
Economics 201B–Second Half
Lecture 9, 4/13/10, Revised 4/13/10

Generic Local Uniqueness of Equilibrium

Comparative Statics: In what direction does the equilibrium
move if the underlying parameters of the economy change?

A Foundation for Comparative Statics:

1. Local Uniqueness: For every equilibrium price p∗ ∈ Δ, there
exists δ > 0 such that there is no equilibrium price q∗ ∈ Δ
such that

q∗ �= p∗, |q∗ − p∗| < δ

2. For a sufficiently small change in the parameters of the econ-
omy, the number of equilibria is unchanged and each equilib-
rium moves ⎛

⎜⎜⎝
continuously
differentiably

⎞
⎟⎟⎠

as the parameter changes.

Remark 1 If local uniqueness fails, lattice-theoretic methods may
still allow us to establish comparative statics results. We can look
at an equilibrium correspondence and we may be able to say that
the set of equilibria moves in a particular direction in response to a
change in the underlying parameters (Milgrom, Shannon, others).

Two-Good Economy: Consider a 2-good economy, normalized
prices p ∈ Δ0,

z(p) =
I∑

i=1
Di(p) − ω̄
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• Walras’ Law with Equality implies that

z(p)1 = 0 ⇒ z(p)2 = 0

so we can capture the situation in a diagram in R2; let

ẑ(p1) = z(p1, 1 − p1)1

and plot ẑ as a function of p1.

• In Diagram I, a small shift in ẑ results in a small shift of the
equilibrium price; comparative statics are locally meaningful.
Notice that

ẑ(p1) = 0 ⇒ ẑ′(p1) �= 0

ẑ cuts cleanly through 0, so we expect an odd number of equi-
libria.

• In Diagram II, there are two equilibria p∗L and p∗R.

– A small shift in ẑ results in a small shift in p∗L
– A small upward shift in ẑ causes p∗R to split in two; one

moves left, the other moves right, so no local comparative
statics.

– A small downward shift in ẑ cause p∗R to disappear!

– Notice that
ẑ(p∗R) = 0 but ẑ′(p∗R) = 0

• Diagram III shows we could even have a whole interval of equi-
librium prices. A small change in ẑ results in a discontinuous
shift in equilibrium price.

Multi-Good Case:

• Normalize pL = 1 rather than p ∈ Δ. Price is represented by

p̂ = (p1, . . . , pL−1) ∈ RL−1
++
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• Let
ẑ(p̂) = (z1(p̂, 1), . . . , zL−1(p̂, 1))

• Walras’ Law with Equality and p � 0 implies that

ẑ(p̂) = 0 ⇔ z(p̂, 1) = 0

• Observe that
ẑ : RL−1

++ → RL−1

so Dẑ, the Jacobian matrix of ẑ, is (L − 1) × (L − 1)

• Definition: An equilibrium price p∗ is regular if

det Dẑ|p̂∗ �= 0

This is equivalent to

rank Dz|p∗ = L − 1

A regular economy is an economy for which every equilibrium
price is regular.

• Maintained Hypotheses for Remainder of 17.D:

– z satisfies the hypotheses of the Debreu-Gale-Kuhn-Nikaido
Lemma.

– z is homogeneous of degree zero, i.e.

∀p∈RL
++, λ>0z(λp) = z(p)

Caution: ẑ is not homogeneous because it is a representa-
tion of a normalized price (pL = 1).

– z is C1. This appears technical, but it’s strong and has
economic consequences because it rules out boundary con-
sumptions: demand necessarily has a kink at the price
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where demand first hits boundary. This can be weakened
to allow boundary consumptions, and the theorems more
or less hold.

Proposition 2 (17.D.1) In a regular economy, (normal-
ized) Walrasian Equilibrium prices are locally unique, and
there are only finitely many equilibria.

Proof: Suppose ẑ(p̂∗) = 0. Since the economy is regular,
Dẑ|p̂∗ is nonsingular. By the Inverse Function Theorem, there
is a neighborhood U of p̂∗ and a neighborhood V of 0 and a
C1 function h : V → U , h is one-to-one and onto such that

∀v∈V ẑ(h(v)) = v, ∀u∈U h(ẑ(u)) = u

If u ∈ U and ẑ(u) = 0,

u = h(ẑ(u))

= h(0)

p̂∗ = h(ẑ(p̂∗))
= h(0)

Since h is a function, u = p̂∗, so Equilibrium is locally unique.

Now, we show that there are a finite number of equilibria.

Claim: There is a compact set K̂ ⊂ RL−1
++ such that if ẑ(p̂∗) =

0, then p̂∗ ∈ K̂.
Suppose the claim is not true. Define φ : RL−1

++ → Δ0 by

φ(p̂) =
(p̂, 1)

p̂1 + . . . + p̂L−1 + 1
Observe that φ is one-to-one and onto, is continuous, and has
continuous inverse. Let

Kn =

⎧⎪⎨
⎪⎩p ∈ Δ0 : p� ≥ 1

n
(1 ≤ � ≤ L)

⎫⎪⎬
⎪⎭
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Then φ−1(Kn) is the continuous image of a compact set, hence
a compact subset of RL−1

++ , so the set of equilibrium prices
cannnot be contained in φ−1(Kn). Thus, we may find a se-
quence p̂∗n of equilibrium prices such that φ(p̂∗n) �∈ Kn. **Since
Δ is compact, we can find a subsequence

φ(p̂∗nk
) → p ∈ Δ \ Δ0

By the Boundary Condition,

|z(φ(p̂∗nk
))| → ∞

but

z(φ(p̂∗nk
)) = z(p̂∗nk

, 1) (homogeneity of degree zero)

= 0 (since ẑ(p̂∗nk
) = 0)

a contradiction which proves the claim.

****Let E =
{
p̂ ∈ RL−1

++ : ẑ(p̂) = 0
}
. Suppose p̂n ∈ E and

p̂n → p̂. Since E ⊆ K which is compact, p̂ ∈ K ⊆ RL−1
++ .

ẑ(p̂) = lim ẑ(p̂n) = 0, since ẑ is continuous, so p̂ ∈ E. Thus,
E is a closed subset of the compact set K, so E is compact.

For each p̂ ∈ E, we may find δp̂ > 0 such that

E ∩ B (p̂, δp̂) = {p̂}
The collection

{B (p̂, δp̂) : p̂ ∈ E}
is an open cover of E, hence has a finite subcover. Since each
element of this finite subcover contains exactly one element of
E, E is finite.

The Index Theorem
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• Throughout, we will denote a price in Δ = {p ∈ RL
+ :

∑L
�=1 p� = 1} by p, and the associated price in RL−1

++ (with
the assumption that the price of good L has been normalized
to 1) by p̂.

• Definition: If p∗ is a regular equilibrium price, define

index (p∗) = (−1)L−1sign det Dẑ|p̂∗
• For L = 2,

index (p∗) = (−1)1sign det Dẑ|p̂∗
= −sign ẑ′(p̂∗)

1. index (p∗) = +1 means that ẑ′(p̂∗) < 0; that means de-
mand is downward sloping, so we are in the “normal” case
in which an increase in ẑ, the excess demand for good 1,
results in an increase in the equilibrium price of good 1.

2. index (p∗) = −1 means that ẑ′(p̂∗) > 0; that means de-
mand is upward sloping, so we are in the “abnormal” case
in which an increase in ẑ, the excess demand for good 1,
results in an decrease in the equilibrium price of good 1.

• For L = 3,

index (p∗) = (−1)2sign det Dẑ|p̂∗
= sign det Dẑ|p̂∗

The sign of the determinant is +1 if orientation is preserved,
-1 if orientation is reversed:

– ⎛
⎜⎜⎝

0
1

⎞
⎟⎟⎠ is obtained from

⎛
⎜⎜⎝

1
0

⎞
⎟⎟⎠
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by a counterclockwise rotation.

Dẑ|p̂∗
⎛
⎜⎜⎝

0
1

⎞
⎟⎟⎠ is obtained from Dẑ|p̂∗

⎛
⎜⎜⎝

1
0

⎞
⎟⎟⎠

by a rotation; counterclockwise (orientation preserved) if

det Dẑ|p̂∗ > 0, index (p̂∗) = +1

and clockwise (orientation reversed) if

det Dẑ|p̂∗ < 0, index (p̂∗) = −1

• For L = 4,

index (p∗) = (−1)3sign det Dẑ|p̂∗
= −sign det Dẑ|p̂∗

The sign of the determinant is +1 if orientation is preserved,
-1 if orientation is reversed:

– ⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

is a right-handed system.

det Dẑ|p̂∗
⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠
, det Dẑ|p̂∗

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎠
, det Dẑ|p̂∗

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

is right-handed (orientation preserved) if

det Dẑ|p̂∗ > 0, index (p̂∗) = −1

and left-handed (orientation reversed) if

det Dẑ|p̂∗ < 0, index (p̂∗) = +1
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• Connection to Tatonnement Stability: Consider the Taton-
nement Price Dynamics

dp̂

dt
= ẑ(p̂) (1)

– This is a nonlinear differential equation, but we can approx-
imate its behavior near an equilibrium price p̂∗ by consid-
ering the linear differential equation

dp̂

dt
= Dẑ|p̂∗ (p̂ − p̂∗) (2)

– Let λ1, . . . , λL−1 be the eigenvalues of Dẑ|p̂∗.
– Fact:

det Dẑ|p̂∗ =
L−1∏
�=1

λ�

This is obvious if the matrix is diagonalizable, but is true
in general.

∗ Some of the eigenvalues are real; the others come in con-
jugate pairs.

∗ If a + bi and a − bi are a conjugate pair of eigenvalues

(a + bi)(a − bi) = a2 + b2 > 0

∗ Thus,
sign det Dẑ|p̂∗ =

∏
λ�∈R

sign (λ�)

is the product of the signs of the real eigenvalues.

∗ Each complex eigenvalue represents a rotation, which
does not change orientation.

∗ Each real, negative eigenvalue represents a change of ori-
entation. Orientation is unchanged if there are an even
number of real, negative eigenvalues.
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– Equation (1) is locally asymptotically stable near p̂∗ if all
solutions to Equation (2) converge to p̂∗, which is true if
and only if

�(λ1) < 0, . . . ,�(λL−1) < 0

If �(λ�) > 0 for any �, then Equation (1) is not locally
asymptotically stable.

Suppose L − 1 is odd. Since there are an even number
of complex eigenvalues, there are an odd number of real
eigenvalues, so if all of them are negative, the determinant
is negative and

index (p̂∗) = (−1)L−1sign det Dẑ|p̂∗ = +1

On the other hand, suppose L − 1 is even. Since there are
an even number of complex eigenvalues, there are an even
number of real eigenvalues, so if all of them are negative,
the determinant is positive and

index (p̂∗) = (−1)L−1sign det Dẑ|p̂∗ = +1

Thus, we have

Tatonnement Stability near p̂∗ ⇒ index (p̂∗) = +1

but the converse is false. Thus, the Index Theorem lets us
quickly determine that some equilibria are unstable, and
allow us to concentrate a search for stable equilibria on
those with index +1, which might be stable.

Theorem 3 (Index Theorem) For any regular economy,
∑

p̂∗∈RL−1
++ ,ẑ(p̂∗)=0

index (p̂∗) = +1
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Corollary 4 For any regular economy, there are an odd num-
ber of equilibria. Since 0 is even, every regular economy has
an equilibrium.

Intuition behind Index Theorem: index (p̂∗) indicates the di-
rection in which ẑ passes through zero near p̂∗. The Boundary
Condition implies that ẑ starts on one side of zero and ends up
on the other side of zero, so every equilibrium price with index
-1 must be paired with an equilibrium price with index +1, and
exactly one equilibrium price with index +1 must be left unpaired.
Genericity: Almost All Economies are Regular
Review notion of Lebesgue measure zero from 204: This is a
natural formulation of the notion that A is a small set:

“If you choose x ∈ Rn at random,
the probability that x ∈ A is zero.”

Regular and Critical Points and Values:
Suppose X ⊆ Rn is open. Suppose f : X → Rm is differentiable
at x ∈ X . Then dfx ∈ L(Rn,Rm), so

rank (dfx) ≤ min{m, n}
• x is a regular point of f if rank (dfx) = min{m,n}.
• x is a critical point of f if rank (dfx) < min{m, n}.
• y is a critical value of f if there exists x ∈ X , f (x) = y, x is

a critical point of y.

• y is a regular value of f if y is not a critical value of f (notice
this has the counterintuitive implication that if y �∈ f (X),
then y is automatically a regular value of f ).
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A function may have many critical points; for example, if a func-
tion is constant on an interval, then every element of the interval
is a critical point. But it can’t have many critical values.

Theorem 5 (2.4, Sard’s Theorem) Let X ⊆ Rn be open,
f : X → Rm, f is Cr with r ≥ 1 + max{0, n − m}. Then the
set of all critical values of f has Lebesgue measure zero.

Recall that our definition of critical point differed from de la
Fuente’s in the case m > n. If m > n, then every x ∈ X is
critical using de la Fuente’s definition, because

rank Df (x) ≤ n < m

Consequently, every y ∈ f (X) is a critical value, using de la
Fuente’s definition. This does not contradict Sard’s Theorem,
since one can show that f (X) is a set of Lebesgue measure zero
when m > n and f ∈ C1.
The Transversality Theorem is a particularly convenient formula-
tion of Sard’s Theorem for our purposes:

Theorem 6 (2.5’, Transversality Theorem) Let

X ⊆ Rn and Ω ⊆ Rp be open

F : X × Ω → Rm ∈ Cr

with r ≥ 1 + max{0, n − m}
Suppose that

F (x, ω) = 0 ⇒ DF (x, ω) has rank m.

Then there is a set Ω0 ⊆ Ω such that Ω \ Ω0 has Lebesgue
measure zero such that

ω ∈ Ω0, F (x, ω) = 0 ⇒ DxF (x, ω)has rank m

In particular, if m = n, and ω0 ∈ Ω0,
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• there is a local implicit function

x∗(ω)

characterized by
F (x∗(ω), ω) = 0

where x∗ is a Cr function of ω

• the equilibrium correspondence

ω → {x : F (x, ω) = 0}
is lower hemicontinuous at ω0.

Remark: If n < m, rank DxF (x, ω) ≤ min{m,n} = n < m.
Therefore,

(F (x, ω) = 0 ⇒ DF (x, ω) has rank m)

⇒ for all ω except for a set of Lebesgue measure zero

F (x, ω) = 0 has no solution
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