Economics 201B-Second Half

Lecture 9, 4/13/10

Generic Local Uniqueness of Equilibrium

Comparative Statics: In what direction does the equilibrium move if the underlying parameters of the economy change?

A Foundation for Comparative Statics:

1. Local Uniqueness: For every equilibrium price $p^{*} \in \Delta$, there exists $\delta>0$ such that there is no equilibrium price $q^{*} \in \Delta$ such that

$$
q^{*} \neq p^{*},\left|q^{*}-p^{*}\right|<\delta
$$

2. For a sufficiently small change in the parameters of the economy, the number of equilibria is unchanged and each equilibrium moves

$$
\binom{\text { continuously }}{\text { differentiably }}
$$

as the parameter changes.

Remark 1 If local uniqueness fails, lattice-theoretic methods may still allow us to establish comparative statics results. We can look at an equilibrium correspondence and we may be able to say that the set of equilibria moves in a particular direction in response to a change in the underlying parameters (Milgrom, Shannon, others).

Two-Good Economy: Consider a 2-good economy, normalized prices $p \in \Delta^{0}$,

$$
z(p)=\sum_{i=1}^{I} D_{i}(p)-\bar{\omega}
$$

- Walras' Law with Equality implies that

$$
z(p)_{1}=0 \Rightarrow z(p)_{2}=0
$$

so we can capture the situation in a diagram in \mathbf{R}^{2}; let

$$
\hat{z}\left(p_{1}\right)=z\left(p_{1}, 1-p_{1}\right)_{1}
$$

and plot \hat{z} as a function of p_{1}.

- In Diagram I, a small shift in \hat{z} results in a small shift of the equilibrium price; comparative statics are locally meaningful. Notice that

$$
\hat{z}\left(p_{1}\right)=0 \Rightarrow \hat{z}^{\prime}\left(p_{1}\right) \neq 0
$$

\hat{z} cuts cleanly through 0 , so we expect an odd number of equilibria.

- In Diagram II, there are two equilibria p_{L}^{*} and p_{R}^{*}.
- A small shift in \hat{z} results in a small shift in p_{L}^{*}
- A small upward shift in \hat{z} causes p_{R}^{*} to split in two; one moves left, the other moves right, so no local comparative statics.
- A small downward shift in \hat{z} cause p_{R}^{*} to disappear!
- Notice that

$$
\hat{z}\left(p_{R}^{*}\right)=0 \text { but } \hat{z}^{\prime}\left(p_{R}^{*}\right)=0
$$

- Diagram III shows we could even have a whole interval of equilibrium prices. A small change in \hat{z} results in a discontinuous shift in equilibrium price.

Multi-Good Case:

- Normalize $p_{L}=1$ rather than $p \in \Delta$. Price is represented by

$$
\hat{p}=\left(p_{1}, \ldots, p_{L-1}\right) \in \mathbf{R}_{++}^{L-1}
$$

- Let

$$
\hat{z}(\hat{p})=\left(z_{1}(\hat{p}, 1), \ldots, z_{L-1}(\hat{p}, 1)\right)
$$

- Walras' Law with Equality and $p \gg 0$ implies that

$$
\hat{z}(\hat{p})=0 \Leftrightarrow z(\hat{p}, 1)=0
$$

- Observe that

$$
\hat{z}: \mathbf{R}_{++}^{L-1} \rightarrow \mathbf{R}^{L-1}
$$

so $D \hat{z}$, the Jacobian matrix of \hat{z}, is $(L-1) \times(L-1)$

- Definition: An equilibrium price p^{*} is regular if

$$
\left.\operatorname{det} D \hat{z}\right|_{\hat{p}^{*}} \neq 0
$$

This is equivalent to

$$
\left.\operatorname{rank} D z\right|_{p^{*}}=L-1
$$

A regular economy is an economy for which every equilibrium price is regular.

- Maintained Hypotheses for Remainder of 17.D:
$-z$ satisfies the hypotheses of the Debreu-Gale-Kuhn-Nikaido Lemma.
$-z$ is homogeneous of degree zero, i.e.

$$
\forall_{p \in \mathbf{R}_{++}^{L}, \lambda>0} z(\lambda p)=z(p)
$$

Caution: \hat{z} is not homogeneous because it is a representation of a normalized price $\left(p_{L}=1\right)$.
$-z$ is C^{1}. This appears technical, but it's strong and has economic consequences because it rules out boundary consumptions: demand necessarily has a kink at the price where demand first hits boundary. This can be weakened to allow boundary consumptions, and the theorems more or less hold.

Proposition 2 (17.D.1) In a regular economy, (normalized) Walrasian Equilibrium prices are locally unique, and there are only finitely many equilibria.

Proof: Suppose $\hat{z}\left(\hat{p}^{*}\right)=0$. Since the economy is regular, $\left.D \hat{z}\right|_{\hat{p}^{*}}$ is nonsingular. By the Inverse Function Theorem, there is a neighborhood U of \hat{p}^{*} and a neighborhood V of 0 and a C^{1} function $h: V \rightarrow U, h$ is one-to-one and onto such that

$$
\forall_{v \in V} \hat{z}(h(v))=v, \forall_{u \in U} h(\hat{z}(u))=u
$$

If $u \in U$ and $\hat{z}(u)=0$,

$$
\begin{aligned}
u & =h(\hat{z}(u)) \\
& =h(0) \\
\hat{p}^{*} & =h\left(\hat{z}\left(\hat{p}^{*}\right)\right) \\
& =h(0)
\end{aligned}
$$

Since h is a function, $u=\hat{p}^{*}$, so Equilibrium is locally unique.

Now, we show that there are a finite number of equilibria.
Claim: There is a compact set $\hat{K} \subset \mathbf{R}_{++}^{L-1}$ such that if $\hat{z}\left(\hat{p}^{*}\right)=0$, then $\hat{p}^{*} \in \hat{K}$.
Suppose the claim is not true. Define $\phi: \mathbf{R}_{++}^{L-1} \rightarrow \Delta^{0}$ by

$$
\phi(\hat{p})=\frac{(\hat{p}, 1)}{\left|\hat{p}_{1}+\ldots+\hat{p}_{L-1}+1\right|}
$$

Observe that ϕ is one-to-one and onto, is continuous, and has continuous inverse. Let

$$
K_{n}=\left\{p \in \Delta^{0}: p_{\ell} \geq \frac{1}{n}(1 \leq \ell \leq L)\right\}
$$

Then $\phi^{-1}\left(K_{n}\right)$ is the continuous image of a compact set, hence a compact subset of \mathbf{R}_{++}^{L-1}, so the set of equilibrium prices cannnot be contained in $\phi^{-1}\left(K_{n}\right)$. Thus, we may find a sequence \hat{p}_{n}^{*} of equilibrium prices such that $\phi\left(\hat{p}_{n}^{*}\right) \notin K_{n}$, hence

$$
\phi\left(\hat{p}_{n}^{*}\right) \rightarrow p \in \Delta \backslash \Delta^{0}
$$

By the Boundary Condition,

$$
\left|z\left(\phi\left(\hat{p}_{n}^{*}\right)\right)\right| \rightarrow \infty
$$

but

$$
\begin{aligned}
z\left(\phi\left(\hat{p}_{n}^{*}\right)\right) & =z\left(\hat{p}_{n}^{*}, 1\right) \text { (homogeneity of degree zero) } \\
& =0\left(\text { since } \hat{z}\left(\hat{p}_{n}^{*}\right)=0\right)
\end{aligned}
$$

a contradiction which proves the claim.

Since \hat{z} is continuous,

$$
\begin{aligned}
E & =\left\{\hat{p} \in \mathbf{R}_{++}^{L-1}: \hat{z}(\hat{p})=0\right\} \\
& =\hat{z}^{-1}(\{0\}) \\
& =\mathbf{R}_{++}^{L-1} \backslash \hat{z}^{-1}\left(\mathbf{R}^{L-1} \backslash\{0\}\right)
\end{aligned}
$$

is closed; since E is a closed subset of the compact set K, E is compact. For each $\hat{p} \in E$, we may find $\delta_{\hat{p}}>0$ such that

$$
E \cap B\left(\hat{p}, \delta_{\hat{p}}\right)=\{\hat{p}\}
$$

The collection

$$
\left\{B\left(\hat{p}, \delta_{\hat{p}}\right): \hat{p} \in E\right\}
$$

is an open cover of E, hence has a finite subcover. Since each element of this finite subcover contains exactly one element of E, E is finite.

The Index Theorem

- Throughout, we will denote a price in $\Delta=\left\{p \in \mathbf{R}_{+}^{L}: \sum_{\ell=1}^{L} p_{\ell}=1\right\}$ by p, and the associated price in \mathbf{R}_{++}^{L-1} (with the assumption that the price of good L has been normalized to 1) by \hat{p}.
- Definition: If p^{*} is a regular equilibrium price, define

$$
\operatorname{index}\left(p^{*}\right)=\left.(-1)^{L-1} \operatorname{sign} \operatorname{det} D \hat{z}\right|_{\hat{p}^{*}}
$$

- For $L=2$,

$$
\begin{aligned}
\operatorname{index}\left(p^{*}\right) & =\left.(-1)^{1} \operatorname{sign} \operatorname{det} D \hat{z}\right|_{\hat{p}^{*}} \\
& =-\operatorname{sign} \hat{z}^{\prime}\left(\hat{p}^{*}\right)
\end{aligned}
$$

1. index $\left(p^{*}\right)=+1$ means that $\hat{z}^{\prime}\left(\hat{p}^{*}\right)<0$; that means demand is downward sloping, so we are in the "normal" case in which an increase in \hat{z}, the excess demand for good 1 , results in an increase in the equilibrium price of good 1 .
2. index $\left(p^{*}\right)=-1$ means that $\hat{z}^{\prime}\left(\hat{p}^{*}\right)>0$; that means demand is upward sloping, so we are in the "abnormal" case in which an increase in \hat{z}, the excess demand for good 1 , results in an decrease in the equilibrium price of good 1 .

- For $L=3$,

$$
\begin{aligned}
\operatorname{index}\left(p^{*}\right) & =\left.(-1)^{2} \operatorname{sign} \operatorname{det} D \hat{z}\right|_{\hat{p}^{*}} \\
& =\left.\operatorname{sign} \operatorname{det} D \hat{z}\right|_{\hat{p}^{*}}
\end{aligned}
$$

The sign of the determinant is +1 if orientation is preserved, -1 if orientation is reversed:

$$
\binom{0}{1} \text { is obtained from }\binom{1}{0}
$$

by a counterclockwise rotation.

$$
\left.D \hat{z}\right|_{\hat{p}^{*}}\binom{0}{1} \text { is obtained from }\left.D \hat{z}\right|_{\hat{p}^{*}}\binom{1}{0}
$$

by a rotation; counterclockwise (orientation preserved) if

$$
\left.\operatorname{det} D \hat{z}\right|_{\hat{p}^{*}}>0, \text { index }\left(\hat{p}^{*}\right)=+1
$$

and clockwise (orientation reversed) if

$$
\left.\operatorname{det} D \hat{z}\right|_{\hat{p}^{*}}<0, \text { index }\left(\hat{p}^{*}\right)=-1
$$

- For $L=4$,

$$
\begin{aligned}
\operatorname{index}\left(p^{*}\right) & =\left.(-1)^{3} \operatorname{sign} \operatorname{det} D \hat{z}\right|_{\hat{p}^{*}} \\
& =-\left.\operatorname{sign} \operatorname{det} D \hat{z}\right|_{\hat{p}^{*}}
\end{aligned}
$$

The sign of the determinant is +1 if orientation is preserved, -1 if orientation is reversed:

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

is a right-handed system.

$$
\left.\operatorname{det} D \hat{z}\right|_{\hat{p}^{*}}\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right),\left.\operatorname{det} D \hat{z}\right|_{\hat{p}^{*}}\left(\begin{array}{c}
0 \\
1 \\
0
\end{array}\right),\left.\operatorname{det} D \hat{z}\right|_{\hat{p}^{*}}\left(\begin{array}{c}
0 \\
0 \\
1
\end{array}\right)
$$

is right-handed (orientation preserved) if

$$
\left.\operatorname{det} D \hat{z}\right|_{\hat{p}^{*}}>0, \operatorname{index}\left(\hat{p}^{*}\right)=-1
$$

$\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
R st $^{\text {st }}$ Ringer Right-handed
$\longrightarrow\binom{\prime}{q}$
R. Thumb
$\left(\begin{array}{l}0 \\ i\end{array}\right.$)r. Index Finger

and left-handed (orientation reversed) if

$$
\left.\operatorname{det} D \hat{z}\right|_{\hat{p}^{*}}<0, \text { index }\left(\hat{p}^{*}\right)=+1
$$

- Connection to Tatonnement Stability: Consider the Tatonnement Price Dynamics

$$
\begin{equation*}
\frac{d \hat{p}}{d t}=\hat{z}(\hat{p}) \tag{1}
\end{equation*}
$$

- This is a nonlinear differential equation, but we can approximate its behavior near an equilibrium price \hat{p}^{*} by considering the linear differential equation

$$
\begin{equation*}
\frac{d \hat{p}}{d t}=\left.D \hat{z}\right|_{\hat{p}^{*}}\left(\hat{p}-\hat{p}^{*}\right) \tag{2}
\end{equation*}
$$

- Let $\lambda_{1}, \ldots, \lambda_{L-1}$ be the eigenvalues of $\left.D \hat{z}\right|_{\hat{p}^{*}}$.
- Fact:

$$
\left.\operatorname{det} D \hat{z}\right|_{\hat{p}^{*}}=\prod_{\ell=1}^{L-1} \lambda_{\ell}
$$

This is obvious if the matrix is diagonalizable, but is true in general.

* Some of the eigenvalues are real; the others come in conjugate pairs.
* If $a+b i$ and $a-b i$ are a conjugate pair of eigenvalues

$$
(a+b i)(a-b i)=a^{2}+b^{2}>0
$$

* Thus,

$$
\left.\operatorname{sign} \operatorname{det} D \hat{z}\right|_{\hat{p}^{*}}=\prod_{\lambda_{\ell} \in \mathbf{R}} \operatorname{sign}\left(\lambda_{\ell}\right)
$$

is the product of the signs of the real eigenvalues.

* Each complex eigenvalue represents a rotation, which does not change orientation.
* Each real, negative eigenvalue represents a change of orientation. Orientation is unchanged if there are an even number of real, negative eigenvalues.
- Equation (1) is locally asymptotically stable near \hat{p}^{*} if all solutions to Equation (2) converge to \hat{p}^{*}, which is true if and only if

$$
\Re\left(\lambda_{1}\right)<0, \ldots, \Re\left(\lambda_{L-1}\right)<0
$$

If $\Re\left(\lambda_{\ell}\right)>0$ for any ℓ, then Equation (1) is not locally asymptotically stable.
Suppose $L-1$ is odd. Since there are an even number of complex eigenvalues, there are an odd number of real eigenvalues, so if all of them are negative, the determinant is negative and

$$
\text { index }\left(\hat{p}^{*}\right)=\left.(-1)^{L-1} \operatorname{sign} \operatorname{det} D \hat{z}\right|_{\hat{p}^{*}}=+1
$$

On the other hand, suppose $L-1$ is even. Since there are an even number of complex eigenvalues, there are an even number of real eigenvalues, so if all of them are negative, the determinant is positive and

$$
\text { index }\left(\hat{p}^{*}\right)=\left.(-1)^{L-1} \operatorname{sign} \operatorname{det} D \hat{z}\right|_{\hat{p}^{*}}=+1
$$

Thus, we have

$$
\text { Tatonnement Stability near } \hat{p}^{*} \Rightarrow \text { index }\left(\hat{p}^{*}\right)=+1
$$

but the converse is false. Thus, the Index Theorem lets us quickly determine that some equilibria are unstable, and allow us to concentrate a search for stable equilibria on those with index +1 , which might be stable.

Theorem 3 (Index Theorem) For any regular economy,

$$
\sum_{\hat{p}^{*} \in \mathbf{R}_{++}^{L-1}, \hat{z}\left(\hat{p}^{*}\right)=0} \operatorname{index}\left(\hat{p}^{*}\right)=+1
$$

Corollary 4 For any regular economy, there are an odd number of equilibria. Since 0 is even, every regular economy has an equilibrium.

Intuition behind Index Theorem: index $\left(\hat{p}^{*}\right)$ indicates the direction in which \hat{z} passes through zero near \hat{p}^{*}. The Boundary Condition implies that \hat{z} starts on one side of zero and ends up on the other side of zero, so every equilibrium price with index -1 must be paired with an equilibrium price with index +1 , and exactly one equilibrium price with index +1 must be left unpaired.

Genericity: Almost All Economies are Regular

Review notion of Lebesgue measure zero from 204: This is a natural formulation of the notion that A is a small set:
"If you choose $x \in \mathbf{R}^{n}$ at random, the probability that $x \in A$ is zero."

Regular and Critical Points and Values:
Suppose $X \subseteq \mathbf{R}^{n}$ is open. Suppose $f: X \rightarrow \mathbf{R}^{m}$ is differentiable at $x \in X$. Then $d f_{x} \in L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$, so

$$
\operatorname{rank}\left(d f_{x}\right) \leq \min \{m, n\}
$$

- x is a regular point of f if $\operatorname{rank}\left(d f_{x}\right)=\min \{m, n\}$.
- x is a critical point of f if $\operatorname{rank}\left(d f_{x}\right)<\min \{m, n\}$.
- y is a critical value of f if there exists $x \in X, f(x)=y, x$ is a critical point of y.
- y is a regular value of f if y is not a critical value of f (notice this has the counterintuitive implication that if $y \notin f(X)$, then y is automatically a regular value of $f)$.

A function may have many critical points; for example, if a function is constant on an interval, then every element of the interval is a critical point. But it can't have many critical values.

Theorem 5 (2.4, Sard's Theorem) Let $X \subseteq \mathbf{R}^{n}$ be open, $f: X \rightarrow \mathbf{R}^{m}, f$ is C^{r} with $r \geq 1+\max \{0, n-$ $m\}$. Then the set of all critical values of f has Lebesgue measure zero.

Recall that our definition of critical point differed from de la Fuente's in the case $m>n$. If $m>n$, then every $x \in X$ is critical using de la Fuente's definition, because

$$
\operatorname{rank} D f(x) \leq n<m
$$

Consequently, every $y \in f(X)$ is a critical value, using de la Fuente's definition. This does not contradict Sard's Theorem, since one can show that $f(X)$ is a set of Lebesgue measure zero when $m>n$ and $f \in C^{1}$. The Transversality Theorem is a particularly convenient formulation of Sard's Theorem for our purposes:

Theorem 6 (2.5', Transversality Theorem) Let

$$
\begin{aligned}
X \subseteq \mathbf{R}^{n} \text { and } \Omega \subseteq & \mathbf{R}^{p} \text { be open } \\
F: X \times \Omega \rightarrow & \mathbf{R}^{m} \in C^{r} \\
& \text { with } r \geq 1+\max \{0, n-m\}
\end{aligned}
$$

Suppose that

$$
F(x, \omega)=0 \Rightarrow D F(x, \omega) \text { has rank } m .
$$

Then there is a set $\Omega_{0} \subseteq \Omega$ such that $\Omega \backslash \Omega_{0}$ has Lebesgue measure zero such that

$$
\omega \in \Omega_{0}, F(x, \omega)=0 \Rightarrow D_{x} F(x, \omega) \text { has rank } m
$$

In particular, if $m=n$, and $\omega_{0} \in \Omega_{0}$,

- there is a local implicit function

$$
x^{*}(\omega)
$$

characterized by

$$
F\left(x^{*}(\omega), \omega\right)=0
$$

where x^{*} is a C^{r} function of ω

- the equilibrium correspondence

$$
\omega \rightarrow\{x: F(x, \omega)=0\}
$$

is lower hemicontinuous at ω_{0}.

Remark: If $n<m, \operatorname{rank} D_{x} F(x, \omega) \leq \min \{m, n\}=n<m$. Therefore,

$$
(F(x, \omega)=0 \Rightarrow D F(x, \omega) \text { has rank } \mathrm{m})
$$

\Rightarrow for all ω except for a set of Lebesgue measure zero
$F(x, \omega)=0$ has no solution

