
Economics 204

Lecture 12–Tuesday, August 11, 2009

Inverse and Implicit Function Theorems, and Generic Methods:

Section 4.3 (Conclusion), Regular and Critical Points and Values:

Definition 1 Suppose X ⊆ Rn is open. Suppose f : X → Rm is differentiable at x ∈ X, and let

W = {e1, . . . , en} denote the standard basis of Rn. Then dfx ∈ L(Rn,Rm), and

Rank dfx = dim Im (df)

= dim span {dfx(e1), . . . , dfx(en)}

= dim span {Df(x)e1, . . . , Df(x)en}

= dim span {column 1 of Df(x), . . . , column n ofDf(x)}

= Rank Df(x)

Thus,

Rank (dfx) ≤ min{m, n}

We say

• x is a regular point of f if Rank (dfx) = min{m, n}.

• x is a critical point of f if Rank (dfx) < min{m, n}.

• y is a critical value of f if there exists x ∈ X, f(x) = y, x is a critical point of f .

• y is a regular value of f if y is not a critical value of f (notice this has the counterintuitive implication

that if y �∈ f(X), then y is automatically a regular value of f).
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Remark: The definition of regular point and critical point in de la Fuente (as well as in Mas-Colell,

Whinston, and Green) is different: they use m rather than min{m, n}. I think the definition I have given

is more natural. If m ≤ n, the two are equivalent. If m > n, then since Rank (dfx) ≤ min{m, n}, then

every x ∈ X will be a critical point in the de la Fuente and MWG definitions, and every y ∈ f(X) will be a

critical value. In the definition I have given, a point is critical if the rank is smaller than the largest it could

possibly be. The two important theorems (Sard’s Theorem and the Transversality Theorem) concerning

critical values are true with either definition.

Example: Consider the function f : (0, 2π) → R defined by

f(x) = sin x

Then f ′(x) = cos x, so f ′(x) = 0 for x = π/2 and x = 3π/2. Df(x) is the 1 × 1 matrix (f ′(x)), so

Rank dfx = Rank Df(x) = 1 if and only if f ′(x) �= 0. Thus, the critical points of f are π/2 and 3π/2, so

the set of regular points of f is

(0, π/2) ∪ (π/2, 3π/2) ∪ (3π/2, 2π)

The critical values of f are f(π/2) = sin(π/2) = 1 and f(3π/2) = sin(3π/2) = −1; the set of regular values

of f is

(−∞,−1) ∪ (−1, 1) ∪ (1,∞)

Notice that 0 is not a critical value. Given α ∈ R, consider the perturbed function

fα(x) = f(x) + α

Notice that f ′
α(x) = f ′(x), so the critical points of fα are the same as those of f . For α close to zero, the

solution to the equation

fα(x) = 0
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near x = π moves smoothly with respect to changes in α; the direction a solution moves is determined by

the sign of f ′
α.

Now, let α = 1.

f1(x) = 0 ⇔ sinx + 1 = 0

⇔ sinx = −1

⇔ x =
3π

2

Since 3π/2 is a critical point of f1, 0 is a critical value of f1.

Consider the correspondence

Ψ(α) = {x : fα(x) = 0} for α ∈ [0, 2]

(De la Fuente requires that correspondences be nonempty-valued, but we don’t; we shall see that Ψ(α) = ∅

for α > 1.) Note that for α close to one, we have the following:

• if α = 1, the equation fα(x) = 0 has one solution, 3π/2, so Ψ(1) = {3π/2}.

• if α < 1, the equation fα(x) = 0 has two solutions, both near 3π/2.

• if α > 1, the equation fα(x) = 0 has no solutions; the unique solution for α = 1 disappears in a puff

of smoke. Hence Ψ is not lower hemicontinuous at α = 1. Ψ is lower hemicontinuous at all other

α ∈ [0, 2].

• Let Ψ̂ be the restriction of Ψ to the domain [0, 1]. Then Ψ̂ is lower hemicontinuous at 1, but because

the unique element of Ψ(1) splits into two points that move in opposite directions as α decreases, we

cannot make sense of comparative statics questions such as “in what direction does the solution to

fα(x) = 0 move if α starts at 1 and is decreased?”
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Thus, if 0 is a critical value of a function f , then the solutions to the equation f(x) = 0 may behave badly

in response to small perturbations of f ; we will return to this in Lecture 13.

Inverse Function Theorem:

Theorem 2 (4.6, Inverse Function Theorem) Suppose

X ⊆ Rn is open, f : X → Rn, f ∈ C1(X), x0 ∈ X. If

det (Df(x0)) �= 0

(i.e. x0 is a regular point of f) then there are open neighborhoods U of x0 and V of f(x0) such that

f : U → V is one-to-one and onto

f−1 : V → U is C1

(
D

(
f−1

))
(f(x0)) = (Df(x0))

−1

f ∈ Cn ⇒ f−1 ∈ Cn

Remark: f is one-to-one only on U ; it need not be one-to-one globally. f−1 is only a local inverse. To see

the formula for D(f−1), let IdU denote the identity function from U to U and I the n×n identity matrix.

Then

(
D

(
f−1

)
(f(x0))

)
Df(x0) = D

(
f−1 ◦ f

)
(x0)

= D (IdU ) (x0)

= I

(
D

(
f−1

)
(f(x0))

)
Df(x0) = (Df(x0))

−1

Proof: Read the proof in de la Fuente. This is pretty hard. The idea is that since detDf(x0) �= 0, then

dfx0 : Rn → Rn is one-to-one and onto. You need to find a neighborhood U of x0 sufficiently small such

that the Contraction Mapping Theorem implies that f is one-to-one and onto.
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Read Section 4.5 on Your Own

Section 5.2, Implicit Function Theorem

Function F (x, ω); x is a variable vector (e.g. price vector); ω is a vector of parameters (e.g. endowments).

x is determined implicitly as a function of ω by the equation

F (x(ω), ω) = 0

e.g. Walrasian equilibrium (market-clearing) prices determined as an implicit function of endowments.

DxF (x, ω)denotes the matrix of

partial derivatives with respect to x only

Theorem 3 (2.2, Implicit Function Theorem) Suppose

X ⊆ Rn and Ω ⊆ Rp are open and F : X × Ω → Rn is C1. Suppose

F (x0, ω0) = 0

det(DxF (x0, ω0)) �= 0

i.e. x0 is a regular point of F (·, ω0). Then there are open neighborhoods U of x0 (U ⊆ X) and W of ω0

such that

∀ω∈W∃!x∈U F (x, ω) = 0

Let g(ω) be that unique x. Then

g : W → X is C1

Dg(ω0) = − [DxF (x0, ω0)]
−1

[DωF (x0, ω0)]

F ∈ Ck ⇒ g ∈ Ck

If 0 is a regular value of F (·, ω0), then the correspondence

ω → {x : F (x, ω) = 0}

is lower hemicontinuous at ω0.
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Proof: Use the Inverse Function Theorem in the right way. Why is the formula for Dg correct? Assuming

the implicit function exists and is differentiable,

0 = DF (g(ω), ω)(ω0)

= DxF (x0, ω0)Dg(ω0) + DωF (x0, ω0)

Dg(ω0) = − (DxF (x0, ω0))
−1 DωF (x0, ω0)

The following argument outlines the proof that g is differentiable:

F (x0, ω0 + h) = F (x0, ω0) + DωF (x0, ω0)h + o(h)

= DωF (x0, ω0)h + o(h)

Solve for Δx that brings F back to zero:

0 = F (x0 + Δx, ω0 + h)

= F (x0, ω0 + h) + DxF (x0, ω0 + h)Δx + o(Δx)

= F (x0, ω0) + DωF (x0, ω0)h + DxF (x0, ω0 + h)Δx

+o(Δx) + o(h)

= Dωf(x0, ω0)h + DxF (x0, ω0 + h)Δx + o(Δx) + o(h)

DxF (x0, ω0 + h)Δx

= −DωF (x0, ω0)h + o(Δx) + o(h)

Because F is C1 and the determinant is a continuous functions of the entries of the matrix, we have

detDxF (x0, ω0 + h) �= 0 for h sufficiently small, so

Δx = − [DxF (x0, ω0 + h)]−1 DωF (x0, ω0)h

+o(Δx) + o(h)

= − [DxF (x0, ω0) + o(1)]−1 DωF (x0, ω0)h

+o(Δx) + o(h) since F ∈ C1
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= − [DxF (x0, ω0)]
−1 DωF (x0, ω0)h

+o(Δx) + o(h) since F ∈ C1

|Δx + o(Δx)‖ = O(h)

⇒ |Δx‖ = O(h)

⇒ o(Δx) = o(h)

⇒ Δx = − [DxF (x0, ω0)]
−1

DωF (x0, ω0)h + o(h)

By the definition of the derivative,

Dg(ω0) = − [DxF (x0, ω0)]
−1 DωF (x0, ω0)

If 0 is a regular value of F (·, ω0) = 0, then given any x0 ∈ {x : F (x, ω0) = 0}, we can find a local

implicit function g; in other words, if ω is sufficiently close to ω0, then g(ω) ∈ {x : F (x, ω) = 0}; the

continuity of g then shows that the correspondence {x : F (x, ω) = 0} is lower hemicontinuous at ω0.

Transversality and Genericity

Definition 4 Suppose A ⊆ Rn. A has Lebesgue measure zero if, for every ε > 0, there is a countable

collection of rectangles I1, I2, . . . such that

∞∑
k=1

Vol (Ik) < ε and A ⊆ ∪∞
k=1Ik

Notice that this defines Lebesgue measure zero without defining Lebesgue measure(!)

This is a natural formulation of the notion that A is a small set:

“If you choose x ∈ Rn at random,

the probability that x ∈ A is zero.”

It is easy to show that

An has Lebesgue measure zero

⇒ ∪n∈NAn has Lebesgue measure zero
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In particular, Q and every countable set has Lebesgue measure zero.

A function may have many critical points; for example, if a function is constant on an interval, then every

element of the interval is a critical point. But it can’t have many critical values.

Theorem 5 (2.4, Sard’s Theorem) Let X ⊆ Rn be open, f : X → Rm, f is Cr with r ≥ 1+max{0, n−

m}. Then the set of all critical values of f has Lebesgue measure zero.

Proof: First, we give a false proof that conveys the essential idea as to why the theorem is true; it can be

turned into a correct proof. Suppose m = n. Let C be the set of critical points of f , V the set of critical

values. Then

Vol (V ) = Vol (f(C))

≤
∫

C
| detDf(x)| dx (equality if f is one-to-one)

=
∫

C
0dx

= 0

Now, we outline how to turn this into a proof. First, show that we can write X = ∪j∈NXj , where each Xj

is a compact subset of [−j, j]n. Let Cj = C ∩ Xj. Fix j for now. Since f is C1,

xk → x ⇒ detDf(xk) → detDf(x)

{xk} ⊆ Cj, xk → x ⇒ detDf(x) = 0 ⇒ x ∈ Cj

so Cj is closed, hence compact. Since X is open and Cj is compact, there exists δ1 > 0 such that

Bδ1[Cj] = ∪x∈CjBδ1[x] ⊆ X
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Bδ1[Cj] is bounded, and, using the compactness of Cj, one can show it is closed, so it is compact. detDf(x)

is continuous on Bδ1[Cj], so it is uniformly continuous on Bδ1[Cj], so given ε > 0, we can find δ ≤ δ1 such

that Bδ[Cj] ⊆ [−2j, 2j]n and

x ∈ Bδ[Cj] ⇒ det |Df(x)| ≤ ε

2 · 4njn

Then

f(Cj) ⊆ f(Bδ [Cj])

Vol (f(Bδ[Cj])) ≤
∫
[−2j,2j]n

ε

2 · 4njn
dx

=
ε

2

Since f is C1, show that f(Cj) can be covered by a countable collection of rectangles of total volume less

than ε. Since ε > 0 is arbitrary, f(Cj) has Lebesgue measure zero. Then

f(C) = f (∪j∈NCj) = ∪n∈Nf(Cj)

is a countable union of sets of Lebesgue measure zero, so f(C) has Lebesgue measure zero.

Significance of Sard’s Theorem:

• Given a randomly chosen function f , it is very unlikely that zero will be a critical value of f .

• If by some fluke zero is a critical value of f , then a slight perturbation of f will make zero a regular

value.

• If zero is a regular value of f , we can apply the Inverse Function Theorem or the Implicit Function

Theorem, as appropriate given the dimensions of the domain and range of f .
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Recall that our definition of critical point differed from de la Fuente’s in the case m > n:

• If m > n, then every x ∈ X is critical using de la Fuente’s definition, because

Rank Df(x) ≤ n < m

• Thus, every y ∈ f(X) is a critical value, using de la Fuente’s definition.

• This does not contradict Sard’s Theorem, since one can show that f(X) is a set of Lebesgue measure

zero when m > n and f ∈ C1.
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