University of California, Berkeley Economics 201B Spring 2009 Final Exam–May 21, 2009

Instructions: You have three hours to do this exam. The exam is out of a total of 300 points; allocate your time accordingly. Please write your solutions to Parts I, II and III in separate bluebooks.

Part I

- 1. (100 points) Define or state and *briefly* discuss the importance of each of the following within or for economic theory:
 - (a) Kakutani's Fixed Point Theorem
 - (b) First Welfare Theorem in the Arrow-Debreu Economy
 - (c) Second Welfare Theorem in an exchange economy
 - (d) Transversality Theorem

Part II

- 2. (75 points)Theorem 4 from Lecture 13 is a theorem asserting that core allocations in exchange economies satisfy a perturbation of the definition of Walrasian quasiequilibrium.
 - (a) State the theorem.
 - (b) Give the first two bullets in the proof of the theorem.

Part III

3. (125 points) Consider the function $z : \Delta^0 \times \mathbf{R} \to \mathbf{R}^2$ defined by

$$z((p_1, p_2), \alpha) = \left(\log p_1 + \frac{2}{9p_1} - p_1, \frac{(p_1)^2 - p_1 \log p_1 - \frac{2}{9}}{p_2}\right) + \left(\alpha, -\frac{p_1 \alpha}{p_2}\right)$$

Here, Δ^0 is the normalized price simplex $\{(p_1, p_2) \in \mathbf{R}^2_{++} : p_1 + p_2 = 1\}$, and $\log t$ denotes the natural logarithm of t, so that $\frac{d}{dt} \log t = \frac{1}{t}$. In answering the following questions, it may be useful to you to know that $\lim_{t\to 0, t>0} t \log t = 0$.

- (a) Show that, for every $\alpha \in \mathbf{R}$ and for any $\varepsilon > 0$, there exists an exchange economy with two agents whose excess demand function is $z((p_1, p_2), \alpha)$ whenever $p_1 \in [\varepsilon, 1 \varepsilon]$.
- (b) Verify that if $\alpha < \frac{7}{9}$, then $z(\cdot, \alpha)$ satisfies the conditions of the Debreu-Gale-Kuhn-Nikaido Lemma, and conclude that there exists p such that $z(p, \alpha) = 0$.
- (c) Define $\hat{z} : \mathbf{R}_{++} \times \left(-\infty, \frac{7}{9}\right) \to \mathbf{R}$ by $\hat{z}(\hat{p}, \alpha)$ is the first component of $z\left(\left(\frac{\hat{p}}{\hat{p}+1}, \frac{1}{\hat{p}+1}\right), \alpha\right)$. Let A denote the set of all $\alpha \in \left(-\infty, \frac{7}{9}\right)$ such that the economy with excess demand $z(\cdot, \alpha)$ is not regular. Using the Transversality Theorem, show that A is a set of Lebesgue measure zero.
- (d) Using the Index Theorem, show that if $\alpha < \frac{7}{9}$ and $\alpha \notin A$, then the economy with excess demand $z(\cdot, \alpha)$ has an odd number of equilibria.
- (e) Using the Implicit Function Theorem, prove directly from the definition that if $\alpha < \frac{7}{9}$ and $\alpha \notin A$, then the equilibrium correspondence $E(\alpha) = \{\hat{p} \in \mathbf{R}_{++} : \hat{z}(\hat{p}, \alpha) = 0\}$ is lower hemicontinuous at α .