Economics 201B

Nonconvex Preferences and Approximate Equilibria

1 The Shapley-Folkman Theorem

The Shapley-Folkman Theorem is an elementary result in linear algebra, but it is apparently unknown outside the mathematical economics literature. It is closely related to Caratheodory's Theorem, a linear algebra result which is well known to mathematicians. The Shapley-Folkman Theorem was first published in Starr [3], an important early paper on existence of approximate equilibria with nonconvex preferences.

Theorem 1.1 (Caratheodory) Suppose $x \in \operatorname{con} A$, where $A \subset \mathbf{R}^{L}$. Then there are points $a_{1}, \ldots, a_{L+1} \in A$ such that $x \in \operatorname{con}\left\{a_{1}, \ldots, a_{L+1}\right\}$.

Theorem 1.2 (Shapley-Folkman) Suppose $x \in \operatorname{con}\left(A_{1}+\cdots+A_{I}\right)$, where $A_{i} \subset \mathbf{R}^{L}$. Then we may write $x=a_{1}+\cdots+a_{I}$, where $a_{i} \in \operatorname{con} A_{i}$ for all i and $a_{i} \in A_{i}$ for all but L values of i.

We derive both Caratheodory's Theorem and the Shapley-Folkman Theorem from the following lemma:

Lemma 1.3 Suppose $x \in \operatorname{con}\left(A_{1}+\cdots+A_{I}\right)$ where $A_{i} \subset \mathbf{R}^{L}$. Then we may write

$$
\begin{equation*}
x=\sum_{i=1}^{I} \sum_{j=0}^{m_{i}} \lambda_{i j} a_{i j} \tag{1}
\end{equation*}
$$

with $\sum_{i=1}^{I} m_{i} \leq L ; a_{i j} \in A_{i}$ and $\lambda_{i j}>0$ for each $i, j ;$ and $\sum_{j=0}^{m_{i}} \lambda_{i j}=1$ for each i.

Proof:

1. Suppose $x \in \operatorname{con}\left(A_{1}+\cdots+A_{I}\right)$. Then we may write

$$
\begin{equation*}
x=\sum_{j=0}^{m} \lambda_{j} \sum_{i=1}^{I} a_{i j}=\sum_{i=1}^{I} \sum_{j=0}^{m} \lambda_{j} a_{i j} \tag{2}
\end{equation*}
$$

with $\lambda_{j}>0, \sum_{j=0}^{m} \lambda_{j}=1$. Letting $\lambda_{i j}=\lambda_{j}$ and $m_{i}=m$ for each i, we have an expression for x in the form of equation 1 .
2. Suppose we have any expression for x in the form of equation 1 with $\sum_{i=1}^{I} m_{i}>L$. Then the set

$$
\begin{equation*}
\left\{a_{i j}-a_{i 0}: 1 \leq i \leq I, 1 \leq j \leq m_{i}\right\} \tag{3}
\end{equation*}
$$

contains $\sum_{i=1}^{I} m_{i}>L$ vectors in \mathbf{R}^{L}, and hence is linearly dependent. Therefore, we can find $\beta_{i j}$ not all zero such that

$$
\begin{equation*}
\sum_{i=1}^{I} \sum_{j=1}^{m_{i}} \beta_{i j}\left(a_{i j}-a_{i 0}\right)=0 \tag{4}
\end{equation*}
$$

3. Given any $t \geq 0$, we have

$$
\begin{gather*}
x=\sum_{i=1}^{I} \sum_{j=0}^{m_{i}} \lambda_{i j} a_{i j}+t \sum_{i=1}^{I} \sum_{j=1}^{m_{i}} \beta_{i j}\left(a_{i j}-a_{i 0}\right) \\
=\sum_{i=1}^{I}\left[\sum_{j=1}^{m_{i}}\left(\lambda_{i j}+t \beta_{i j}\right) a_{i j}+\left(\lambda_{i 0}-t \sum_{j=1}^{m_{i}} \beta_{i j}\right) a_{i 0}\right] . \tag{5}
\end{gather*}
$$

Fix i. Observe that the sum of the coefficients of the terms $a_{i 0}, \ldots, a_{i m_{i}}$ in equation 5 is

$$
\begin{equation*}
\sum_{j=1}^{m_{i}}\left(\lambda_{i j}+t \beta_{i j}\right)+\lambda_{i 0}-t \sum_{j=1}^{m_{i}} \beta_{i j}=\sum_{j=0}^{m_{i}} \lambda_{i j}=1 \tag{6}
\end{equation*}
$$

so the expression in equation 5 is in the form of equation 1 provided that each of the coeffients is strictly positive. For $t=0$, all coefficients are strictly positive. $\beta_{i j} \neq 0$ for some i, j with $j \geq 1$; thus for t sufficiently large, the coefficient of $a_{i j}$ will be either negative or will exceed 1, in which case the coefficient of some other term will be negative. Thus,
there is some $t>0$ such that at least one of the $a_{i j}$ has a zero coefficient; let t be the smallest such value. By deleting any $a_{i j}$ whose coefficients are zero, and renumbering if necessary, equation 5 becomes

$$
\begin{equation*}
x=\sum_{i=1}^{I} \sum_{j=0}^{\hat{m}_{i}} \hat{\lambda}_{i j} a_{i j} \tag{7}
\end{equation*}
$$

with $\sum_{i=1}^{I} \hat{m}_{i}<\sum_{i=1}^{I} m_{i}$. Thus, we have an expression for x in the form of equation 1, but with a smaller value of $\sum_{i=1}^{I} m_{i}$. Repeat this process until we obtain an expression in the form of equation 1 with $\sum_{i=1}^{I} m_{i} \leq L$.

Proof of Caratheodory's Theorem: In Lemma 1.3, take $I=1$. Then we have $x=\sum_{j=1}^{m_{1}} \lambda_{1 j} a_{1 j}$ with $m_{1}-1 \leq L$; hence, we have $x=\sum_{j=1}^{m} \lambda_{j} a_{j}$ with $m \leq L+1$.

Proof of the Shapley-Folkman Theorem: Because $\sum_{i=1}^{I}\left(m_{i}-1\right) \leq L$, we have $m_{i}=1$ except for at most L values of i. Let $a_{i}=\sum_{j=1}^{m_{i}} \lambda_{i j} a_{i j} \in$ $\operatorname{con} A_{i}$. If $m_{i}=1, a_{i}=\sum_{j=1}^{1} \lambda_{i j} a_{i j}=a_{i 1} \in A_{i}$, so equation 1 gives an expression for x in the form required.

2 Existence of Approximate Walrasian Equilibrium

The material in this section is taken from Anderson, Khan and Rashid [1] and Geller [2]. The assumptions in those papers are stated in terms of strict preference relations, \succ, rather than weak preference relations, \succeq; we will follow the same formulation here.

Theorem 2.1 Suppose we are given a pure exchange economy, where for each $i=1, \ldots, I, \succ_{i}$ satisfies

1. continuity: $\left\{(x, y) \in \mathbf{R}_{+}^{L} \times \mathbf{R}_{+}^{L}: x \succ_{i} y\right\}$ is relatively open in $\mathbf{R}_{+}^{L} \times \mathbf{R}_{+}^{L}$;
2. for each individual i, the consumption set is \mathbf{R}_{+}^{L}, i.e. each good is perfectly divisible, and each agent is capable of surviving on zero consumption;

$$
\text { 3. acyclicity: there is no collection } x_{1}, x_{2}, \ldots, x_{m} \text { such that } x_{1} \succ_{i} x_{2} \succ_{i}
$$ $\cdots \succ_{i} x_{m} \succ_{i} x_{1}$;

Then there exists $p^{*} \gg 0$ and $z_{i}^{*} \in D_{i}(p)$ such that

$$
\begin{equation*}
\frac{1}{I} \sum_{\ell=1}^{L} \max \left\{\left(\sum_{i=1}^{I} z_{i}^{*}-\sum_{i=1}^{I} \omega_{i}\right)_{\ell}, 0\right\} \leq 2 \sqrt{\frac{L}{I}} \max \left\{\left\|\omega_{i}\right\|_{1}: i=1, \ldots, I\right\} \tag{8}
\end{equation*}
$$

where $\|x\|_{1}=\sum_{\ell=1}^{L}\left|x_{\ell}\right|$.
The proof has much in common with the proof of the Debreu-Gale-KuhnNikaido Lemma. One works on a compact subset of the interior of the price simplex. ${ }^{1}$ One considers the same correspondence as in the Debreu-Gale-Kuhn-Nikaido Lemma, except that one uses the convex hull of the demand sets instead of the demand function. One finds a fixed point $\left(p^{*}, x^{*}\right)$. Use the definition of the correspondence to show that $\left(\sum_{i=1}^{I} x_{i}^{*}\right)_{\ell} \leq \sqrt{\frac{L}{I}} \max \left\{\left\|\omega_{i}\right\|_{1}\right.$: $i=1, \ldots, I\}$ for $\ell=1, \ldots, L .{ }^{2}$ From the definition of the correspondence, $x^{*}=\sum_{i=1}^{I} x_{i}^{*}$, where $x_{i}^{*} \in$ con $D_{i}\left(p^{*}\right)$ for all $i=1, \ldots, I$. Use the ShapleyFolkman Theorem to find y_{i}^{*} with $\sum_{i=1}^{I} y_{i}^{*}=\sum_{i=1}^{I} x_{i}^{*}$ and $y_{i}^{*} \in D_{i}\left(p^{*}\right)$ for all but L of the individuals. Let $z_{i}^{*}=y_{i}^{*}$ for all but the L exceptional individuals, and let z_{i}^{*} be an arbitrary element of $D_{i}\left(p^{*}\right)$ for the remaining individuals; this establishes a bound on the difference between $\sum_{i=1}^{I} z_{i}^{*}$ and $\sum_{i=1}^{I} x_{i}^{*}$, which proves the desired result.

The result can also be applied in the case of indivisibilities (i.e. nonconvexities in the consumption set). In that case, one obtains a bound on the excess quasidemand rather than demand. Even with nonconvex preferences, demand has closed graph, so Kakutani's Theorem applies; with indivisibilities, however, demand need not have closed graph, so one needs to consider quasidemand, which does have closed graph.

[^0]
References

[1] Anderson, Robert M., M. Ali Khan and Salim Rashid, "Approximate Equilibria with Bounds Independent of Preferences," Review of Economic Studies 44(1982), 473-475.
[2] Geller, William, "An Improved Bound for Approximate Equilibria," Review of Economic Studies 52(1986), 307-308.
[3] Starr, Ross, "Quasi-Equilibria in Markets with Non-convex Preferences," Econometrica 17(1969), 25-38.

[^0]: ${ }^{1}$ To be more precise, it is convenient to work on $\Delta^{\prime}=\left\{p \in \mathbf{R}_{+}^{L}: \sqrt{\frac{L}{I}} \leq p_{\ell} \leq 1(1 \leq\right.$ $\ell \leq L)\}$.
 ${ }^{2}$ This bound is related to the lower bound on prices in the definition of Δ^{\prime}.

