Economics 201b

Spring 2010
Problem Set 5
Due Thursday April 22
You will need to know the following trigonometric identities:

$$
\begin{gathered}
\cos (\alpha-\beta)=\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta) \\
\cos ^{2}(\theta)+\sin ^{2}(\theta)=1 \\
\cos (\theta)=\sin \left(\theta+\frac{\pi}{2}\right) \\
\cos (\theta+\pi)=-\cos (\theta) \quad \sin (\theta+\pi)=-\sin (\theta) \\
\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1
\end{gathered}
$$

1. Give a description of an exchange economy that satisfies all the conditions of the one in Theorem 1 Lecture 6 except the condition $\bar{\omega} \gg 0$ (which is implicitly assumed in the Theorem), such that the Second Welfare Theorem now no longer holds - i.e. there is now a Pareto Optimal allocation that can't be supported as a Walrasian Equilibrium with Transfers.
2. Assume the function $F: \mathbb{R}_{++}^{L-1} \times \mathbb{R}_{+}^{L I} \longrightarrow \mathbb{R}^{L-1}$ from Definition 1 Lecture 10 is continuous. Prove Proposition 2. (Recall, $f: U \rightarrow V$ is continuous if for every closed set $D \subset V, f^{-1}(D)$ is closed.)
3. Given a price $p=\left(p_{1}, p_{2}\right) \in \Delta^{o}$, we can define $\theta(p)$ (measured in radians) to be the angle between p and the horizontal axis. Suppose we have a function $z: \Delta^{o} \rightarrow \mathbb{R}^{2}$

$$
z(p)=\left(f(\theta(p)) \cos (6 \theta(p)) \cos \left(\theta(p)+\frac{\pi}{2}\right), f(\theta(p)) \cos (6 \theta(p)) \sin \left(\theta(p)+\frac{\pi}{2}\right)\right)
$$

where f is a positive differentiable function defined on $\left(0, \frac{\pi}{2}\right)$ such that

$$
\lim _{\theta \downarrow 0} f(\theta)=\lim _{\theta \uparrow \frac{\pi}{2}} f(\theta)=\infty
$$

and

$$
f(\theta)= \begin{cases}\leq M \frac{1}{\theta} & \theta<\epsilon \tag{1}\\ 1 & \theta \in\left[\epsilon, \frac{\pi}{2}-\epsilon\right] \\ \leq M_{\frac{\pi}{2}-\theta} & \theta>\frac{\pi}{2}-\epsilon\end{cases}
$$

for some constant $M>0$.
(a) Draw a picture of $z(p)$.
(b) Express p_{1} and p_{2} as functions of $\theta(p)$.
(c) Prove $z(p) \cdot p=0$.
(d) Prove $z(p)$ satisfies the conditions of D-G-K-N Lemma. (Hint: $z(p)$ can be rewritten as $Z(\theta(p))$. To prove that $z(p)$ is bounded below on Δ^{o}, it suffices to show $Z(\theta)$ is bounded below on $\left(0, \frac{\pi}{2}\right)$ (notice I wrote $Z(\theta)$ not $Z(\theta(p))$). First write down $Z(\theta)$. Then to prove $Z(\theta)$ is bounded below, break $\left(0, \frac{\pi}{2}\right)$ into three pieces: the compact interval $\left[\epsilon, \frac{\pi}{2}-\epsilon\right]$ and the two pieces $(0, \epsilon)$ and $\left(\frac{\pi}{2}-\epsilon, \frac{\pi}{2}\right)$. Then consider each piece separately. To show $Z(\theta)$ is bounded on $(0, \epsilon)$, it suffices to show $\lim _{\theta \rightarrow 0} Z(\theta)$ is bounded below. A similar method may be applied to the interval $\left(\frac{\pi}{2}-\epsilon, \frac{\pi}{2}\right)$.)
(e) Suppose $z(p)$ was the excess demand function of some economy. What are the equilibrium prices $p_{i}^{*}=\left(p_{1 i}^{*}, p_{2 i}^{*}\right) \in \Delta^{o}, i=1,2, \ldots N$ (where N is the number of equilibrium prices you find)? Then re-express each such price p_{i}^{*} in the normalized form ($\hat{p}_{i}^{*}, 1$). (Hint: Equilibrium prices correspond to the solutions of $z(p)=0$. Once again, it is easier to first look for the solutions of $Z(\theta)=0$. Then for each such solution θ_{i}^{*}, express the corresponding price p_{i}^{*}.)
(f) Recall the function $\phi(\hat{p}) \rightarrow \Delta^{o}$. Explain what the sign ($-1,1$, or 0) of

$$
\frac{d}{d \hat{p}} \theta(\phi(\hat{p}))
$$

is.
(g) Write out $\hat{z}(\hat{p})$ and calculate

$$
\operatorname{index}\left(\hat{p}_{i}^{*}\right)=-\left.\operatorname{sgn} \frac{d}{d \hat{p}} \hat{z}(\hat{p})\right|_{\hat{p}=\hat{p}_{i}^{*}} \quad \text { for all } i
$$

Is the economy regular? Notice that the Index Theorem is indeed true.
(h) Suppose we change $f(\theta)$ slightly so that f is still smooth but now $f>0$ except at a single point $x \in\left(0, \frac{\pi}{2}\right)$ where $f(x)=0$ - rename this altered function $f_{x}(\cdot)$. Consider the new excess demand function $z_{x}(p)$ where the old f is replaced with the new f_{x} (convince yourself $z_{x}(p)$ still satisfies the conditions of D-G-K-N). The corresponding economy is no longer regular. The summation in the Index Theorem can now take the values 0,1 , and 2 depending on the value x. Which values of x correspond to which values of the summation?

