Economics 201b
Spring 2010

Solutions to Problem Set 7

John Zhu
1a. Suppose there is a portfolio z such that $R z \geq 0$ and $R z \neq 0$. Then $q \cdot z=\mu \cdot R z>0$. If, however, we only have $\mu \geq 0$, then it is possible that the nonzero coordinates of μ and the nonzero coordinates of $R z$ don't overlap, in which case $q \cdot z=\mu \cdot R z=0$.
b. We know that every arbitrage free price q can be represented as $q^{T}=\mu \cdot R$ for some vector of state multipliers $\mu \geq 0$ (in the previous part, we showed the converse is not true). So suppose there are two arbitrage free prices q_{0}, q_{1} with corresponding vectors of state multipliers μ_{0}, μ_{1}, and a portfolio z such that $R z \geq 0$ and $R z \neq 0$. Then for any $\alpha \in[0,1]$, the price $q_{\alpha}=(1-\alpha) q_{0}+\alpha q_{1}$ can be represented as

$$
q_{\alpha}^{T}=\left((1-\alpha) \mu_{0}+\alpha \mu_{1}\right) \cdot R
$$

Then $q_{\alpha} \cdot z=\left((1-\alpha) \mu_{0}+\alpha \mu_{1}\right) \cdot R z=(1-\alpha) \mu_{0} \cdot R z+\alpha \mu_{1} \cdot R z>0$.
c. Define $q=\left(q_{1}, q_{2}, q_{3}\right)^{T}=\left(4,5, q_{3}\right)$ to be an arbitrage free price. Let $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)^{T}$ be the corresponding vector of state multipliers. Then

$$
\begin{gathered}
q^{T}=\mu \cdot R \quad \Rightarrow \quad\left[\begin{array}{lll}
4 & 5 & q_{3}
\end{array}\right]=\left[\begin{array}{lll}
\mu_{1} & \mu_{2} & \mu_{3}
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1 \\
3 & 4 & 2
\end{array}\right] \quad \Rightarrow \\
4=\mu_{1}+\mu_{2}+3 \mu_{3} \quad \text { and } \quad 5=2 \mu_{1}+\mu_{2}+4 \mu_{3} \quad \Rightarrow \\
\mu_{2}=1+2 \mu_{1} \quad \text { and } \mu_{3}=1-\mu_{1}
\end{gathered}
$$

Thus if we assume the above two equations then

$$
\mu \geq 0 \Longleftrightarrow \mu_{1} \in[0,1]
$$

Now if $\mu_{1} \in(0,1)$ then $\mu \gg 0$ and the price is arbitrage free by part (a). Thus it suffices to consider the two prices corresponding to $\mu_{1} \in\{0,1\}$.

When $\mu_{1}=0$ we have

$$
q^{T}=\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1 \\
3 & 4 & 2
\end{array}\right]=\left[\begin{array}{lll}
4 & 5 & 3
\end{array}\right]
$$

Let $z^{T}=\left(z_{1}, z_{2}, z_{3}\right)$ be a portfolio such that $q \cdot z=0$. Then

$$
\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{c}
z_{1} \\
z_{2} \\
\frac{-4 z_{1}-5 z_{2}}{3}
\end{array}\right] \quad \Rightarrow \quad R z=\left[\begin{array}{c}
-3\left(z_{1}+z_{2}\right) \\
\frac{z_{1}-2 z_{2}}{2} \\
\frac{z_{1}+2 z_{2}}{3}
\end{array}\right]
$$

Notice that the portfolio $z^{T}=(-2,1,1)$ is way to arbitrage:

$$
q \cdot z=\left[\begin{array}{lll}
4 & 5 & 3
\end{array}\right]\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]=0 \quad \text { and } \quad R z=\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & 1 & 1 \\
3 & 4 & 2
\end{array}\right]\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]
$$

Now consider when $\mu_{1}=1$:

$$
q^{T}=\left[\begin{array}{lll}
1 & 3 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1 \\
3 & 4 & 2
\end{array}\right]=\left[\begin{array}{lll}
4 & 5 & 6
\end{array}\right]
$$

Let $z^{T}=\left(z_{1}, z_{2}, z_{3}\right)$ be a portfolio such that $q \cdot z=0$. Then

$$
\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{c}
z_{1} \\
z_{2} \\
\frac{-4 z_{1}-5 z_{2}}{6}
\end{array}\right] \quad \Rightarrow \quad R z=\left[\begin{array}{c}
-z_{1}-\frac{z_{2}}{2} \\
\frac{2 z_{1}+z_{2}}{6} \\
\frac{5 z_{1}+7 z_{2}}{3}
\end{array}\right]
$$

Notice that the portfolio $z^{T}=(-1,2,-1)$ is way to arbitrage:

$$
q \cdot z=\left[\begin{array}{lll}
4 & 5 & 6
\end{array}\right]\left[\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right]=0 \quad \text { and } \quad R z=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1 \\
3 & 4 & 2
\end{array}\right]\left[\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right]
$$

Thus for q to be arbitrage free, we must have $q_{3} \in(3,6)$.
2a. We know from problem set 1 that in the second time period, with agent utilities of the form $U(x, y)=x y$ and a social endowment of $(a, b) \gg 0$, the set of equilibrium allocations comprise the diagonal line from O_{1} to O_{2} in the Edgeworth box, and the equilibrium price must be $\left(\frac{b}{a+b}, \frac{a}{a+b}\right)$. Thus the unique (in $\Delta^{o} \times \Delta^{o}$) Radner equilibrium spot price is $p^{*}=\left(p_{1}^{*}, p_{2}^{*}\right)=$ $\left(\left(p_{11}^{*}, p_{21}^{*}\right),\left(p_{21}^{*}, p_{22}^{*}\right)\right)=\left(\left(\frac{2}{3}, \frac{1}{3}\right),\left(\frac{1}{2}, \frac{1}{2}\right)\right)$.
b. The return vector for S_{1} is $\left(\frac{2}{3}, \frac{1}{2}\right)^{T}$ and the return vector for S_{2} is $\left(4, \frac{h}{2}\right)^{T}$. So the return matrix is

$$
\left[\begin{array}{ll}
\frac{2}{3} & 4 \\
\frac{1}{2} & \frac{h}{2}
\end{array}\right]
$$

It is clear that the matrix has full rank except when $h=6$. Thus when $h=6, p^{*}$ is a Hart point. If $h=0$, then we have

$$
R=\left[R_{1} \mid R_{2}\right]=\left[\begin{array}{cc}
\frac{2}{3} & 4 \\
\frac{1}{2} & 0
\end{array}\right]
$$

c. Clearly $\left(q_{1}^{*}, q_{2}^{*}\right) \gg 0$. So fix a price $(q, r q)$ for the two securities where $q, r>0$. Let $w_{s i}$ be the worth (measured in the equilibrium price p_{s}^{*}) of agent i 's endowment in state s. Agent i 's maximization problem can be written as follows

$$
\max _{z_{i}=\left(z_{1 i}, z_{2 i}\right)^{T}, x_{i}=\left(x_{1 i}, x_{2 i}\right)=\left(\left(x_{11 i}, x_{21 i}\right),\left(x_{12 i}, x_{22 i}\right)\right)} U_{i}\left(x_{i}\right) \text { s.t. }\left[\begin{array}{c}
p_{1}^{*} \cdot x_{1 i} \\
p_{2}^{*} \cdot x_{2 i}
\end{array}\right] \leq\left[\begin{array}{c}
w_{1 i} \\
w_{2 i}
\end{array}\right]+R z_{i},\left[\begin{array}{c}
q \\
r q
\end{array}\right] \cdot z_{i} \leq 0
$$

Now we can simplify some of the conditions to make this a tractable maximization problem. All of the budgetary conditions are binding. So

$$
z_{2 i}=-\frac{z_{1 i}}{r}
$$

Thus the wealth vector is

$$
\left[\begin{array}{c}
w_{1 i} \\
w_{2 i}
\end{array}\right]+R z_{i}=\left[\begin{array}{c}
w_{1 i}+z_{1 i}\left[\frac{2}{3}-\frac{4}{r}\right] \\
w_{2 i}+\frac{z_{1 i}}{2}
\end{array}\right] \equiv\left[\begin{array}{c}
a_{i} \\
b_{i}
\end{array}\right]
$$

Let us find the allocation $x_{1 i}$ as a function of a_{i}. From part (a) we know

$$
\frac{x_{21 i}}{x_{11 i}}=2
$$

and the wealth constrain is

$$
\frac{2}{3} x_{11 i}+\frac{1}{3} x_{21 i}=a_{i}
$$

So

$$
x_{1 i}=\left(x_{11 i}, x_{21 i}\right)=\left(\frac{3 a_{i}}{4}, \frac{3 a_{i}}{2}\right)
$$

Similarly,

$$
x_{2 i}=\left(x_{12 i}, x_{22 i}\right)=\left(b_{i}, b_{i}\right)
$$

Now since a_{i} and b_{i} are functions of $z_{1 i}$ we can express the maximization problem purely in terms of $z_{1 i}$:

$$
\max _{z_{1 i}} \frac{3}{4} \cdot \frac{3}{2}\left(w_{1 i}+z_{1 i}\left[\frac{2}{3}-\frac{4}{r}\right]\right)^{2}+\left(w_{2 i}+\frac{z_{1 i}}{2}\right)^{2}
$$

taking the derivative and setting equal to zero

$$
\begin{gathered}
\frac{9}{4}\left[\frac{2}{3}-\frac{4}{r}\right]\left(w_{1 i}+z_{1 i}\left[\frac{2}{3}-\frac{4}{r}\right]\right)+\left(w_{2 i}+\frac{z_{1 i}}{2}\right)=0 \Rightarrow \\
z_{1 i}=\frac{\left(\frac{9}{r}-\frac{3}{2}\right) w_{1 i}-w_{2 i}}{\left(\frac{3}{2}-\frac{9}{r}\right)\left(\frac{2}{3}-\frac{4}{r}\right)+\frac{1}{2}}
\end{gathered}
$$

Now in equilibrium it must be that

$$
\begin{gathered}
z_{11}=-z_{12} \Longleftrightarrow\left(\frac{9}{r}-\frac{3}{2}\right) w_{11}-w_{21}+\left(\frac{9}{r}-\frac{3}{2}\right) w_{12}-w_{22}=0 \quad \Rightarrow \\
\left(\frac{9}{r}-\frac{3}{2}\right)\left(w_{11}+w_{12}\right)=w_{21}+w_{22} \quad \Rightarrow \\
\left(\frac{9}{r}-\frac{3}{2}\right) \frac{4}{3}=3 \quad \Rightarrow \\
\frac{9}{r}=\frac{9}{4}+\frac{3}{2}=\frac{15}{4} \quad \Rightarrow \\
r=\frac{q_{2}^{*}}{q_{1}^{*}}=\frac{12}{5}
\end{gathered}
$$

d. The endowments imply

$$
w_{11}=\frac{1}{3} \quad w_{21}=1 \quad w_{12}=1 \quad w_{22}=2
$$

Plugging in $r=\frac{12}{5}$ we get

$$
\begin{gathered}
z_{11}^{*}=\frac{\left(\frac{15}{4}-\frac{3}{2}\right) \frac{1}{3}-1}{\left(\frac{3}{2}-\frac{15}{4}\right)\left(\frac{2}{3}-\frac{5}{3}\right)+\frac{1}{2}}=\frac{-\frac{1}{4}}{\frac{11}{4}}=-\frac{1}{11} \\
z_{21}^{*}=\frac{5}{132}
\end{gathered}
$$

So

$$
\left(z_{1}^{*}, z_{2}^{*}\right)=\left(\left(-\frac{1}{11}, \frac{5}{132}\right),\left(\frac{1}{11},-\frac{5}{132}\right)\right)
$$

We can also calculate a_{i} and b_{i} for each i :

$$
\begin{array}{ll}
a_{1}=\frac{1}{3}-\frac{1}{11}\left(\frac{2}{3}-\frac{5}{3}\right)=\frac{14}{33} & b_{1}=1-\frac{1}{22}=\frac{21}{22} \\
a_{2}=1+\frac{1}{11}\left(\frac{2}{3}-\frac{5}{3}\right)=\frac{10}{11} & b_{2}=2+\frac{1}{22}=\frac{45}{22}
\end{array}
$$

And finally, we can get the equilibrium allocations

$$
\begin{aligned}
& x_{1}^{*}=\left(\left(\frac{7}{22}, \frac{7}{11}\right),\left(\frac{21}{22}, \frac{21}{22}\right)\right) \\
& x_{2}^{*}=\left(\left(\frac{15}{22}, \frac{15}{11}\right),\left(\frac{45}{22}, \frac{45}{22}\right)\right)
\end{aligned}
$$

