Economics 204
 Lecture 10-Friday, August 7, 2009
 Revised 8/8/09, Revisions indicated by ${ }^{* *}$ and Sticky Notes

Diagonalization of Symmetric Real Matrices (from

 Handout):Definition 1 Let

$$
\delta_{i j}=\left\{\begin{array}{l}
1 \text { if } i=j \\
0 \text { if } i \neq j
\end{array}\right.
$$

A basis $V=\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbf{R}^{n} is orthonormal if $v_{i} \cdot v_{j}=\delta_{i j}$. In other words, each basis element has unit length, and distinct basis elements are perpendicular.
Observation: Suppose that $x=\Sigma_{j=1}^{n} \alpha_{j} v_{j}$ where $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal basis of V. Then for any $x \in V$,

$$
\begin{aligned}
x \cdot v_{k} & =\left(\sum_{j=1}^{n} \alpha_{j} v_{j}\right) \cdot v_{k} \\
& =\sum_{j=1}^{n} \alpha_{j}\left(v_{j} \cdot v_{k}\right) \\
& =\sum_{j=1}^{n} \alpha_{j} \delta_{j k} \\
& =\alpha_{k}
\end{aligned}
$$

SO

$$
x=\sum_{j=1}^{n}\left(x \cdot v_{j}\right) v_{j}
$$

Example: The standard basis of \mathbf{R}^{n} is orthonormal.
Definition 2 A real $n \times n$ matrix A is unitary if $A^{\top}=A^{-1}$, where A^{\top} denotes the transpose of A : the $(i, j)^{\text {th }}$ entry of A^{\top} is the $(j, i)^{\text {th }}$ entry of A.

Theorem $3 A$ real $n \times n$ matrix A is unitary if and only if the columns of A are orthonormal.
Proof: Let $* \cdot \overline{\bar{च}}_{j}$ denote the $j^{\text {th }}$ column of A.

$$
\begin{aligned}
A^{\top}=A^{-1} & \Leftrightarrow A^{\top} A=I \\
& \Leftrightarrow v_{i} \cdot v_{j}=\delta_{i j} \\
& \Leftrightarrow\left\{v_{1}, \ldots, v_{n}\right\} \text { is orthonormal }
\end{aligned}
$$

If A is unitary, let V be the set of columns of A and W be the standard basis of \mathbf{R}^{n}.
Since A is unitary, it is invertible, so V is a basis of \mathbf{R}^{n}.

$$
A^{\top}=A^{-1}=M t x_{V, W}(i d)
$$

Since V is orthonormal, the transformation between bases W and V preserves all geometry, including lengths and angles.
Theorem 4 Let $T \in L\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$, W the standard basis of \mathbf{R}^{n}. Suppose that $\operatorname{Mtx}_{W}(T)$ is symmetric. Then the eigenvectors of T are all real, and there is an orthonormal basis $V=\left\{v_{1}, \ldots, v_{n}\right\}$ of \mathbf{R}^{n} consisting of eigenvectors of T, so that $\operatorname{Mtx}_{W}(T)$ is diagonalizable:

$$
\begin{aligned}
& \operatorname{Mtx}_{W}(T) \\
& =M t x_{W, V}(i d) \cdot M t x_{V}(T) \cdot M t x_{V, W}(i d)
\end{aligned}
$$

where $M t x_{V} T$ is diagonal and the change of basis matrices $M t x_{V, W}(i d)$ and $M t x_{W, V}(i d)$ are unitary.

The proof of the theorem requires a lengthy digression into the linear algebra of complex vector spaces. Here is a very brief outline.

1. Let $M=M t x_{W}(T)$.
2. The inner product in \mathbf{C}^{n} is defined as follows:

$$
x \cdot y=\sum_{j=1}^{n} x_{j} \cdot \overline{y_{j}}
$$

where \bar{c} denotes the complex conjugate of any $c \in \mathbf{C}$; note that this implies that $x \cdot y=\overline{y \cdot x}$. The usual inner product in \mathbf{R}^{n} is the restriction of this inner product on \mathbf{C}^{n} to \mathbf{R}^{n}.
3. Given any complex matrix A, define A^{*} to be the matrix whose $(i, j)^{t h}$ entry is $\overline{a_{j i}}$; in other words, A^{*} is formed by taking the complex conjugate of each element of the transpose of A. It is easy to verify that given $x, y \in \mathbf{C}^{n}$ and a complex $n \times n$ matrix $A, A x \cdot y=x \cdot A^{*} y$. Since M is real and symmetric, $M^{*}=M$.
4. If $* * \overline{\bar{\square}} M$ is real and symmetric, and $\lambda \in \mathbf{C}$ is an eigenvalue of M, with eigenvector $x \in \mathbf{C}^{n}$, then

$$
\begin{aligned}
\lambda|x|^{2} & =\lambda(x \cdot x) \\
& =(\lambda x) \cdot x \\
& =(M x) \cdot x \\
& =x \cdot\left(M^{*} x\right) \\
& =x \cdot(M x) \\
& =x \cdot(\lambda x) \\
& =\overline{(\lambda x) \cdot x} \\
& =\overline{\lambda(x \cdot x)} \\
& =\overline{\lambda|x|^{2}} \\
& =\bar{\lambda}|x|^{2}
\end{aligned}
$$

which proves that $\lambda=\bar{\lambda}$, hence $\lambda \in \mathbf{R}$.
5. If M is real (not necessarily symmetric) and $\lambda \in \mathbf{R}$ is an eigenvalue, then $\operatorname{det}(M-\lambda I)=0 \Rightarrow \exists_{v \in \mathbf{R}^{n}}(M-\lambda I) v=0$, so there is at least one real eigenvector. Symmetry implies that, if λ has multiplicity m, there are m independent real eigenvectors corresponding to λ, "雲 ut unfortunately we don't have time to show why. Thus, there is a basis of eigenvectors, hence M is diagonalizable over \mathbf{R}.
6. 浸 $\mathrm{f} M$ is real and symmetric, eigenvectors corresponding to distinct eigenvalues are orthogonal: Suppose that $M x=\lambda x$ and $M y=\rho y$ with $\rho \neq \lambda$. Then

$$
\begin{aligned}
\lambda(x \cdot y) & =(\lambda x) \cdot y \\
& =(M x) \cdot y \\
& =(M x)^{\top} y \\
& =\left(x^{\top} M^{\top}\right) y \\
& =\left(x^{\top} M\right) y \\
& =x^{\top}(M y) \\
& =x^{\top}(\rho y) \\
& =x \cdot(\rho y) \\
& =\rho(x \cdot y)
\end{aligned}
$$

so $(\lambda-\rho)(x \cdot y)=0$; since $\lambda-\rho \neq 0$, we must have $x \cdot y=0$.
7. ${ }^{* *}$ Using the Gram-Schmidt method, we can get an orthonormal basis of eigenvectors:

- ${ }^{* *}$ Let $X_{\lambda}=\left\{x \in \mathbf{R}^{n}: M x=\lambda x\right\}$, the set of all eigenvectors corresponding to λ. Notice that if $M x=\lambda x$ and $M y=\lambda y$, then
$M(\alpha x+\beta y)=\alpha M x+\beta M y=\alpha \lambda x+\beta \lambda y=\lambda(\alpha x+\beta y)$
so X_{λ} is a vector subspace. Thus, given any basis of X_{λ}, we wish to find an orthonormal basis of X_{λ}; all elements of this orthonormal basis will be eigenvectors corresponding to λ.
- **Suppose X_{λ} is m-dimensional and we are given independent vectors $x_{1}, \ldots, x_{m} \in X_{\lambda}$. The Gram-Schmidt method finds an orthonormal basis $\left\{v_{1}, \ldots, v_{m}\right\}$ for X_{λ}.
- Let $v_{1}=\frac{x_{1}}{\left|x_{1}\right|}$. Note that $\left|v_{1}\right|=1$.
- Suppose we have found an orthonormal set $\left\{v_{1}, \ldots, v_{k}\right\}$ such that span $\left\{v_{1}, \ldots, v_{k}\right\}=\operatorname{span}\left\{x_{1}, \ldots, x_{k}\right\}$, with $k<$ m. Let

$$
y_{k+1}=x_{k+1}-\sum_{j=1}^{k}\left(x_{k+1} \cdot v_{j}\right) v_{j}, \quad v_{k+1}=\frac{y_{k+1}}{\left|y_{k+1}\right|}
$$

$$
\begin{aligned}
\operatorname{span}\left\{v_{1}, \ldots, v_{k+1}\right\} & =\operatorname{span}\left\{v_{1}, \ldots, v_{k}, v_{k+1}\right\} \\
& =\operatorname{span}\left\{v_{1}, \ldots, v_{k}, y_{k+1}\right\} \\
& =\operatorname{span}\left\{v_{1}, \ldots, v_{k}, x_{k+1}\right\} \\
& =\operatorname{span}\left\{x_{1}, \ldots, x_{k}, x_{k+1}\right\}
\end{aligned}
$$

- For $i=1, \ldots, k$,

$$
\begin{aligned}
y_{k+1} \cdot v_{i} & =\left(x_{k+1}-\sum_{j=1}^{k}\left(x_{k+1} \cdot v_{j}\right) v_{j}\right) \cdot v_{i} \\
& =x_{k+1} \cdot v_{i}-\sum_{j=1}^{K}\left(x_{k+1} \cdot v_{j}\right)\left(v_{j} \cdot v_{i}\right) \\
& =x_{k+1} \cdot v_{i}-\sum_{j=1}^{K}\left(x_{k+1} \cdot v_{j}\right) \delta_{i j} \\
& =x_{k+1} \cdot v_{i}-x_{k+1} \cdot v_{i} \\
& =0 \\
v_{k+1} \cdot v_{i} & =\frac{y_{k+1} \cdot v_{i}}{\left|y_{k+1}\right|}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{0}{\left|y_{k+1}\right|} \\
& =0 \\
\left|v_{k+1}\right| & =\frac{\left|y_{k+1}\right|}{\left|y_{k+1}\right|} \\
& =1
\end{aligned}
$$

Application to Quadratic Forms

Consider a quadratic form

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \alpha_{i i} x_{i}^{2}+\sum_{i<j} \beta_{i j} x_{i} x_{j} \tag{1}
\end{equation*}
$$

Let

$$
\alpha_{i j}=\left\{\begin{array}{l}
\frac{\beta_{i j}}{2} \text { if } i<j \\
\frac{\beta_{j i}}{2} \text { if } i>j
\end{array}\right.
$$

Let

$$
A=\left(\alpha_{i j}\right) \text { so } f(x)=x^{\top} A x
$$

Example: Let

$$
f(x)=\alpha x_{1}^{2}+\beta x_{1} x_{2}+\gamma x_{2}^{2}
$$

Let

$$
A=\left(\begin{array}{cc}
\alpha & \beta / 2 \\
\beta / 2 & \gamma
\end{array}\right)
$$

so A is symmetric and

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right)\left(\begin{array}{cc}
\alpha & \beta / 2 \\
\beta / 2 & \gamma
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& =\left(x_{1}, x_{2}\right)\binom{\alpha x_{1}+(\beta / 2) x_{2}}{(\beta / 2) x_{1}+\gamma x_{2}} \\
& =\alpha x_{1}^{2}+\beta x_{1} x_{2}+\gamma x_{2}^{2} \\
& =f(x)
\end{aligned}
$$

Return to general quadratic form in Equation (1)
A is symmetric, so let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be an orthonormal basis of eigenvectors of A with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.

$$
\begin{aligned}
A & =U^{\top} D U \\
D & =\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
& & & \\
0 & \ldots & 0 & \lambda_{n}
\end{array}\right) \\
U & =M t x_{V, W}(i d) \text { is unitary }
\end{aligned}
$$

The columns of U^{\top} (the rows of U) are the coordinates of v_{1}, \ldots, v_{n}, expressed in terms of the standard basis W. Given $x \in \mathbf{R}^{n}$, recall

$$
\begin{aligned}
x & =\sum_{i=1}^{n} \gamma_{i} v_{i} \text { where } \gamma_{i}=x \cdot v_{i} \\
f(x) & =f\left(\sum \gamma_{i} v_{i}\right) \\
& =\left(\sum \gamma_{i} v_{i}\right)^{\top} A\left(\sum \gamma_{i} v_{i}\right) \\
& =\left(\sum \gamma_{i} v_{i}\right)^{\top} U^{\top} D U\left(\sum \gamma_{i} v_{i}\right) \\
& =\left(U \sum \gamma_{i} v_{i}\right)^{\top} D\left(U \sum \gamma_{i} v_{i}\right) \\
& =\left(\sum \gamma_{i} U v_{i}\right)^{\top} D\left(\sum \gamma_{i} U v_{i}\right) \\
& =\left(\gamma_{1}, \ldots, \gamma_{n}\right) D\left(\begin{array}{c}
\gamma_{1} \\
\vdots \\
\gamma_{n}
\end{array}\right) \\
& =\sum \lambda_{i} \gamma_{i}^{2}
\end{aligned}
$$

The equation for the level sets of f is

$$
\sum_{i=1}^{n} \lambda_{i} \gamma_{i}^{2}=C
$$

- If $\lambda_{i} \geq 0$ for all i, the level set is an ellipsoid, with principal axes in the directions v_{1}, \ldots, v_{n}. The length of the principal
axis along v_{i} is $\sqrt{C / \lambda_{i}}$ if $C \geq 0$ (if $\lambda_{i}=0$, the level set is a degenerate ellipsoid with principal axis of infinite length in that direction). The level set is empty if $C<0$.
- If $\lambda_{i} \leq 0$ for all i, the level is an ellipsoid, with principal axes in the directions v_{1}, \ldots, v_{n}. The length of the principal axis along v_{i} is $\sqrt{C / \lambda_{i}}$ if $C \leq 0$ (if $\lambda_{i}=0$, the level set is a degenerate ellipsoid with principal axis of infinite length in that direction). The level set is empty if $C>0$.
- If $\lambda_{i}>0$ for some i and $\lambda_{j}<0$ for some j, the level set is a hyperboloid. For example, suppose $n=2, \lambda_{1}>0, \lambda_{2}<0$. The equation is

$$
\begin{aligned}
C & =\lambda_{1} \gamma_{1}^{2}+\lambda_{2} \gamma_{2}^{2} \\
& =\left(\sqrt{\lambda_{1}} \gamma_{1}+\sqrt{\left|\lambda_{2}\right|} \gamma_{2}\right)\left(\sqrt{\lambda_{1}} \gamma_{1}-\sqrt{\left|\lambda_{2}\right|} \gamma_{2}\right)
\end{aligned}
$$

This is a hyperbola with asymptotes

$$
\begin{aligned}
0 & =\sqrt{\lambda_{1}} \gamma_{1}+\sqrt{\left|\lambda_{2}\right|} \gamma_{2} \\
\Rightarrow \gamma_{1} & =-\sqrt{\frac{\left|\lambda_{2}\right|}{\lambda_{1}}} \gamma_{2} \\
0 & =\left(\sqrt{\lambda_{1}} \gamma_{1}-\sqrt{\left|\lambda_{2}\right|} \gamma_{2}\right) \\
\Rightarrow \gamma_{1} & =\sqrt{\frac{\left|\lambda_{2}\right|}{\lambda_{1}}} \gamma_{2}
\end{aligned}
$$

This proves the following corollary of Theorem 4.
Corollary 5 Consider the quadratic form (1).

1. f has a global minimum at 0 if and only if $\lambda_{i} \geq 0$ for all i; the level sets of f are ellipsoids with principal axes aligned with the orthonormal eigenvectors v_{1}, \ldots, v_{n}.
2. f has a global maximum at 0 if and only if $\lambda_{i} \leq 0$ for all i; the level sets of f are ellipsoids with principal axes aligned with the orthonormal eigenvectors v_{1}, \ldots, v_{n}.
3. If $\lambda_{i}<0$ for some i and $\lambda_{j}>0$ for some j, then f has a saddle point at 0; the level sets of f are hyperboloids with principal axes aligned with the orthonormal eigenvectors v_{1}, \ldots, v_{n}.

Section 3.4: Linear Maps between Normed Spaces
Definition 6 Suppose X, Y are normed spaces, $T \in L(X, Y)$. We say T is bounded if

$$
\exists_{\beta \in \mathbf{R}} \forall_{x \in X}\|T(x)\|_{Y} \leq \beta\|x\|_{X}
$$

Note this implies that T is Lipschitz with constant β.
Theorem 7 (4.1, 4.3) Let X, Y be normed vector spaces, $T \in$ $L(X, Y)$. Then
T is continuous at some point $x_{0} \in X$
$\Leftrightarrow T$ is continuous at every $x \in X$
$\Leftrightarrow T$ is uniformly continuous on X
$\Leftrightarrow T$ is Lipschitz
$\Leftrightarrow T$ is bounded

Proof: Suppose T is continuous at x_{0}. Fix $\varepsilon>0$. Then there exists $\delta>0$ such that

$$
\left\|z-x_{0}\right\|<\delta \Rightarrow\left\|T(z)-T\left(x_{0}\right)\right\|<\varepsilon
$$

Now suppose x is any element of X. If $\|y-x\|<\delta$, let $z=$ $y-x+x_{0}$, so $\left\|z-x_{0}\right\|=\|y-x\|<\delta$.

$$
\|T(y)-T(x)\|
$$

$$
\begin{aligned}
& =\|T(y-x)\| \\
& \left.=\| T\left(y-x+x_{0}-x_{0}\right)\right) \| \\
& =\left\|T(z)-T\left(x_{0}\right)\right\| \\
& <\varepsilon
\end{aligned}
$$

which proves that T is continuous at every x, and uniformly continuous.
We claim that T is bounded if and only if T is continuous at 0 . Suppose T is not bounded. Then

$$
\exists_{\left\{x_{n}\right\}}\left\|T\left(x_{n}\right)\right\|>n\left\|x_{n}\right\|
$$

Note that $x_{n} \neq 0$. Let $\varepsilon=1$. Fix $\delta>0$ and choose n such that $\frac{1}{n}<\delta$. Let

$$
\begin{aligned}
x_{n}^{\prime} & =\frac{x_{n}}{n\left\|x_{n}\right\|} \\
\left\|x_{n}^{\prime}\right\| & =\frac{\left\|x_{n}\right\|}{n\left\|x_{n}\right\|} \\
& =\frac{1}{n} \\
& <\delta \\
\left\|T\left(x_{n}^{\prime}\right)-T(0)\right\| & =\left\|T\left(x_{n}^{\prime}\right)\right\| \\
& =\frac{1}{n\left\|x_{n}\right\|}\left\|T\left(x_{n}\right)\right\| \\
& >\frac{n\left\|x_{n}\right\|}{n\left\|x_{n}\right\|} \\
& =1 \\
& =\varepsilon
\end{aligned}
$$

Since this is true for every δ, T is not continuous at 0 . Therefore, T continuous at 0 implies T is bounded. Now, suppose T is bounded,
so find M such that $\|T(x)\| \leq M\|x\|$ for every $x \in X$. Given $\varepsilon>0$, let $\delta=\varepsilon / M$. Then

$$
\begin{aligned}
\|x-0\|<\delta & \Rightarrow\|x\|<\delta \\
& \Rightarrow\|T(x)-T(0)\|=\|T(x)\|<M \delta \\
& \Rightarrow\|T(x)-T(0)\|<\varepsilon
\end{aligned}
$$

so T is continuous at 0 .
Thus, we have shown that continuity at some point x_{0} implies uniform continuity, which implies continuity at every point, which implies T is continuous at 0 , which implies that T is bounded, which implies that T is continuous at 0 , which implies that T is continuous at some x_{0}, so all of the statements except possibly the Lipschitz statement are equivalent.

Suppose T is bounded, with constant M. Then

$$
\begin{aligned}
\|T(x)-T(y)\| & =\|T(x-y)\| \\
& \leq M\|x-y\|
\end{aligned}
$$

so T is Lipschitz with constant M; conversely, if T is Lipschitz with constant M, then T is bounded with constant M. So all the statements are equivalent.

Theorem 8 (4.5) Let X, Y be normed vector spaces, $T \in$ $L(X, Y), \operatorname{dim} X<\infty$. Then T is bounded.

Proof: See de la Fuente..
Given normed vector spaces X, Y, a topological isomorphism between X and Y is a linear transformation $T \in L(X, Y)$ which is invertible (one-to-one, onto), continuous, and has a continuous inverse. Two normed vector spaces X and Y are topologically isomorphic if there is a topological isomorphism $T: X \rightarrow Y$.

Suppose X, Y are normed vector spaces. We define

$$
\begin{aligned}
B(X, Y) & =\{T \in L(X, Y): T \text { is bounded }\} \\
\|T\|_{B(X, Y)} & =\sup \left\{\frac{\|T(x)\|_{Y}}{\|x\|_{X}}, x \in X, x \neq 0\right\} \\
& =\sup \left\{\|T(x)\|_{Y}:\|x\|_{X}=1\right\}
\end{aligned}
$$

Theorem 9 (4.8) Let X, Y be normed vector spaces. Then

$$
\left(B(X, Y),\|\cdot\|_{B(X, Y)}\right)
$$

is a normed vector space.
Proof: See de la Fuente..
Theorem 10 (4.9) Let $T \in L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)\left(=B\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)\right)$ with matrix $A=\left(a_{i j}\right)$ with respect to the standard bases. Let

$$
M=\max \left\{\left|a_{i j}\right|: 1 \leq i \leq m, 1 \leq j \leq n\right\}
$$

Then

$$
M \leq\|T\| \leq M \sqrt{m n}
$$

Proof: See de la Fuente.■
Theorem 11 (4.10) Let $R \in L\left(\mathbf{R}^{m}, \mathbf{R}^{n}\right)$ and $S \in L\left(\mathbf{R}^{n}, \mathbf{R}^{p}\right)$. Then

$$
\|S \circ R\| \leq\|S\|\|R\|
$$

Proof: See de la Fuente..
Define

$$
\Omega\left(\mathbf{R}^{n}\right)=\left\{T \in L\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right): T \text { is invertible }\right\}
$$

Theorem 12 (4.11') Suppose $T \in L\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$, E the standard basis of \mathbf{R}^{n}. Then
T is invertible

$$
\Leftrightarrow \operatorname{ker} T=\{0\}
$$

$$
\Leftrightarrow \operatorname{det}\left(M t x_{E}(T)\right) \neq 0
$$

$\Leftrightarrow \operatorname{det}\left(\operatorname{Mtx}_{V, V}(T)\right) \neq 0$ for every basis V
$\Leftrightarrow \operatorname{det}\left(M t x_{V, W}(T)\right) \neq 0$ for every pair of bases V, W
Theorem 13 (4.12) If $S, T \in \Omega\left(\mathbf{R}^{n}\right)$, then $S \circ T \in \Omega\left(\mathbf{R}^{n}\right)$ and

$$
(S \circ T)^{-1}=T^{-1} \circ S^{-1}
$$

Theorem 14 (4.14) Let $S, T \in L\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$. If T is invertible and

$$
\|T-S\|<\frac{1}{\left\|T^{-1}\right\|}
$$

then S is invertible. In particular, $\Omega\left(\mathbf{R}^{n}\right)$ is open in $L\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)=$ $B\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right)$.
Proof: See de la Fuente..
Theorem 15 (4.15) The function $(\cdot)^{-1}: \Omega\left(\mathbf{R}^{n}\right) \rightarrow \Omega\left(\mathbf{R}^{n}\right)$ that assigns T^{-1} to each $T \in \Omega\left(\mathbf{R}^{n}\right)$ is continuous.
Proof: See de la Fuente..

