
Economics 204
Lecture 12–Tuesday, August 11, 2009

Revised 8/12/09, Revisions indicated by ** and
Sticky Notes

Inverse and Implicit Function Theorems, and Generic
Methods:

Section 4.3 (Conclusion), Regular and Critical Points
and Values:

Definition 1 Suppose X ⊆ Rn is open. Suppose f : X → Rm

is differentiable at x ∈ X , and let W = {e1, . . . , en} denote the
standard basis of Rn. Then dfx ∈ L(Rn,Rm), and

Rank dfx = dim Im (dfx) ∗ ∗
= dim span {dfx(e1), . . . , dfx(en)}
= dim span {Df (x)e1, . . . , Df (x)en}
= dim span {column 1 of Df (x), . . . , column n ofDf (x)}
= Rank Df (x)

Thus,
Rank (dfx) ≤ min{m, n}

We say

• x is a regular point of f if Rank (dfx) = min{m, n}.
• x is a critical point of f if Rank (dfx) < min{m, n}.
• y is a critical value of f if there exists x ∈ X , f (x) = y, x is

a critical point of f .

• y is a regular value of f if y is not a critical value of f (notice
this has the counterintuitive implication that if y �∈ f (X),
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then y is automatically a regular value of f ).

Remark: The definition of regular point and critical point in de
la Fuente (as well as in Mas-Colell, Whinston, and Green) is dif-
ferent: they use m rather than min{m,n}. I think the definition
I have given is more natural. If m ≤ n, the two are equivalent. If
m > n, then since Rank (dfx) ≤ min{m,n}, then every x ∈ X
will be a critical point in the de la Fuente and MWG definitions,
and every y ∈ f (X) will be a critical value. In the definition I
have given, a point is critical if the rank is smaller than the largest
it could possibly be. **The difference matters in the theory of
general equilibrium with incomplete markets. The two important
theorems (Sard’s Theorem and the Transversality Theorem) con-
cerning critical values are true with either definition.
Example: Consider the function f : (0, 2π) → R defined by

f (x) = sin x

Then f ′(x) = cos x, so f ′(x) = 0 for x = π/2 and x = 3π/2.
Df (x) is the 1×1 matrix (f ′(x)), so Rank dfx = Rank Df (x) = 1
if and only if f ′(x) �= 0. Thus, the critical points of f are π/2 and
3π/2, so the set of regular points of f is

(0, π/2) ∪ (π/2, 3π/2) ∪ (3π/2, 2π)

The critical values of f are f (π/2) = sin(π/2) = 1 and f (3π/2) =
sin(3π/2) = −1; the set of regular values of f is

(−∞,−1) ∪ (−1, 1) ∪ (1,∞)

Notice that 0 is not a critical value. Given α ∈ R, consider the
perturbed function

fα(x) = f (x) + α
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Notice that f ′
α(x) = f ′(x), so the critical points of fα are the same

as those of f . For α close to zero, the solution to the equation

fα(x) = 0

near x = π moves smoothly with respect to changes in α; the
direction a solution moves is determined by the sign of f ′

α.
Now, let α = 1.

f1(x) = 0 ⇔ sin x + 1 = 0

⇔ sin x = −1

⇔ x =
3π

2
Since 3π/2 is a critical point of f1, 0 is a critical value of f1.

Consider the correspondence

Ψ(α) = {x : fα(x) = 0} for α ∈ [0, 2]

(De la Fuente requires that correspondences be nonempty-valued,
but we don’t; we shall see that Ψ(α) = ∅ for α > 1.) Note that
for α close to one, we have the following:

• if α = 1, the equation fα(x) = 0 has one solution, 3π/2, so
Ψ(1) = {3π/2}.

• if α < 1, the equation fα(x) = 0 has two solutions, both near
3π/2.

• if α > 1, the equation fα(x) = 0 has no solutions; the unique
solution for α = 1 disappears in a puff of smoke. Hence Ψ is
not lower hemicontinuous at α = 1. Ψ is lower hemicontinuous
at all other α ∈ [0, 2].

• Let Ψ̂ be the restriction of Ψ to the domain [0, 1]. Then Ψ̂ is
lower hemicontinuous at 1, but because the unique element of

3



Ψ(1) splits into two points that move in opposite directions as
α decreases, we cannot make sense of comparative statics ques-
tions such as “in what direction does the solution to fα(x) = 0
move if α starts at 1 and is decreased?”

Thus, if 0 is a critical value of a function f , then the solutions
to the equation f (x) = 0 may behave badly in response to small
perturbations of f ; we will return to this in Lecture 13.
Inverse Function Theorem:

Theorem 2 (4.6, Inverse Function Theorem) Suppose
X ⊆ Rn is open, f : X → Rn, f ∈ C1(X), x0 ∈ X. If

det (Df (x0)) �= 0

(i.e. x0 is a regular point of f) then there are open neighbor-
hoods U of x0 and V of f (x0) such that

f : U → V is one-to-one and onto

f−1 : V → U is C1

(
D

(
f−1

))
(f (x0)) = (Df (x0))

−1

f ∈ Cn ⇒ f−1 ∈ Cn

Remark: f is one-to-one only on U ; it need not be one-to-one
globally. f−1 is only a local inverse. To see the formula for D(f−1),
let IdU denote the identity function from U to U and I the n×n
identity matrix. Then

(
D

(
f−1

)
(f (x0))

)
Df (x0) = D

(
f−1 ◦ f

)
(x0)

= D (IdU) (x0)

= I(
D

(
f−1

)
(f (x0))

) ∗ ∗ = (Df (x0))
−1
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Proof: Read the proof in de la Fuente. This is pretty hard. The
idea is that since det Df (x0) �= 0, then dfx0 : Rn → Rn is one-to-
one and onto. You need to find a neighborhood U of x0 sufficiently
small such that the Contraction Mapping Theorem implies that f
is one-to-one and onto.
Read Section 4.5 on Your Own

Section 5.2, Implicit Function Theorem
Function F (x, ω); x is a variable vector (e.g. price vector); ω is a
vector of parameters (e.g. endowments).
x is determined implicitly as a function of ω by the equation

F (x(ω), ω) = 0

e.g. Walrasian equilibrium (market-clearing) prices determined as
an implicit function of endowments.

DxF (x, ω)denotes the matrix of
partial derivatives with respect to x only

Theorem 3 (2.2, Implicit Function Theorem) Suppose
X ⊆ Rn and Ω ⊆ Rp are open and F : X × Ω → Rn is
C1. Suppose

F (x0, ω0) = 0

det(DxF (x0, ω0)) �= 0

i.e. x0 is a regular point of F (·, ω0). Then there are open
neighborhoods U of x0 (U ⊆ X) and W of ω0 such that

∀ω∈W∃!x∈U F (x, ω) = 0

Let g(ω) be that unique x. Then

g : W → X is C1
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Dg(ω0) = − [DxF (x0, ω0)]
−1 [DωF (x0, ω0)]

F ∈ Ck ⇒ g ∈ Ck

If 0 is a regular value of F (·, ω0), then the correspondence

ω → {x : F (x, ω) = 0}
is lower hemicontinuous at ω0.

Proof: Use the Inverse Function Theorem in the right way. Why
is the formula for Dg correct? Assuming the implicit function
exists and is differentiable,

0 = ∗ ∗ D (F (g(ω), ω)) (ω0)

= DxF (x0, ω0)Dg(ω0) + DωF (x0, ω0)

Dg(ω0) = − (DxF (x0, ω0))
−1 DωF (x0, ω0)

The following argument outlines the proof that g is differentiable:

F (x0, ω0 + h) = F (x0, ω0) + DωF (x0, ω0)h + o(h)

= DωF (x0, ω0)h + o(h)

Solve for Δx that brings F back to zero:

0 = F (x0 + Δx, ω0 + h)

= F (x0, ω0 + h) + DxF (x0, ω0 + h)Δx + o(Δx)

= F (x0, ω0) + DωF (x0, ω0)h + DxF (x0, ω0 + h)Δx

+o(Δx) + o(h)

= Dωf (x0, ω0)h + DxF (x0, ω0 + h)Δx + o(Δx) + o(h)

DxF (x0, ω0 + h)Δx

= −DωF (x0, ω0)h + o(Δx) + o(h)

Because F is C1 and the determinant is a continuous functions of
the entries of the matrix, we have det DxF (x0, ω0 + h) �= 0 for h
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sufficiently small, so

Δx = − [DxF (x0, ω0 + h)]−1 DωF (x0, ω0)h

+o(Δx) + o(h)

= − [DxF (x0, ω0) + o(1)]−1 DωF (x0, ω0)h

+o(Δx) + o(h) since F ∈ C1

= − [DxF (x0, ω0)]
−1 DωF (x0, ω0)h

+o(Δx) + o(h) since F ∈ C1

|Δx + o(Δx)| ∗ ∗ = O(h)

⇒ |Δx| ∗ ∗ = O(h)

⇒ o(Δx) = o(h)

⇒ Δx = − [DxF (x0, ω0)]
−1 DωF (x0, ω0)h + o(h)

By the definition of the derivative,

Dg(ω0) = − [DxF (x0, ω0)]
−1 DωF (x0, ω0)

If 0 is a regular value of F (·, ω0) = 0, then given any x0 ∈ {x :
F (x, ω0) = 0}, we can find a local implicit function g; in other
words, if ω is sufficiently close to ω0, then g(ω) ∈ {x : F (x, ω) =
0}; the continuity of g then shows that the correspondence {x :
F (x, ω) = 0} is lower hemicontinuous at ω0.
Transversality and Genericity

Definition 4 Suppose A ⊆ Rn. A has Lebesgue measure zero
if, for every ε > 0, there is a countable collection of rectangles
I1, I2, . . . such that

∞∑
k=1

Vol (Ik) < ε and A ⊆ ∪∞
k=1Ik

Notice that this defines Lebesgue measure zero without
defining Lebesgue measure(!)
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This is a natural formulation of the notion that A is a small set:
“If you choose x ∈ Rn at random,
the probability that x ∈ A is zero.”

It is easy to show that

An has Lebesgue measure zero

⇒ ∪n∈NAn has Lebesgue measure zero

In particular, Q and every countable set has Lebesgue measure
zero.
A function may have many critical points; for example, if a func-
tion is constant on an interval, then every element of the interval
is a critical point. But it can’t have many critical values.

Theorem 5 (2.4, Sard’s Theorem) Let X ⊆ Rn be open,
f : X → Rm, f is Cr with r ≥ 1 + max{0, n − m}. Then the
set of all critical values of f has Lebesgue measure zero.

Proof: First, we give a false proof that conveys the essential idea
as to why the theorem is true; it can be turned into a correct proof.
Suppose m = n. Let C be the set of critical points of f , V the
set of critical values. Then

Vol (V ) = Vol (f (C))

≤ ∫
C | det Df (x)| dx (equality if f is one-to-one)

=
∫
C 0 dx

= 0

Now, we outline how to turn this into a proof. First, show that
we can write X = ∪j∈NXj, where each Xj is a compact subset of
[−j, j]n. Let Cj = C ∩ Xj. Fix j for now. Since f is C1,

xk → x ⇒ det Df (xk) → det Df (x)

{xk} ⊆ Cj, xk → x ⇒ det Df (x) = 0 ⇒ x ∈ Cj
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so Cj is closed, hence compact. Since X is open and Cj is compact,
there exists δ1 > 0 such that

Bδ1[Cj] = ∪x∈Cj
Bδ1[x] ⊆ X

Bδ1[Cj] is bounded, and, using the compactness of Cj, one can
show it is closed, so it is compact. det Df (x) is continuous on
Bδ1

[Cj], so it is uniformly continuous on Bδ1
[Cj], so given ε > 0,

we can find δ ≤ δ1 such that Bδ[Cj] ⊆ [−2j, 2j]n and

x ∈ Bδ[Cj] ⇒ det |Df (x)| ≤ ε

2 · 4njn

Then

f (Cj) ⊆ f (Bδ[Cj])

Vol (f (Bδ[Cj])) ≤ ∫
[−2j,2j]n

ε

2 · 4njn
dx

=
ε

2

Since f is C1, show that f (Cj) can be covered by a countable
collection of rectangles of total volume less than ε. Since ε > 0 is
arbitrary, f (Cj) has Lebesgue measure zero. Then

f (C) = f (∪j∈NCj) = ∪n∈Nf (Cj)

is a countable union of sets of Lebesgue measure zero, so f (C) has
Lebesgue measure zero.
Significance of Sard’s Theorem:

• Given a randomly chosen function f , it is very unlikely that
zero will be a critical value of f .

• If by some fluke zero is a critical value of f , then a slight
perturbation of f will make zero a regular value.
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• If zero is a regular value of f , we can apply the Inverse Function
Theorem or the Implicit Function Theorem, as appropriate
given the dimensions of the domain and range of f .

Recall that our definition of critical point differed from de la
Fuente’s in the case m > n:

• If m > n, then every x ∈ X is critical using de la Fuente’s
definition, because

Rank Df (x) ≤ n < m

• Thus, every y ∈ f (X) is a critical value, using de la Fuente’s
definition.

• This does not contradict Sard’s Theorem, since one can show
that f (X) is a set of Lebesgue measure zero when m > n and
f ∈ C1.
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