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1. Suppose there are two goods and ω̄1 > 0 and ω̄2 = 0. Now suppose all of the agents’ marginal
utilites from consuming good 2 is infinite when they are consuming 0 amount of good 2 (e.g.
U(x1i, x2i) =

√
x1i +

√
x2i). Now consider any possible equilibrium price p. If p · ω̄ = 0, then

p1 = 0, in which case, by strong monotonicity, the demand for good 1 is empty (everybody
would want arbitrarily large amounts of the good). Otherwise p · ω̄ > 0 and regardless of the
income transfer, somebody would have positive wealth, say agent 1. Then because of agent
1’s marginal utility for good 2, she would always want to allocate some nonzero amount of her
wealth in purchasing good 2. Thus there cannot be any equilibrium with transfers.

2. Define K = F−1({0}). Since {0} is closed, by the continuity of F we have K is closed. To show
that E has a closed graph, we need to show for a sequence of endowments {ωn}n=1,2,... and a
sequence of normalized prices {p̂n}n=1,2,... satisfying:

p̂n ∈ E(ωn) n = 1, 2, . . . (1)

ωn → ω ∈ RLI
+ and p̂n → p̂ ∈ RL−1

++ (2)

that p̂ = E(ω).

By assumption (1), we have F (p̂n, ωn) = 0, so by definition of K

(p̂n, ωn) ∈ K

By assumption (2), we have

(p̂n, ωn)→ (p̂, ω) ∈ RL−1
++ × RLI

+

Since K is closed, we have
(p̂, ω) ∈ K ⇒ p̂ ∈ E(ω)

3a. See figure below.

b. Since p1 and p2 are the horizontal and vertical components of p we have

p1 = |p| cos(θ(p)) and p2 = |p| sin(θ(p))

and since p1 + p2 = 1, we have

p1 =
cos(θ(p))

cos(θ(p)) + sin(θ(p))
and p2 =

sin(θ(p))

cos(θ(p)) + sin(θ(p))
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Figure 1: z(p) and θ(p)

c.
z(p) · p =(

f(θ(p)) cos(6θ(p)) cos(θ(p) +
π

2
), f(θ(p)) cos(6θ(p)) sin(θ(p) +

π

2
)

)
·(

cos(θ(p))

cos(θ(p)) + sin(θ(p))
,

sin(θ(p))

cos(θ(p)) + sin(θ(p))

)
=

G(θ(p))

[(
cos(θ(p) +

π

2
), sin(θ(p) +

π

2
)

)
·
(

cos(θ(p)), sin(θ(p))

)]
where

G(θ(p)) =
f(θ(p)) cos(6θ(p))

cos(θ(p)) + sin(θ(p))

So it suffices to show (cos(θ(p) + π
2
), sin(θ(p) + π

2
)) · (cos(θ(p)), sin(θ(p))) = 0:(

cos(θ(p) +
π

2
), sin(θ(p) +

π

2
)

)
·
(

cos(θ(p)), sin(θ(p))

)
=

cos(θ(p) +
π

2
) cos(θ(p)) + sin(θ(p) +

π

2
) sin(θ(p)) =

cos(θ(p) +
π

2
− θ(p)) = cos(

π

2
) = 0
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d. Condition 1 is obvious, and condition 2 has been verified. To see that condition 3 is true we
break the analysis into 3 cases. First

Z(θ) =

(
f(θ) cos(6θ) cos(θ +

π

2
), f(θ) cos(6θ) sin(θ +

π

2
)

)
Case 1: [ε, π

2
− ε]

Since [ε, π
2
− ε] is compact, and Z(θ) is continuous, Z(θ) is bounded on this interval.

Case 2: (0, ε)
First consider the second coordinate. Since,

lim
θ→0

cos(6θ) = lim
θ→0

sin(θ +
π

2
) = 1 > 0 and lim

θ→0
f(θ) =∞

we have
lim
θ→0

f(θ) cos(6θ) sin(θ +
π

2
) =∞ > 0

Now consider the first coordinate. First we have

lim
θ→0

f(θ) cos(6θ) cos(θ +
π

2
) = lim

θ→0
f(θ) sin(θ + π) = − lim

θ→0
f(θ) sin(θ) = − lim

θ→0

sin(θ)

θ

f(θ)
1
θ

=

− lim
θ→0

sin(θ)

θ
lim
θ→0

f(θ)
1
θ

≥ −M

Thus we have show Z(θ) is bounded below on this interval.

Case 3: (π
2
− ε, π

2
)

The method is similar to Case 2. The analysis of the first coordinate is like the analysis of the
second coordinate in Case 2. To show that the second coordinate is also bounded below:

lim
θ→π

2

f(θ) cos(6θ) sin(θ +
π

2
) = − lim

θ→π
2

f(θ) sin(θ +
π

2
) = lim

θ→π
2

f(θ) sin(θ − π

2
) =

lim
θ→π

2

sin(θ − π
2
)

θ − π
2

f(θ)
1

θ−π
2

= − lim
θ→π

2

sin(θ − π
2
)

θ − π
2

f(θ)
1

π
2
−θ
≥ −M

Thus Z(θ) is bounded below on this interval.

Putting everything together, we have Z(θ) is bounded below.

To show that condition 4 is satisfied, again it suffices to show that

lim
θ→0
|Z(θ)| = lim

θ→π
2

|Z(θ)| =∞

Take a look at the analysis of the second coordinate of Case 2 notice it implies

lim
θ→0
|Z(θ)| =∞
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Similarly, an analysis of the first coordinate of Case 3 would imply

lim
θ→π

2

|Z(θ)| =∞

Thus all the condition of the D-G-K-N Lemma are satisfied.

e. The solutions to Z(θ) = 0 are simply the solutions to cos(6θ) = 0 on (0, π
2
):

θ∗1 =
π

12
+

2π

6
θ∗2 =

π

12
+
π

6
θ∗3 =

π

12

So the equilibrium prices are

p∗1 =

(
cos( π

12
+ 2π

6
)

cos( π
12

+ 2π
6

) + sin( π
12

+ 2π
6

)
,

sin( π
12

+ 2π
6

)

cos( π
12

+ 2π
6

) + sin( π
12

+ 2π
6

)

)

p∗2 =

(
cos( π

12
+ π

6
)

cos( π
12

+ π
6
) + sin( π

12
+ π

6
)
,

sin( π
12

+ π
6
)

cos( π
12

+ π
6
) + sin( π

12
+ π

6
)

)
p∗3 =

(
cos( π

12
)

cos( π
12

) + sin( π
12

)
,

sin( π
12

)

cos( π
12

) + sin( π
12

)

)
The normalized versions of these prices are

(p̂∗1, 1) =
(

cot(
π

12
+

2π

6
), 1

)
(p̂∗2, 1) =

(
cot(

π

12
+
π

6
), 1

)
(p̂∗3, 1) =

(
cot(

π

12
), 1

)
f. As p̂ increases, φ(p̂) moves down the line ∆o, which means the angle θ is decreasing. So the

sign is -1.
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Figure 2: Downward sloping θ(φ(p̂))
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g.
ẑ(p̂) = z1(φ(p̂)) =

f(θ(φ(p̂))) cos(6θ(φ(p̂))) cos(θ(φ(p̂)) +
π

2
)
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Figure 3: The Normalized Excess Demand Function

By the chain rule

−sgn
d

dp̂
ẑ(p̂)

∣∣∣∣
p̂=p̂∗1

=

−sgn

[
d

dθ
f(θ) cos(6θ) cos(θ +

π

2
)

∣∣∣∣
θ= π

12
+ 2π

6

d

dp̂
θ(φ(p̂))

∣∣∣∣
p̂=p̂∗1

]
=

−sgn
d

dθ
f(θ) cos(6θ) cos(θ +

π

2
)

∣∣∣∣
θ= π

12
+ 2π

6

sgn
d

dp̂
θ(φ(p̂))

∣∣∣∣
p̂=p̂∗1

=

sgn
d

dθ
f(θ) cos(6θ) cos(θ +

π

2
)

∣∣∣∣
θ= π

12
+ 2π

6

= sgn
[
− 6f(θ) sin(6θ) cos(θ +

π

2
)

∣∣∣∣
θ= π

12
+ 2π

6

]
= 1

Similarly,

−sgn
d

dp̂
ẑ(p̂)

∣∣∣∣
p̂=p̂∗2

=

5



sgn
[
− 6f(θ) sin(6θ) cos(θ +

π

2
)

∣∣∣∣
θ= π

12
+π

6

]
= −1

and

−sgn
d

dp̂
ẑ(p̂)

∣∣∣∣
p̂=p̂∗3

=

sgn
[
− 6f(θ) sin(6θ) cos(θ +

π

2
)

∣∣∣∣
θ= π

12

]
= 1

The economy is indeed regular since all of the derivatives are nonzero.

h. First note Z(x) = 0, so p̂∗(x) = cot(x) is a normalized equilibrium price. Because f ≥ 0 and f
is differentiable, we have f(x) = 0⇒ f ′(x) = 0. We can now show

d

dθ
f(θ) cos(6θ) cos(θ +

π

2
)

∣∣∣∣
θ=x

=

f ′(x) cos(6x) cos(x+
π

2
)− 6f(x) sin(6x) cos(x+

π

2
)− f(x) cos(6x) sin(x+

π

2
) = 0

⇒ d

dp̂
ẑ(p̂)

∣∣∣∣
p̂=p̂∗(x)

= 0

Thus the index of p̂∗(x) is 0 regardless of x.

If x 6= θ∗i for all i, then p̂∗(x) is an extra equilibrium price. However, since the index at
this price is 0, the Index equation is still equal to 1.

If x = θ∗i where i = 1 or 3, then there is no new equilibrium price. However, since the in-
dex of p̂∗i = p̂∗(x) is now 0 instead of 1, so the Index equation equals 0.

If x = θ∗2, then there is no new equilibrium price. However, since the index of p̂∗2 = p̂∗(x)
is now 0 instead of -1, so the Index equation equals 2.
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Figure 4: Graphical Representation of the Different Index Equation Values: 1, 0, and 2
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