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Lecture 13–Wednesday, August 12, 2009

Revised 8/12/09, revisions indicated by ** and Sticky
Notes
Section 5.5 (Cont.) Transversality Theorem
The Transversality Theorem is a particularly convenient formula-
tion of Sard’s Theorem for our purposes:

Theorem 1 (2.5’, Transversality Theorem) Let

∗ ∗ X ⊆ Rn and Ω ⊆ Rp be open

F : X × Ω → Rm ∈ Cr

with r ≥ 1 + max{0, n − m}
Suppose that

F (x, ω) = 0 ⇒ DF (x, ω) has rank m

Then there is a set Ω0 ⊆ Ω such that Ω \ Ω0 has Lebesgue
measure zero such that

ω ∈ Ω0, F (x, ω) = 0 ⇒ DxF (x, ω) has rank m

If m = n and ω0 ∈ Ω0,

• there is a local implicit function

x∗(ω)

characterized by
F (x∗(ω), ω) = 0

where x∗ is a Cr function of ω.

• the correspondence

ω → {x : F (x, ω) = 0}
is lower hemicontinuous at ω0.
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Interpretation of Tranversality Theorem

• Ω: a set of parameters (agents’ endowments and preferences,
or players’ payoff functions).

• X : a set of variables (price vectors, or strategies).

• Rm is the range of F (excess demand, or best-response strate-
gies).

• F (x, ω) = 0 is equilibrium condition, given parameter ω.

• Rank DF (x, ω) = m says that, by adjusting either the vari-
ables or parameters, it is possible to move F in any direc-
tion. **While we only need to know we can do this at equi-
libria, i.e. at (x, ω) such that F (x, ω) = 0, in typical appli-
cations the parameters ω allow enough freedom to show that
Rank DωF (x, ω) = m for all (x, ω).

• When m = n, Rank DxF (x, ω) = m says detDxF (x, ω) �= 0,
which says the economy is regular and is the hypothesis of the
Implicit Function Theorem; this tells us that the equilibrium
correspondence is lower hemicontinuous. Economic correspon-
dences like ω → {x : F (x, ω) = 0} are generally upper hemi-
continuous, so regularity in fact tells us the correspondence is
continuous. You will see in 201B that regularity, plus a prop-
erty of demand functions, tell us that the equilibrium prices are
given by a finite number of implicit functions of the parameters
(endowments).

• Parameters of any given economy are fixed. However, we want
to study the set of parameters for which the resulting economy
is well-behaved.
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• Theorem says the following:

“If, whenever F (x, ω) = 0, it is possible by perturbing
the parameters and variables to move F in any direc-
tion, then for almost all parameter values, all equilib-
ria are regular, the equilibria are implicitly defined Cr

functions of the parameters, and the equilibrium cor-
respondence is lower hemicontinuous.” You will see in
201B that the regularity of the equilibria plus a property
of demand functions implies that there are only finitely
many equilibria.

• If n < m, Rank DxF (x, ω) ≤ min{m,n} = n < m. There-
fore,

(F (x, ω) = 0 ⇒ ∗ ∗ DxF (x, ω) has rank m)

⇒ for all ω except for a set of Lebesgue measure zero

F (x, ω) = 0 has no solution

• Why is it true? Sard’s Theorem says the set of critical values
of F is a set of Lebesgue measure zero. As long as you have
the freedom to move F away from zero in every direction, then
you can make zero not be a critical value and hence make the
economy regular.

Section 5.3, Brouwer’s and Kakutani’s Fixed Point
Theorems

Theorem 2 (3.2, Brouwer’s Fixed Point Theorem) Let
X ⊆ Rn be nonempty, compact, convex and let f : X → X be
continuous. Then

∃x∗∈Xf (x∗) = x∗

i.e. f has a fixed point.
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Proof: (in very special case n = 1): A is a closed interval
[a, b]. Let

g(x) = f (x) − x

g(a) = f (a) − a ≥ 0

g(b) = f (b) − b ≤ 0

By the Intermediate Value Theorem, there exists x∗ ∈ [a, b] such
that g(x∗) = 0. Then

f (x∗) = g(x∗) + x∗ = x∗

General Case: Much harder, but a wonderful result due to Scarf
gives an efficient algorithm to find approximate fixed points:

∀ε > 0 ∃x∗ε |f (x∗
ε) − x∗

ε| < ε

Sketch of Idea of Scarf Algorithm:

• Suppose X is n − 1 dimensional. Let X be the price simplex

X =

⎧⎪⎨
⎪⎩p ∈ Rn

+ :
n∑

�=1
p� = 1

⎫⎪⎬
⎪⎭

• Triangulate X , i.e. divide X into a set of simplices such that
the intersection of any two simplices is either empty or a whole
face of both.

• Label each vertex in the triangulation by

L(x) = min {� : f (x)� < x�}
• Each simplex in the triangulation has n vertices. A simplex

is completely labelled if its vertices carry each of the labels
1, . . . , n exactly once; it is almost completely labelled if its
vertices carry the labels 1, . . . , n− 1 with exactly one of these
labels repeated.
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• A simplex which is almost completely labelled has two “doors,”
the faces opposite the two vertices with repeated labels. Algo-
rithm pivots from one simplex to another by going in one door
and alway leaving by the other door. The new simplex must ei-
ther be completely labelled, in which case the algorithm stops,
or it is almost completely labelled and the algorithm continues.

• One can show that one can never visit the same simplex twice:
if you did, there would be a first simplex visited a second time,
but then you had to enter it through a door, and you previ-
ously used both doors, so some other simplex must be the first
simplex visited a second time, contradiction.

• One can show that one cannot exit through a face of the the
large simplex. Since there are only finitely many simplices, and
you visit each one at most once, you must stop after a finite
number of steps at a completely labelled simplex.

• Completely labelled simplices are approximate fixed points:

– Fix ε > 0. Since X is compact and f is continuous, f is
uniformly continuous, so we can find a triangulation fine
enough so that for every simplex σ in the triangulation,

x, y ∈ σ ⇒
⎛
⎝|x − y| <

ε

4n
, |f (x) − f (y)| <

ε

4n

⎞
⎠

– Suppose σ is completely labelled. Let its vertices be v1, . . . , vn,
and assume WLOG

L(v�) = �

–

L(v1) = 1 ⇒ f (v1)1 < (v1)1
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L(v2) = 2 �= 1 ⇒ f (v2)1 ≥ (v2)1
⇒ ∃y1∈σ f (y1)1 = (y1)1

L(v2) = 2 ⇒ f (v2)2 < (v2)2
L(v3) = 3 �= 2 ⇒ f (v3)2 ≥ (v3)2

⇒ ∃y2∈σ f (y2)2 = (y2)2
...

L(vn−1) = n − 1 ⇒ f (vn−1)n−1 < (vn−1)n−1

L(vn) = n �= n − 1 ⇒ f (vn)n−1 ≥ (vn)n−1

⇒ ∃yn−1∈σ f (yn−1)n−1 = (yn−1)n−1

Given any x ∈ σ and any � ∈ {1, . . . , n − 1},
|f (x)� − x�|
≤ |f (x)� − f (y�)�| + |f (y�)� − (y�)�| + |(y�)� − x�|
≤ ε

4n
+ 0 +

ε

4n

=
ε

2n
|f (x)n − xn|
=

∣∣∣∣∣∣∣

⎛
⎜⎝1 − n−1∑

�=1
f (x)�

⎞
⎟⎠ −

⎛
⎜⎝1 − n−1∑

�=1
x�

⎞
⎟⎠

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
n−1∑
�=1

(x� − f (x)�)

∣∣∣∣∣∣∣

≤ n−1∑
�=1

|f (x)� − x�|
≤ (n − 1)

ε

2n

<
ε

2
|f (x) − x| ≤ ‖f (x) − x‖1
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≤ (L − 1)
ε

2n
+

ε

2

<
ε

2
+

ε

2
= ε

Theorem 3 (3.4’, Kakutani’s Fixed Point Theorem)
Suppose X ⊆ Rm is compact, convex, nonempty, and Ψ :
X → X is a convex-valued, closed-valued, nonempty-valued
and upper hemicontinuous correspondence. Then

∃x∗∈Xx∗ ∈ Ψ(x∗)

i.e. Ψ has a fixed point.

Outline of Proof:

• If we could find a continuous selection g from Ψ, i.e.

g : X → X continuous, ∀a∈X g(a) ∈ Ψ(a)

we could apply Brouwer: there exists a∗ ∈ X such that g(a∗) =
a∗, so a∗ ∈ Ψ(a∗) and we would be done. Unfortunately, we
cannot in general find such a selection.

• For each n ∈ N, find a continuous function gn whose graph is
within 1

n of the graph of Ψ. **Convex-valued is used here.

• By Brouwer’s Theorem, we can find a fixed point a∗n of gn, so
(a∗n, a

∗
n) is in the graph of gn. Therefore, there exists (xn, yn)

in the graph of Ψ such that

|a∗n − xn| <
1

n
, |a∗n − yn| <

1

n

• Since X is compact, {a∗n} has a convergent subsequence

a∗nk
→ a∗
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for some a∗ ∈ X .

lim
k→∞xnk

= a∗, lim
k→∞ ynk

= a∗

• Since Ψ is closed-valued and upper hemicontinuous, it has
closed graph, so (

xnk
, ynk

) → (a∗, a∗)
(a∗, a∗) is in the graph of Ψ, so a∗ ∈ Ψ(a∗).

Section 6.1(d): Separating Hyperplane Theorem
The Separating Hyperplane Theorem (also known as Minkowski’s
Theorem) is used to establish the existence of prices with specified
properties.

Theorem 4 (1.26, Separating Hyperplane Theorem)
Suppose X,Y ⊆ Rn, X �= ∅ �= Y , X, Y convex, X ∩ Y = ∅.
Then

∃p∈Rn, p�=0 sup p · X = sup{p · x : x ∈ X}
≤ inf{p · y : y ∈ Y }
= inf p · Y

Proof: We sketch the proof in the special case that X = {x}, Y
compact, x �∈ Y . We will see that we get a stronger conclusion:

∃p∈Rn, p�=0 p · x < inf p · Y
• Choose y0 ∈ Y such that |y0−x| = inf{|y−x| : y ∈ Y }; such

a point exists because Y is compact, so the distance function
g(y) = |y − x| assumes its minimum on Y . Since x �∈ Y ,
x �= y0, so y0 − x �= 0. Let p = y0 − x. The set

H = {z ∈ Rn : p · z = p · y0}
is the hyperplane perpendicular to p through y0.
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•
p · y0 = (y0 − x) · y0

= (y0 − x) · (y0 − x + x)

= (y0 − x) · (y0 − x) + (y0 − x) · x
= |y0 − x|2 + p · x
> p · x

• We claim that
y ∈ Y ⇒ p · y ≥ p · y0

If not, suppose
y ∈ Y, p · y < p · y0

Given α ∈ (0, 1), let

wα = αy + (1 − α)y0

Since Y is convex, wα ∈ Y . We claim that for α sufficiently
close to zero,

|wα − x| < |y0 − x|
so y0 is not the closest point in Y to x, contradiction.

– Geometric argument: The hyperplane H is perpendicular
to p and goes through y0; the tangent to the sphere

S = {z : |z − x| = |y0 − x|}
at y0 is also perpendicular to p, since p is the radius of the
sphere. Therefore, H is the tangent to the sphere at y0.
This implies that for α sufficiently close to 0, |x − wα| <
|y0 − x|.
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– Algebraic argument: If

0 < α <
2p · (y0 − y)

|y0 − y|2
then

|x − wα|2 = |x − αy − (1 − α)y0|2
= |x − y0 + α(y0 − y)|2
= | − p + α(y0 − y)|2
= |p|2 − 2αp · (y0 − y) + α2|y0 − y|2
= |p|2 + α

(−2p · (y0 − y) + α|y0 − y|2)

< |p|2
= |y0 − x|2
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