Economics 204
Lecture 13—Wednesday, August 12, 2009
Revised 8/12/09, revisions indicated by ** and Sticky
Notes
Section 5.5 (Cont.) Transversality Theorem
The Transversality Theorem is a particularly convenient formula-
tion of Sard’s Theorem for our purposes:

Theorem 1 (2.5°, Transversality Theorem) Let
**%g R" and () C R? be open
F:XxQ — R"eC"
with r > 1+ max{0,n —m}
Suppose that
F(z,w)=0= DF(z,w) has rank m

Then there is a set €y C Q such that Q \ 2y has Lebesgue
measure zero such that

w e, Fla,w)=0= D, F(x,w) has rank m
If m =n and wy € ),
e there is a local implicit function
z'(w)
characterized by
F(2*(w),w) =0
where x* 1s a C" function of w.
e the correspondence
w—{z: F(r,w) =0}
1s lower hemicontinuous at wy.
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Interpretation of Tranversality Theorem

e (). a set of parameters (agents’ endowments and preferences,
or players’ payoff functions).

e X a set of variables (price vectors, or strategies).

e R is the range of F' (excess demand, or best-response strate-
gies).
e ['(x,w) = 0 is equilibrium condition, given parameter w.

e Rank DF'(x,w) = m says that, by adjusting either the vari-
ables or parameters, it is possible to move F' in any direc-
tion. *=While we only need to know we can do this at equi-
libria, i.e. at (z,w) such that F(z,w) = 0, in typical appli-
cations the parameters w allow enough freedom to show that
Rank D, F'(x,w) = m for all (z,w).

e When m = n, Rank D, F'(x,w) = m says det D, F'(x,w) # 0,
which says the economy is regular and is the hypothesis of the
Implicit Function Theorem; this tells us that the equilibrium
correspondence is lower hemicontinuous. Economic correspon-
dences like w — {x : F(x,w) = 0} are generally upper hemi-
continuous, so regularity in fact tells us the correspondence is
continuous. You will see in 201B that regularity, plus a prop-
erty of demand functions, tell us that the equilibrium prices are
given by a finite number of implicit functions of the parameters
(endowments).

e Parameters of any given economy are fixed. However, we want
to study the set of parameters for which the resulting economy
is well-behaved.
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e Theorem says the following:

“If, whenever F'(z,w) = 0, it is possible by perturbing
the parameters and variables to move F' in any direc-
tion, then for almost all parameter values, all equilib-
ria are regular, the equilibria are implicitly defined C”
functions of the parameters, and the equilibrium cor-
respondence is lower hemicontinuous.” You will see in
201B that the regularity of the equilibria plus a property
of demand functions implies that there are only finitely
many equilibria.

o If n < m, Rank D, F(z,w) < min{m,n} = n < m. There-
fore,
(F(z,w) =0= b D, F(x,w) has rank m)
= for all w except for a set of Lebesgue measure zero
F(x,w) = 0 has no solution

o Why is it true? Sard’s Theorem says the set of critical values
of I' is a set of Lebesgue measure zero. As long as you have
the freedom to move F' away from zero in every direction, then
you can make zero not be a critical value and hence make the
economy regular.

Section 5.3, Brouwer’s and Kakutani’s Fixed Point
Theorems

Theorem 2 (3.2, Brouwer’s Fixed Point Theorem) Let
X C R" be nonempty, compact, convex and let f : X — X be
continuous. Then

Jpex fz¥) =™
i.e. f has a fived point.
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Proof: (in very special case n = 1): A is a closed interval
a, b]. Let

g(z) = f(z) —a

gla) = fla)—a >0

g(b) = f(b) =<0

By the Intermediate Value Theorem, there exists x* € |a, b] such
that g(z*) = 0. Then

General Case: Much harder, but a wonderful result due to Scart
gives an efficient algorithm to find approximate fixed points:

Ve >0 dp |f(al) —al| <e
Sketch of Idea of Scarf Algorithm:

e Suppose X is n — 1 dimensional. Let X be the price simplex
X:{pERfﬁ:;jlpgzl}

e Triangulate X, i.e. divide X into a set of simplices such that
the intersection of any two simplices is either empty or a whole
face of both.

e Label each vertex in the triangulation by
L(z)=min{{: f(x), < z/}

e Each simplex in the triangulation has n vertices. A simplex
is completely labelled if its vertices carry each of the labels
1,...,n exactly once; it is almost completely labelled if its
vertices carry the labels 1, ..., n — 1 with exactly one of these
labels repeated.



e A simplex which is almost completely labelled has two “doors,”
the faces opposite the two vertices with repeated labels. Algo-
rithm pivots from one simplex to another by going in one door
and alway leaving by the other door. The new simplex must ei-
ther be completely labelled, in which case the algorithm stops,
or it is almost completely labelled and the algorithm continues.

e One can show that one can never visit the same simplex twice:
if you did, there would be a first simplex visited a second time,
but then you had to enter it through a door, and you previ-
ously used both doors, so some other simplex must be the first
simplex visited a second time, contradiction.

e One can show that one cannot exit through a face of the the
large simplex. Since there are only finitely many simplices, and
you visit each one at most once, you must stop after a finite
number of steps at a completely labelled simplex.

e Completely labelled simplices are approximate fixed points:

— Fix ¢ > 0. Since X is compact and f is continuous, f is
uniformly continuous, so we can find a triangulation fine
enough so that for every simplex ¢ in the triangulation,

ryeo=(lv—yl < [fl@) - f)l < )

— Suppose o is completely labelled. Let its vertices be vy, . .., vy,
and assume WLOG

L(Ug) =¥

L(Ul) =1 = f(vl)l < (Ul)l

>



L(vy) =2# 1 = f(v2)1 > (v2)s
= Jdyeo fy1)1 = (Y11
= f(v2)2 < (v2)2
= f(v3)2 > (v3)2
= Jypeo [(Y2)2 = (42)2

Lon) =1 —1 = f(tn-)uct < (tn_1)us
L(”n) —n 7é n—1= f(vn)n—l > (Un)n—l
= Elyn_lea f(yn—l)n—l — <yn—1)n—1

Given any x € o0 and any £ € {1,...,n — 1},
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Theorem 3 (3.4°, Kakutani’s Fixed Point Theorem)
Suppose X C R™ is compact, convex, nonempty, and V¥ :

X — X 18 a convezr-valued, closed-valued, nonempty-valued
and upper hemicontinuous correspondence. Then

Jprexa™ € U(z")
i.e. ¥ has a fized point.
Outline of Proof:
e If we could find a continuous selection ¢ from WV, i.e.
g : X — X continuous, V,ex g(a) € ¥(a)

we could apply Brouwer: there exists a* € X such that g(a*) =
a*, so a* € U(a*) and we would be done. Unfortunately, we
cannot in general find such a selection.

e For cach n € N, find a conti%pus function g, whose graph is
within % of the graph of W. **Convex-valued is used here.

e By Brouwer’s Theorem, we can find a fixed point a; of g,, so
(a¥,a’) is in the graph of g,. Therefore, there exists (z,, yy)
in the graph of W such that

1 1
|a, — x| < ) |a, — yn| < n

e Since X is compact, {a*} has a convergent subsequence
b b
a,, — @
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for some a* € X.

lim z,, =a®. lim =a"
k— 00 "k " koo ynk

e Since VY is closed-valued and upper hemicontinuous, it has
closed graph, so
(xnk;’ynk) — (a*,a")
(a*,a*) is in the graph of W, so a* € U(a*).
Section 6.1(d): Separating Hyperplane Theorem
The Separating Hyperplane Theorem (also known as Minkowski’s

Theorem) is used to establish the existence of prices with specified
properties.

Theorem 4 (1.26, Separating Hyperplane Theorem)
Suppose X, Y CR", X #0#Y, X,Y convex, XNY = 0.
Then
Jpern prosupp - X = sup{p-z:xr € X}

< inf{p-y:yeY}

= infp-Y
Proof: We sketch the proof in the special case that X = {x}, Y
compact, x € Y. We will see that we get a stronger conclusion:

ElpER”,p;«éO p-xr < mfp Y

e Choose yy € Y such that |yy—x| = inf{|y —x| : y € Y'}; such
a point exists because Y is compact, so the distance function
g(y) = |y — x| assumes its minimum on Y. Since z &€ Y,
x 1Yo, s0yp — x # 0. Let p=19yy — x. The set

H={zeR":p-z2=p- -y}
is the hyperplane perpendicular to p through .
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P-Y% = (Yo— 1)y
(yo — ) - (y0—513+37)
= (Yo—x) - (Wo—2)+ W —2)-x
= |lyo—a|’+p-w
> p-x

e We claim that
yeY =p-y=>p-Y%
If not, suppose
yeY, p-y<p-yo
Given a € (0, 1), let

o =0y + (1 —a)yo

Since Y is convex, w, € Y. We claim that for a sufficiently
close to zero,
|wa _:C| < |y0 _:C|

S0 1o 1s not the closest point in Y to x, contradiction.

— Geometric argument: The hyperplane H is perpendicular
to p and goes through 1y; the tangent to the sphere

S=1z:lz =2 =y —zl;

at 1 is also perpendicular to p, since p is the radius of the
sphere. Therefore, H is the tangent to the sphere at yy.
This implies that for a sufficiently close to 0, |x — w,| <

|y0—33|-



— Algebraic argument: It

then

1z — w,

2

2p - (yo — y)
|y0 —y|2

I<a<

x—ay— (1 —a)yl|

x —yo + aly —y)|?

—p+a(y — y)|2

pl* —2ap - (yo —y) + a?lyo — y|?

plP 4+ a(=2p- (yo —y) +alyo — yI*)
2

p

yo—flf|2
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