ f(p)
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If p ∈ Δ \ Δ0,

(αq + (1 − α)q̂) · p = αq · p + (1 − α)q̂ · p

= α0 + (1 − α)0

(definition of f ; q, q̂ ∈ f(p))

= 0

so

αq + (1 − α)q̂ ∈ f(p)

– upper hemicontinuous: By Theorem 3 in Lecture 7, since Δ is compact, it is enough to show

that f has closed graph. Suppose pn → p, qn ∈ f(pn), and qn → q. We need to show that

q ∈ f(p)

If p ∈ Δ0, then pn ∈ Δ0 for n sufficiently large, so

f(pn) = {q ∈ Δ : ∀q′∈Δ q · z(pn) ≥ q′ · z(pn)}

z is continuous on Δ0, so

z(pn) → z(p)

Suppose q′ ∈ Δ.

q′ · z(p) = q′ · lim
n→∞ z(pn)

= lim
n→∞ q′ · z(pn)

≤ lim
n→∞ qn · z(pn)

= lim
n→∞ qn · lim

n→∞ z(pn)

= q · z(p)

so

q ∈ f(p)
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If p ∈ Δ \ Δ0, may have pn ∈ Δ0 for some n and pn ∈ Δ \ Δ0 for other n. We are in one or

both of the following cases; we show that in each case, p · q = 0, and hence q ∈ f(p).

∗ Case 1: {n : pn ∈ Δ0} is infinite. Then there is a subsequence pnk
such that pnk

∈ Δ0 for

all k. We need to show that p · q = 0. Suppose p�0 > 0; let α =
p�0

2
. For k sufficiently large,

(pnk
)�0 ≥ α

|z(pnk
)| → ∞, and z(pnk

) is bounded below, so

∃�nk∈{1,...,L} z(pnk
)�nk

→ ∞

In the following, x is the x in the statement of the Lemma:

(pnk
)�0z(pnk

)�0 = pnk
· z(pnk

) − ∑
��=�0

(pnk
)�z(pnk

)�

= − ∑
��=�0

(pnk
)�z(pnk

)�

≤ ‖x‖∞

z(pnk
)�0 ≤ ‖x‖∞

α

so for k sufficiently large,

z(pnk
)�0 < z(pnk

)�nk
⇒ (qnk

)�0 = 0

⇒ q�0 = 0

Therefore,

p�0 > 0 ⇒ q�0 = 0

so q · p = 0 and q ∈ f(p).
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∗ Case II: {n : pn ∈ Δ \Δ0} is infinite, so there is a subsequence pnk
such that pnk

∈ Δ \ Δ0

for all k. Then qnk
· pnk

= 0 for all k, so

q · p =
(

lim
k→∞

qnk

)
·
(

lim
k→∞

pnk

)

= lim
k→∞

qnk
· pnk

= lim
k→∞

0

= 0

so

q ∈ f(p)

• By Kakutani’s Theorem, there exists p∗ ∈ Δ such that p∗ ∈ f(p∗), so p∗ ∈ Δ0 and z(p∗) = 0.

Existence of Walrasian Equilibrium (Wrap-Up)

• What happens if we weaken the strong monotonicity assumption?

– local nonsatiation implies Walras’ Law holds with equality, but is not sufficient to give Walrasian

Equilibrium with
∑I

i=1 x∗
i ≤ ω̄.

∗ In Edgeworth Box Economy, let

u1(x, y) = y +
√

x (strongly monotonic)

ω1 = (0, 1)

u2(x, y) = min{x, y} (weakly monotonic)

ω2 = (1, 1)

For any p � 0,

D2(p) = (1, 1) = ω2

D1(p)1 > ω11
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For p = (1, 0) or p = (0, 1),

D1(p) = ∅

But notice for p = (1, 0)

ω1 ∈ Q1(p)

ω2 ∈ Q2(p)

so (1, 0) is a Walrasian Quasi-Equilibrium Price.

• Even without local nonsatiation,

∃p∗∈Δ, x∗
i∈Qi(p∗)

I∑
i=1

x∗
i ≤ ω̄

Walrasian Quasi-Equilibrium exists, some goods may be left over; local nonsatiation does not imply

allocation is exact, since some prices may be zero.

• If one agent (WLOG agent 1) is strongly monotonic and ω1 � 0, then p∗ � 0, so

x∗
i ∈ Di(p

∗) (i = 1, . . . , I)

I∑
i=1

x∗
i ≤ ω̄

If, in addition, all agents exhibit local nonsatiation,

I∑
i=1

x∗
i = ω̄

• If ωi � 0 for all i,

p∗ · ωi > 0

x∗
i ∈ Di(p

∗)

I∑
i=1

x∗
i ≤ ω̄

Local nonsatiation need not imply allocation exact, since some prices may be zero.

• With nonconvex preferences or indivisibilities, see Lecture 12.

8


