Economics 204-Final Exam-August 19, 2008, 9am-12pm

Each of the four questions is worth 25% of the total

Please use three separate blue/greenbooks, one for each of the three Parts

Part I

1. Prove that if X and Y are vector spaces over the same field F and $\operatorname{dim} X=\operatorname{dim} Y$, then X and Y are isomorphic.
2. Consider the function

$$
f(x, y)=3 x^{2}+3 y^{2}-2 x y+x^{4}+y^{5}
$$

(a) Show that $\binom{0}{0}$ is a critical point of f.
(b) Determine whether f has a local max, a local min, or neither at $\binom{0}{0}$.
(c) Does f have a global max, a global min, or neither at $\binom{0}{0}$?

Part II

3. Consider the Initial Value Problem

$$
\begin{equation*}
y^{\prime \prime}=-y, y(0)=y^{\prime}(0)=1 \tag{1}
\end{equation*}
$$

(a) Write this as a first order linear Initial Value Problem using the variables $y_{1}=y$ and $y_{2}=y^{\prime}$.
(b) Find the eigenvalues of the matrix obtained in part (a).
(c) Find the unique solution of the Initial Value Problem in Equation (1). Hint: you can use the product of three complex matrices if you wish, but there is a simpler approach.
(d) Now consider the Initial Value Problem

$$
\begin{equation*}
\binom{y_{1}}{y_{2}}^{\prime}=\binom{y_{2}-y_{1}^{3} / 100}{-y_{1}-y_{2}^{3} / 100}, y_{1}(0)=y_{2}(0)=1 \tag{2}
\end{equation*}
$$

Show that the unique stationary point for Equation (2) is $\binom{0}{0}$. Show that the linearized equation corresponding to Equation (2) is the Initial Value Problem you found in part (a). Find a function $G: \mathbf{R}^{2} \rightarrow \mathbf{R}_{+}$such that every solution of the linearized differential equation follows a level set of G.
(e) Now suppose $\binom{y_{1}}{y_{2}}$ is a solution of the nonlinear Initial Value Problem in Equation (2). Compute $\frac{d G(y(t))}{d t}$. What does this tell you about the behavior of $y(t)$ as $t \rightarrow \infty$?

Part III

4. Suppose $F: X \times \Omega \rightarrow \mathbf{R}$ is continuous, where X is a compact subset of E^{m} and $\Omega \subseteq E^{n}$. Define

$$
\psi(\omega)=\{x \in X: F(x, \omega)=\sup \{F(z, \omega): z \in X\}\}
$$

(a) Show that for all $\omega \in \Omega, \Psi(\omega) \neq \emptyset$.
(b) Show that Ψ is upper hemicontinuous. Hint: Suppose not. Negate the definition of upper hemicontinuity and show that this implies the existence of a sequence $\left\{x_{n}\right\}$ with certain properties. Take a convergent subsequence $\left\{x_{n_{k}}\right\}$, and derive a contradiction.

