Economics 201B–Second Half Lecture 9, 4/13/10, Revised 4/13/10

Generic Local Uniqueness of Equilibrium

Comparative Statics: In what direction does the equilibrium move if the underlying parameters of the economy change?

A Foundation for Comparative Statics:

1. Local Uniqueness: For every equilibrium price $p^* \in \Delta$, there exists $\delta > 0$ such that there is no equilibrium price $q^* \in \Delta$ such that

$$q^* \neq p^*, \ |q^* - p^*| < \delta$$

2. For a sufficiently small change in the parameters of the economy, the number of equilibria is unchanged and each equilibrium moves

(continuously differentiably)

as the parameter changes.

Remark 1 If local uniqueness fails, lattice-theoretic methods may still allow us to establish comparative statics results. We can look at an equilibrium correspondence and we may be able to say that the *set* of equilibria moves in a particular direction in response to a change in the underlying parameters (Milgrom, Shannon, others).

Two-Good Economy: Consider a 2-good economy, normalized prices $p \in \Delta^0$,

$$z(p) = \sum_{i=1}^{I} D_i(p) - \bar{\omega}$$

• Walras' Law with Equality implies that

$$z(p)_1 = 0 \Rightarrow z(p)_2 = 0$$

so we can capture the situation in a diagram in \mathbf{R}^2 ; let

$$\hat{z}(p_1) = z(p_1, 1 - p_1)_1$$

and plot \hat{z} as a function of p_1 .

• In Diagram I, a small shift in \hat{z} results in a small shift of the equilibrium price; comparative statics are locally meaningful. Notice that

$$\hat{z}(p_1) = 0 \Rightarrow \hat{z}'(p_1) \neq 0$$

 \hat{z} cuts cleanly through 0, so we expect an odd number of equilibria.

- In Diagram II, there are two equilibria p_L^* and p_R^* .
 - A small shift in \hat{z} results in a small shift in p_L^*
 - A small upward shift in \hat{z} causes p_R^* to split in two; one moves left, the other moves right, so no local comparative statics.
 - A small downward shift in \hat{z} cause p_R^* to disappear!
 - Notice that

$$\hat{z}(p_R^*) = 0$$
 but $\hat{z}'(p_R^*) = 0$

• Diagram III shows we could even have a whole interval of equilibrium prices. A small change in \hat{z} results in a *discontinuous* shift in equilibrium price.

Multi-Good Case:

• Normalize $p_L = 1$ rather than $p \in \Delta$. Price is represented by

$$\hat{p} = (p_1, \dots, p_{L-1}) \in \mathbf{R}_{++}^{L-1}$$

• Let

$$\hat{z}(\hat{p}) = (z_1(\hat{p}, 1), \dots, z_{L-1}(\hat{p}, 1))$$

• Walras' Law with Equality and $p \gg 0$ implies that

$$\hat{z}(\hat{p}) = 0 \Leftrightarrow z(\hat{p}, 1) = 0$$

• Observe that

$$\hat{z}: \mathbf{R}_{++}^{L-1} \to \mathbf{R}^{L-1}$$

so $D\hat{z}$, the Jacobian matrix of \hat{z} , is $(L-1) \times (L-1)$

• Definition: An equilibrium price p^* is regular if

$$\det D\hat{z}|_{\hat{p}^*} \neq 0$$

This is equivalent to

$$\operatorname{rank} |Dz|_{p^*} = L - 1$$

A *regular economy* is an economy for which every equilibrium price is regular.

- Maintained Hypotheses for Remainder of 17.D:
 - $-\ z$ satisfies the hypotheses of the Debreu-Gale-Kuhn-Nikaido Lemma.
 - -z is homogeneous of degree zero, i.e.

$$\forall_{p\in\mathbf{R}_{++}^L,\,\lambda>0}z(\lambda p)=z(p)$$

Caution: \hat{z} is *not* homogeneous because it is a representation of a normalized price $(p_L = 1)$.

-z is C^1 . This appears technical, but it's strong and has economic consequences because it rules out boundary consumptions: demand necessarily has a kink at the price where demand first hits boundary. This can be weakened to allow boundary consumptions, and the theorems more or less hold.

Proposition 2 (17.D.1) In a regular economy, (normalized) Walrasian Equilibrium prices are locally unique, and there are only finitely many equilibria.

Proof: Suppose $\hat{z}(\hat{p}^*) = 0$. Since the economy is regular, $D\hat{z}|_{\hat{p}^*}$ is nonsingular. By the Inverse Function Theorem, there is a neighborhood U of \hat{p}^* and a neighborhood V of 0 and a C^1 function $h: V \to U$, h is one-to-one and onto such that

 $\forall_{v \in V} \ \hat{z}(h(v)) = v, \ \forall_{u \in U} \ h(\hat{z}(u)) = u$ If $u \in U$ and $\hat{z}(u) = 0$,

$$u = h(\hat{z}(u))$$

= $h(0)$
 $\hat{p}^* = h(\hat{z}(\hat{p}^*))$
= $h(0)$

Since h is a function, $u = \hat{p}^*$, so Equilibrium is locally unique. Now, we show that there are a finite number of equilibria.

Claim: There is a compact set $\hat{K} \subset \mathbf{R}_{++}^{L-1}$ such that if $\hat{z}(\hat{p}^*) = 0$, then $\hat{p}^* \in \hat{K}$.

Suppose the claim is not true. Define $\phi : \mathbf{R}_{++}^{L-1} \to \Delta^0$ by

$$\phi(\hat{p}) = \frac{(\hat{p}, 1)}{\hat{p}_1 + \ldots + \hat{p}_{L-1} + 1}$$

Observe that ϕ is one-to-one and onto, is continuous, and has continuous inverse. Let

$$K_n = \left\{ p \in \Delta^0 : p_\ell \ge \frac{1}{n} \ (1 \le \ell \le L) \right\}$$

Then $\phi^{-1}(K_n)$ is the continuous image of a compact set, hence a compact subset of \mathbf{R}_{++}^{L-1} , so the set of equilibrium prices cannot be contained in $\phi^{-1}(K_n)$. Thus, we may find a sequence \hat{p}_n^* of equilibrium prices such that $\phi(\hat{p}_n^*) \notin K_n$. Since Δ is compact, we can find a subsequence

$$\phi(\hat{p}_{n_k}^*) \to p \in \Delta \setminus \Delta^0$$

By the Boundary Condition,

$$|z(\phi(\hat{p}^*_{n_k}))| \to \infty$$

but

$$\begin{aligned} z(\phi(\hat{p}_{n_k}^*)) &= z(\hat{p}_{n_k}^*, 1) \text{ (homogeneity of degree zero)} \\ &= 0 \text{ (since } \hat{z}(\hat{p}_{n_k}^*) = 0) \end{aligned}$$

a contradiction which proves the claim.

*** Tet $E = \{\hat{p} \in \mathbf{R}_{++}^{L-1} : \hat{z}(\hat{p}) = 0\}$. Suppose $\hat{p}_n \in E$ and $\hat{p}_n \to \hat{p}$. Since $E \subseteq K$ which is compact, $\hat{p} \in K \subseteq \mathbf{R}_{++}^{L-1}$. $\hat{z}(\hat{p}) = \lim \hat{z}(\hat{p}_n) = 0$, since \hat{z} is continuous, so $\hat{p} \in E$. Thus, E is a closed subset of the compact set K, so E is compact. For each $\hat{p} \in E$, we may find $\delta_{\hat{p}} > 0$ such that

$$E \cap B\left(\hat{p}, \delta_{\hat{p}}\right) = \{\hat{p}\}$$

The collection

$$\{B\left(\hat{p},\delta_{\hat{p}}\right):\hat{p}\in E\}$$

is an open cover of E, hence has a finite subcover. Since each element of this finite subcover contains exactly one element of E, E is finite. \blacksquare

The Index Theorem

- Throughout, we will denote a price in $\Delta = \{p \in \mathbf{R}_{+}^{L} : \Sigma_{\ell=1}^{L} p_{\ell} = 1\}$ by p, and the associated price in \mathbf{R}_{++}^{L-1} (with the assumption that the price of good L has been normalized to 1) by \hat{p} .
- Definition: If p^* is a regular equilibrium price, define

index
$$(p^*) = (-1)^{L-1}$$
sign det $D\hat{z}|_{\hat{p}^*}$

• For L = 2,

index
$$(p^*) = (-1)^1 \operatorname{sign} \det D\hat{z}|_{\hat{p}^*}$$

= $-\operatorname{sign} \hat{z}'(\hat{p}^*)$

- 1. index $(p^*) = +1$ means that $\hat{z}'(\hat{p}^*) < 0$; that means demand is downward sloping, so we are in the "normal" case in which an increase in \hat{z} , the excess demand for good 1, results in an increase in the equilibrium price of good 1.
- 2. index $(p^*) = -1$ means that $\hat{z}'(\hat{p}^*) > 0$; that means demand is upward sloping, so we are in the "abnormal" case in which an increase in \hat{z} , the excess demand for good 1, results in an decrease in the equilibrium price of good 1.

• For
$$L = 3$$
,

index
$$(p^*) = (-1)^2 \operatorname{sign} \det D\hat{z}|_{\hat{p}^*}$$

= sign det $D\hat{z}|_{\hat{p}^*}$

The sign of the determinant is +1 if orientation is preserved, -1 if orientation is reversed:

$$\begin{pmatrix} 0\\1 \end{pmatrix} \text{ is obtained from } \begin{pmatrix} 1\\0 \end{pmatrix}$$

by a counterclockwise rotation.

$$D\hat{z}|_{\hat{p}^*}\begin{pmatrix}0\\1\end{pmatrix}$$
 is obtained from $D\hat{z}|_{\hat{p}^*}\begin{pmatrix}1\\0\end{pmatrix}$

by a rotation; counterclockwise (orientation preserved) if

det
$$D\hat{z}|_{\hat{p}^*} > 0$$
, index $(\hat{p}^*) = +1$

and clockwise (orientation reversed) if

det
$$D\hat{z}|_{\hat{p}^*} < 0$$
, index $(\hat{p}^*) = -1$

• For L = 4,

index
$$(p^*) = (-1)^3$$
sign det $D\hat{z}|_{\hat{p}^*}$
= $-\text{sign det } D\hat{z}|_{\hat{p}^*}$

The sign of the determinant is +1 if orientation is preserved, -1 if orientation is reversed:

$$\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

is a right-handed system.

$$\det D\hat{z}|_{\hat{p}^*} \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \det D\hat{z}|_{\hat{p}^*} \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \det D\hat{z}|_{\hat{p}^*} \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

is right-handed (orientation preserved) if

det
$$D\hat{z}|_{\hat{p}^*} > 0$$
, index $(\hat{p}^*) = -1$

and left-handed (orientation reversed) if

det
$$D\hat{z}|_{\hat{p}^*} < 0$$
, index $(\hat{p}^*) = +1$

• Connection to Tatonnement Stability: Consider the Tatonnement Price Dynamics

$$\frac{d\hat{p}}{dt} = \hat{z}(\hat{p}) \tag{1}$$

- This is a nonlinear differential equation, but we can approximate its behavior near an equilibrium price \hat{p}^* by considering the linear differential equation

$$\frac{d\hat{p}}{dt} = D\hat{z}|_{\hat{p}^*} \left(\hat{p} - \hat{p}^*\right)$$
(2)

- Let $\lambda_1, \ldots, \lambda_{L-1}$ be the eigenvalues of $D\hat{z}|_{\hat{p}^*}$. - Fact:

$$\det D\hat{z}\big|_{\hat{p}^*} = \prod_{\ell=1}^{L-1} \lambda_\ell$$

This is obvious if the matrix is diagonalizable, but is true in general.

- * Some of the eigenvalues are real; the others come in conjugate pairs.
- * If a + bi and a bi are a conjugate pair of eigenvalues

$$(a+bi)(a-bi) = a^2 + b^2 > 0$$

* Thus,

sign det
$$D\hat{z}|_{\hat{p}^*} = \prod_{\lambda_\ell \in \mathbf{R}} \operatorname{sign}(\lambda_\ell)$$

is the product of the signs of the real eigenvalues.

- * Each complex eigenvalue represents a rotation, which does not change orientation.
- * Each real, negative eigenvalue represents a change of orientation. Orientation is unchanged if there are an even number of real, negative eigenvalues.

- Equation (1) is locally asymptotically stable near \hat{p}^* if all solutions to Equation (2) converge to \hat{p}^* , which is true if and only if

$$\Re(\lambda_1) < 0, \ldots, \Re(\lambda_{L-1}) < 0$$

If $\Re(\lambda_{\ell}) > 0$ for any ℓ , then Equation (1) is not locally asymptotically stable.

Suppose L - 1 is odd. Since there are an even number of complex eigenvalues, there are an odd number of real eigenvalues, so if all of them are negative, the determinant is negative and

index
$$(\hat{p}^*) = (-1)^{L-1}$$
sign det $D\hat{z}|_{\hat{p}^*} = +1$

On the other hand, suppose L - 1 is even. Since there are an even number of complex eigenvalues, there are an even number of real eigenvalues, so if all of them are negative, the determinant is positive and

index
$$(\hat{p}^*) = (-1)^{L-1}$$
sign det $D\hat{z}|_{\hat{p}^*} = +1$

Thus, we have

Tatonnement Stability near $\hat{p}^* \Rightarrow \text{index } (\hat{p}^*) = +1$

but the converse is false. Thus, the Index Theorem lets us quickly determine that some equilibria are unstable, and allow us to concentrate a search for stable equilibria on those with index +1, which *might* be stable.

Theorem 3 (Index Theorem) For any regular economy,

$$\sum_{\hat{p}^* \in \mathbf{R}_{++}^{L-1}, \hat{z}(\hat{p}^*) = 0} \text{ index } (\hat{p}^*) = +1$$

Corollary 4 For any regular economy, there are an odd number of equilibria. Since 0 is even, every regular economy has an equilibrium.

Intuition behind Index Theorem: index (\hat{p}^*) indicates the direction in which \hat{z} passes through zero near \hat{p}^* . The Boundary Condition implies that \hat{z} starts on one side of zero and ends up on the other side of zero, so every equilibrium price with index -1 must be paired with an equilibrium price with index +1, and exactly one equilibrium price with index +1 must be left unpaired. **Genericity: Almost All Economies are Regular** Review notion of Lebesgue measure zero from 204: This is a natural formulation of the notion that A is a small set:

"If you choose $x \in \mathbf{R}^n$ at random, the probability that $x \in A$ is zero."

Regular and Critical Points and Values: Suppose $X \subseteq \mathbf{R}^n$ is open. Suppose $f : X \to \mathbf{R}^m$ is differentiable at $x \in X$. Then $df_x \in L(\mathbf{R}^n, \mathbf{R}^m)$, so

 $\operatorname{rank} (df_x) \le \min\{m, n\}$

- x is a regular point of f if rank $(df_x) = \min\{m, n\}$.
- x is a critical point of f if rank $(df_x) < \min\{m, n\}$.
- y is a critical value of f if there exists $x \in X$, f(x) = y, x is a critical point of y.
- y is a *regular value* of f if y is not a critical value of f (notice this has the counterintuitive implication that if $y \notin f(X)$, then y is automatically a regular value of f).

A function may have many critical points; for example, if a function is constant on an interval, then every element of the interval is a critical point. But it can't have many critical *values*.

Theorem 5 (2.4, Sard's Theorem) Let $X \subseteq \mathbb{R}^n$ be open, $f: X \to \mathbb{R}^m$, f is C^r with $r \ge 1 + \max\{0, n - m\}$. Then the set of all critical values of f has Lebesgue measure zero.

Recall that our definition of critical point differed from de la Fuente's in the case m > n. If m > n, then every $x \in X$ is critical using de la Fuente's definition, because

$$\mathrm{rank}\; Df(x) \leq n < m$$

Consequently, every $y \in f(X)$ is a critical value, using de la Fuente's definition. This does not contradict Sard's Theorem, since one can show that f(X) is a set of Lebesgue measure zero when m > n and $f \in C^1$.

The Transversality Theorem is a particularly convenient formulation of Sard's Theorem for our purposes:

Theorem 6 (2.5', Transversality Theorem) Let

$$\begin{aligned} X &\subseteq \mathbf{R}^n \text{ and } \Omega \subseteq \mathbf{R}^p \text{ be open} \\ F &: X \times \Omega \to \mathbf{R}^m \in C^r \\ with \ r \geq 1 + \max\{0, n - m\} \end{aligned}$$

Suppose that

In

$$F(x,\omega) = 0 \Rightarrow DF(x,\omega)$$
 has rank m.

Then there is a set $\Omega_0 \subseteq \Omega$ such that $\Omega \setminus \Omega_0$ has Lebesgue measure zero such that

$$\omega \in \Omega_0, \ F(x,\omega) = 0 \Rightarrow D_x F(x,\omega) has \ rank \ m$$

particular, if $m = n$, and $\omega_0 \in \Omega_0$,

• there is a local implicit function

 $x^*(\omega)$

characterized by

 $F(x^*(\omega),\omega) = 0$

where x^* is a C^r function of ω

• the equilibrium correspondence

$$\omega \to \{x: F(x,\omega) = 0\}$$

is lower hemicontinuous at ω_0 .

Remark: If n < m, rank $D_x F(x, \omega) \leq \min\{m, n\} = n < m$. Therefore,

$$(F(x,\omega) = 0 \Rightarrow DF(x,\omega)$$
 has rank m)
 \Rightarrow for all ω except for a set of Lebesgue measure zero
 $F(x,\omega) = 0$ has no solution