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Second Order Linear Differential Equations
Consider the second order differential equation y′′ = cy + by′ with
b, c ∈ R.
Rewrite this as a first order linear differential equation in two
variables:

ȳ(t) =

⎛
⎜⎜⎝ y(t)
y′(t)

⎞
⎟⎟⎠

ȳ′(t) =

⎛
⎜⎜⎝ y′(t)
y′′(t)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝ 0 1

c b

⎞
⎟⎟⎠
⎛
⎜⎜⎝ y(t)
y′(t)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝ 0 1

c b

⎞
⎟⎟⎠ ȳ

The eigenvalues are b±
√

b2+4c
2

, the roots of the equation λ2 − bλ−
c = 0. The qualitative behavior of the solutions can be explicitly
described from the coefficients b and c, by determining whether
the eigenvalues are real or complex, and whether the real parts are
negative, zero, or positive; see Section 6 of the Differential
Equations Handout.

Example 1 Consider the second order linear differential equation

y′′ = 2y + y′
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• As above, let

ȳ =

⎛
⎜⎜⎝ y
y′

⎞
⎟⎟⎠

so the equation becomes

ȳ′ =

⎛
⎜⎜⎝ 0 1

2 1

⎞
⎟⎟⎠ ȳ

• Eigenvalues are roots of the characteristic polynomial

λ2 − λ − 2 = 0

Eigenvalues and corresponding eigenvectors are given by

λ1 = 2 v1 = (1, 2)
λ2 = −1 v2 = (1,−1)

• From this information alone, we know the qualitative proper-
ties of the solutions are as given in the phase plane diagram:

– Solutions are roughly hyperbolic in shape with asymptotes
along the eigenvectors. Along the eigenvector v1, the so-
lutions flow off to infinity; along the eigenvector v2, the
solutions converge to zero.

– Solutions flow in directions consistent with flows along asymp-
totes

– On the y-axis, we have y′ = 0, which means that everywhere
on the y-axis (except at the stationary point 0), the solution
must have a vertical tangent.

– On the y′-axis, we have y = 0, so we have

y′′ = 2y + y′ = y′
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Thus, above the y-axis, y′′ = y′ > 0, so y′ is increasing
along the direction of the solution; below the y-axis, y′′ =
y′ < 0, so y′ is decreasing along the direction of the solution.

– Along the line y′ = −2y, y′′ = 2y − 2y = 0, so y′ achieves
a minimum or maximum where it crosses that line.

• General solution is given by⎛
⎜⎜⎝ y(t)
y′(t)

⎞
⎟⎟⎠ = MtxU,V (id)

⎛
⎜⎜⎝ e2(t−t0) 0

0 e−(t−t0)

⎞
⎟⎟⎠MtxV,U(id)

⎛
⎜⎜⎝ y(t0)
y′(t0)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝ 1 1

2 −1

⎞
⎟⎟⎠
⎛
⎜⎜⎝ e2(t−t0) 0

0 e−(t−t0)

⎞
⎟⎟⎠
⎛
⎜⎜⎝ 1/3 1/3

2/3 −1/3

⎞
⎟⎟⎠
⎛
⎜⎜⎝ y(t0)
y′(t0)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝ 1 1

2 −1

⎞
⎟⎟⎠
⎛
⎜⎜⎜⎜⎝

e2(t−t0)

3
e2(t−t0)

3
2e−(t−t0)

3 −e−(t−t0)

3

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎜⎝ y(t0)
y′(t0)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

e2(t−t0)+2e−(t−t0)

3
e2(t−t0)−e−(t−t0)

3

2e2(t−t0)−2e−(t−t0)

3
2e2(t−t0)+e−(t−t0)

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

y(t0)

y′(t0)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y(t0)+y′(t0)
3 e2(t−t0) + 2y(t0)−y′(t0)

3 e−(t−t0)

2y(t0)+2y′(t0)
3

e2(t−t0) + −2y(t0)+y′(t0)
3

e−(t−t0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

• General solution has two real degrees of freedom; a specific
solution is determined by specifying initial conditions y(t0) and
y′(t0).

• Because we have

ȳ =

⎛
⎜⎜⎝ y
y′

⎞
⎟⎟⎠

it is easier to find the general solution by setting

y(t) = C1e
2(t−t0) + C2e

−(t−t0)
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Then

y(t0) = C1 + C2

y′(t) = 2C1e
2(t−t0) − C2e

−(t−t0)

y′(t0) = 2C1 − C2

C1 =
y(t0) + y′(t0)

3

C2 =
2y(t0) − y′(t0)

3

y(t) =
y(t0) + y′(t0)

3
e2(t−t0) +

2y(t0) − y′(t0)
3

e−(t−t0)

Inhomogeneous Linear Differential Equations
with Nonconstant Coefficients
Consider inhomogeneous linear differential equation

y′ = M (t)y + H(t) (1)

• M is continuous function from t to set of n × n matrices;

• H is continuous function from t to Rn.

Close relationship between solutions of the inhomogeneous
linear differential equation (1) and the associated homogeneous
linear differential equation

y′ = M (t)y (2)

Theorem 2 The general solution of the inhomogeneous linear
differential equation (1) is

yh + yp

where yh is the general solution of the homogeneous linear
differential equation (2) and yp is any particular solution of
the inhomogeneous linear differential equation (1).
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Proof:

• Fix any particular solution yp of inhomogeneous equation (1).

– Suppose yh is any solution of the corresponding homoge-
neous equation (2).

– Let yi(t) = yh(t) + yp(t).

y′i(t) = y′h(t) + y′p(t)
= M (t)yh(t) + M (t)yp(t) + H(t)

= M (t)(yh(t) + yp(t)) + H(t)

= M (t)yi(t) + H(t)

so yi is solution of inhomogeneous equation (1).

• Conversely, suppose yi is any solution of inhomogenous equa-
tion (1).

– Let yh(t) = yi(t) − yp(t).

y′h(t) = y′p(t) − y′i(t)
= M (t)yi(t) + H(t) − M (t)yp(t) − H(t)

= M (t)(yi(t) − yp(t))

= M (t)yh(t)

so yh is solution of homogeneous equation (2) and yi =
y + h + yp.

To find general solution of inhomogeneous equation:

• Find general solution of homogeneous equation;

• Find a particular solution of inhomogeneous equation;

• Add these to get general solution of inhomogeneous equation
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Theorem 3 Consider the inhomogeneous linear differential
equation (1). A particular solution of the inhomogeneous lin-
ear differential equation (1), satisfying the initial condition
yp(t0) = y0, is given by

yp(t) = e
∫ t
t0

M(r) dry0 +
∫ t
t0

e
∫ t
s M(r) drH(s) ds (3)

Proof:

yp(t) = e
∫ t
t0

M(r) dry0 +
∫ t
t0

e
∫ t
s M(r) drH(s) ds

= e
∫ t
t0

M(r) dry0 +
∫ t
t0

e
∫ t
t0

M(r) dre−
∫ s
t0

M(r) drH(s) ds

= e
∫ t
t0

M(r) dr
(
y0 +

∫ t
t0

e−
∫ s
t0

M(r) drH(s) ds
)

y′p(t) = M (t)e
∫ t
t0

M(r) dr
(
y0 +

∫ t
t0

e−
∫ s
t0

M(r) drH(s) ds
)

+e
∫ t
t0

M(r) dr
⎛
⎝e−

∫ t
t0

M(r) drH(t)
⎞
⎠

= M (t)yp(t) + H(t)

yp(t0) = e
∫ t0
t0

M(r) dry0 +
∫ t0
t0

e
∫ t0
s M(r) drH(s) ds

= y0

Corollary 4 Consider the inhomogeneous linear differential
equation (1), and suppose that M (t) is a constant matrix M ,
independent of t. A particular solution of the inhomogeneous
linear differential equation (1), satisfying the initial condition
yp(t0) = y0, is given by

yp(t) = e(t−t0)My0 +
∫ t
t0

e(t−s)MH(s) ds (4)

Proof: Substitute M (t) = M in equation (3).

Example 5
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Consider the inhomogeneous linear differential equation
⎛
⎜⎜⎝ y1

y2

⎞
⎟⎟⎠
′
=

⎛
⎜⎜⎝ 1 0

0 −1

⎞
⎟⎟⎠
⎛
⎜⎜⎝ y1

y2

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝ sin t

cos t

⎞
⎟⎟⎠

By Corollary 4, a particular solution is given by

yp(t) = e(t−t0)My0 +
∫ t
t0

e(t−s)MH(s) ds

=

⎛
⎜⎜⎝ et 0

0 e−t

⎞
⎟⎟⎠
⎛
⎜⎜⎝ 1

1

⎞
⎟⎟⎠ +

∫ t
0

⎛
⎜⎜⎝ e(t−s) 0

0 e−(t−s)

⎞
⎟⎟⎠
⎛
⎜⎜⎝ sin s

cos s

⎞
⎟⎟⎠ ds

=

⎛
⎜⎜⎝ et

e−t

⎞
⎟⎟⎠ +

∫ t
0

⎛
⎜⎜⎝ et−s sin s
es−t cos s

⎞
⎟⎟⎠ ds

=

⎛
⎜⎜⎝ et (1 +

∫ t
0 e−s sin s ds)

e−t (1 +
∫ t
0 es cos s ds)

⎞
⎟⎟⎠

∫ t
0 e−s sin s ds = −e−s sin s

∣∣∣∣t0 −
∫ t
0 −e−s cos s ds

= −e−t sin t + e0 sin 0 +
∫ t
0 e−s cos s ds

= −e−t sin t + −e−s cos s
∣∣∣∣t0 −

∫ t
0 −e−s(− sin s) ds

= −e−t sin t + −e−t cos t + e0 cos 0 − ∫ t
0 e−s sin s ds

= −e−t(sin t + cos t) + 1 − ∫ t
0 e−s sin s ds

2
∫ t
0 e−s sin s ds = −e−t(sin t + cos t) + 1
∫ t
0 e−s sin s ds =

−e−t(sin t + cos t) + 1

2∫ t
0 es cos s ds = es cos s|t0 −

∫ t
0 es(− sin s) ds

= et cos t − e0 cos 0 +
∫ t
0 es sin s ds

= et cos t − 1 + es sin s|t0 −
∫ t
0 es cos s ds

= et cos t − 1 + et sin t + e0 sin 0 − ∫ t
0 es cos s ds

= et(sin t + cos t) − 1 − ∫ t
0 es cos s ds

2
∫ t
0 es cos s ds = et(sin t + cos t) − 1
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∫ t
0 es cos s ds =

et(sin t + cos t) − 1

2

yp(t) =

⎛
⎜⎜⎝ et (1 +

∫ t
0 e−s sin s ds)

e−t (1 +
∫ t
0 es cos s ds)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝
et

⎛
⎝1 + −e−t(sin t+cos t)+1

2

⎞
⎠

e−t
⎛
⎝1 + et(sin t+cos t)−1

2

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

et
⎛
⎝3−e−t(sin t+cos t)

2

⎞
⎠

e−t
⎛
⎝1+et(sin t+cos t)

2

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

3et−sin t−cos t)
2

e−t+sin t+cos t
2

⎞
⎟⎟⎟⎠

Thus, the general solution of the original inhomogeneous equation
is given by

⎛
⎜⎜⎝ y1

y2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ C1e

t

C2e
−t

⎞
⎟⎟⎠ +

⎛
⎜⎜⎜⎝

3et−sin t−cos t
2

e−t+sin t+cos t
2

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎝ D1e

t − sin t+cos t
2

D2e
−t + sin t+cos t

2

⎞
⎟⎟⎠

where D1 and D2 are arbitrary real constants.

Nonlinear Differential Equations–Linearization

• Nonlinear differential equations very difficult to solve in closed
form.

• Specific techniques solve special classes of equations

• Numerical methods compute numerical solutions of any ordi-
nary differential equation.
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• Linearization provides qualitative information about the so-
lutions of nonlinear autonomous equations.

• Idea is to find stationary points of the equation, then study
solutions of linearized equation near the stationary points.

• Gives a reasonably reliable guide to behavior of solutions of
original nonlinear equation.

Example 6 (Pendulum)

• Equation of motion of a frictionless pendulum is a nonlinear
autonomous differential equation

y′′ = −α2 sin y, α > 0

Here, y is the angle between the pendulum and a vertical line.
The fact that the motion follows this differential equation is
obtained by resolving the downward force of gravity into two
components, one tangent to the curve the pendulum follows
and one which is parallel to the pendulum; the latter compo-
nent is canceled by the pendulum rod.

• Has much in common with all cyclical processes, including pro-
cesses such as business cycles.

• Equation very difficult to solve exactly because of nonlinearity.

• Define

ȳ(t) =

⎛
⎜⎜⎝ y(t)
y′(t)

⎞
⎟⎟⎠

so differential equation becomes

ȳ′(t) =

⎛
⎜⎜⎝ y2(t)
−α2 sin y1(t)

⎞
⎟⎟⎠
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Let

F (ȳ) =

⎛
⎜⎜⎝ y2(t)
−α2 sin y1(t)

⎞
⎟⎟⎠

• Solve for stationary points: points ȳ such that F (ȳ) = 0:

F (ȳ) = 0 ⇒
⎛
⎜⎜⎝ y2(t)
−α2 sin y1(t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ 0

0

⎞
⎟⎟⎠

⇒ sin y1 = 0 and y2 = 0

⇒ y1 = nπ and y2 = 0

so set of stationary points is

{(nπ, 0) : n ∈ Z}
• Linearize equation around each of the stationary points: Take

first order Taylor polynomial for F :

F (nπ + h, 0 + k) + o(|h| + |k|)

= F (nπ, 0) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂F1
∂y1

∂F1
∂y2

∂F2
∂y1

∂F2
∂y2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

h

k

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝ 0

0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝ 0 1
−α2 cos nπ 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝ h

k

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝ 0 1

(−1)n+1α2 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝ h

k

⎞
⎟⎟⎠

• For n even, eigenvalues are

λ2 + α2 = 0

λ1 = iα, λ2 = −iα

Close to (nπ, 0) for n even, the solutions spiral around the
stationary point. For y2 = y′1 > 0, y1 is increasing, so the
solutions move in a clockwise direction.
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• For n odd, the eigenvalues and eigenvectors are

λ2 − α2 = 0

λ1 = α, λ2 = −α

v1 = (1, α), v2 = (1,−α)

Close to (nπ, 0) for n odd, the solutions are roughly hyper-
bolic in shape; along v2, they converge to the stationary point,
while along v1, they diverge from the stationary point. The
solutions of the linearized equation tend to infinity along v1.
The stationary point (nπ, 0) with n odd corresponds to the
pendulum pointing vertically upwards.

• From this information alone, we know the qualitative proper-
ties of the solutions **of the linearized equation are as given
in the phase plane diagram on the next page; the solutions of
the original equation will closely follow these near the stable
points**:

– On the y-axis, we have y′ = 0, which means that everywhere
on the y-axis (except at the stationary points), the solution
must have a vertical tangent.

– **Solve y′′ = −α2 sin y = 0, so y = nπ; thus, at y = nπ,
the derivative of y′ is zero, so the tangent to the curve is
horizontal.

• If the initial value of |y2| is sufficiently large, the solutions
**of the linearized equation no follow longer closed curves; this
corresponds to the pendulum going “over the top” rather than
oscillating back and forth. From the physical properties of the
pendulum, we can see this is also true for the solutions of the
nonlinear equation, but this is probably a coincidence; there

11
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is no guarantee that a nonlinear equation will behave like its
linearization far from the stationary points.**

Nonlinear Differential Equations–Stability
Linearization provides information about qualitative properties of
solutions of nonlinear differential equations near the stationary
points. Suppose ys is a stationary point:

• If eigenvalues of linearized equation at ys all have strictly neg-
ative real parts, there exists ε > 0 such that, if |y(0)−ys| < ε,
then limt→∞ y(t) = ys; all solutions of the original nonlinear
equation which start sufficiently close to the stationary point
ys converge to ys.

• If eigenvalues of linearized equation at ys all have strictly pos-
itive real parts, no solution of original nonlinear equation con-
verge to ys.

• If eigenvalues of linearized equation at ys all have real part
zero, then solutions of linearized equation are closed curves
around ys. This tells us little about the solutions of nonlinear
equation. They may

– follow closed curves around ys

– converge to ys

– converge to a limit closed curve around ys

– diverge from ys

– converge to ys along certain directions and diverge from ys

along other directions.

Determining Behavior of Solutions when Eigenvalues
have Real Part Zero
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Example 7 Consider the initial value problem
⎛
⎜⎜⎝ y′1(t)
y′2(t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ −9y2(t) + 4y3

1(t) + 4y1(t)y
2
2(t)

4y1(t) + 9y2
1(t)y2(t) + 9y3

2(t)

⎞
⎟⎟⎠ , y1(0) = 3, y2(0) = 0

(5)

ys =

⎛
⎜⎜⎝ 0

0

⎞
⎟⎟⎠ is a stationary point. Linearization around ys is

y′(t) =

⎛
⎜⎜⎝ 0 −9

4 0

⎞
⎟⎟⎠ y

Characteristic equation is λ2 + 36 = 0, so matrix has distinct
eigenvalues λ1 = 6i and λ2 = −6i; since both have real part
zero, we know the solutions of the linearized differential equation

follows closed curves around zero. Eigenvectors are v1 =

⎛
⎜⎜⎝ 3i/2

1

⎞
⎟⎟⎠

and v2 =

⎛
⎜⎜⎝ −3i/2

1

⎞
⎟⎟⎠, so change of basis matrices are

MtxU,V (id) =

⎛
⎜⎜⎝ 3i/2 −3i/2

1 1

⎞
⎟⎟⎠ and MtxV,U(id) =

⎛
⎜⎜⎝ −i/3 1/2

i/3 1/2

⎞
⎟⎟⎠

Then the solution of the linearized initial value problem is

y =

⎛
⎜⎜⎝ 3i/2 −3i/2

1 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝ e6ti 0

0 e−6ti

⎞
⎟⎟⎠
⎛
⎜⎜⎝ −i/3 1/2

i/3 1/2

⎞
⎟⎟⎠
⎛
⎜⎜⎝ 3

0

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝ 3i/2 −3i/2

1 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝ −ie6ti/3 e6ti/2

ie−6ti/3 e−6ti/2

⎞
⎟⎟⎠
⎛
⎜⎜⎝ 3

0

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝ (e6ti + e−6ti)/2 (e6ti − e−6ti)3i/4

(e−6ti − e6ti)i/3 (e6ti + e−6ti)/2

⎞
⎟⎟⎠
⎛
⎜⎜⎝ 3

0

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝ cos 6t −3(sin 6t)/2

2(sin 6t)/3 cos 6t

⎞
⎟⎟⎠
⎛
⎜⎜⎝ 3

0

⎞
⎟⎟⎠
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=

⎛
⎜⎜⎝ 3 cos 6t

2 sin 6t

⎞
⎟⎟⎠

since

e6ti + e−6ti = cos 6t + i sin 6t + cos(−6t) + i sin(−6t)

= cos 6t + i sin 6t + cos 6t − i sin 6t

= 2 cos 6t

e6ti − e−6ti = cos 6t + i sin 6t − cos(−6t) − i sin(−6t)

= cos 6t + i sin 6t − cos 6t + i sin 6t

= 2i sin 6t

Notice that

y2
1(t)

9
+

y2
2(t)

4
=

9 cos2 6t

9
+

4 sin2 6t

4
= cos2 6t + sin2 6t

= 1

so the solution of the linearized initial value problem is a closed
curve running counterclockwise around the ellipse with principal
axes along the y1 and y2 axes, of length 3 and 2 respectively.

Let

G(y) =
y2

1

9
+

y2
2

4

and compute dG(y(t))
dt

:

dG(y(t))

dt
=

(
∂G
∂y1

∂G
∂y2

) ⎛⎜⎜⎝ y′1(t)
y′2(t)

⎞
⎟⎟⎠

=
(

2y1(t)
9

y2(t)
2

) ⎛⎜⎜⎝ −9y2(t) + 4y3
1(t) + 4y1(t)y

2
2(t)

4y1(t) + 9y2
1(t)y2(t) + 9y3

2(t)

⎞
⎟⎟⎠

14



= −2y1(t)y2(t) + 8y4
1(t)/9 + 8y2

1(t)y
2
2(t)/9

+2y1(t)y2(t) + 9y2
1(t)y

2
2(t)/2 + 9y4

2(t)/2

= 8y4
1(t)/9 + 97y2

1(t)y
2
2(t)/18 + 9y4

2(t)/2

> 0

• y′(t) is tangent to the solution at every t, and y′(t) always
points outside the level curve of G through y(t), as in green
arrows in the diagram.

• Solution of initial value problem (5) spirals outward, always
moving to higher level curves of G.

• For G(y) ≥ 1 (i.e., outside the ellipse which the solution of the
linearized initial value problem follows), easy to see that

8y4
1(t)/9 + 97y2

1(t)y
2
2(t)/18 + 9y4

2(t)/2 >
8

9

(
y2

1(t) + y2
2(t)

)2

so dG(y(t))
dt

is uniformly bounded away from zero, so G(y(t)) =

G(y(0)) +
∫ t
0

dG(y(s))
ds

ds → ∞ as t → ∞.

• Linear terms become dwarfed by the higher order terms, which
will determine whether the solution continues to spiral as it
heads off into the distance.

Consider instead the initial value problem⎛
⎜⎜⎝ y′1(t)
y′2(t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ −9y2(t) − 4y3

1(t) − 4y1(t)y
2
2(t)

4y1(t) − 9y2
1(t)y2(t) − 9y3

2(t)

⎞
⎟⎟⎠ , y1(0) = 3, y2(0) = 0

(6)
The linearized initial value problem has not changed. As before,
compute

dG(y(t))

dt
=

(
∂G
∂y1

∂G
∂y2

) ⎛⎜⎜⎝ y′1(t)
y′2(t)

⎞
⎟⎟⎠
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=
(

2y1(t)
9

y2(t)
2

) ⎛⎜⎜⎝ −9y2(t) − 4y3
1(t) − 4y1(t)y

2
2(t)

4y1(t) − 9y2
1(t)y2(t) − 9y2

2(t)

⎞
⎟⎟⎠

= −2y1(t)y2(t) − 8y4
1(t)/9 − 8y2

1(t)y
2
2(t)/9

+2y1(t)y2(t) − 9y2
1(t)y

2
2(t)/2 − 9y4

2(t)/2

= −8y4
1(t)/9 − 97y2

1(t)y
2
2(t)/18 − 9y4

2(t)/2

< 0

• y′(t) is tangent to the solution at every t, and y′(t) always
points inside the level curve of G through y(t), as in the blue
arrows.

• Solution of initial value problem (6) spirals inward, always
moving to lower level curves of G.

• Claim: y(t) →
⎛
⎜⎜⎝ 0

0

⎞
⎟⎟⎠ as t → ∞.

– Note dG(y(t))
dt < 0 except at origin, so for all C > 0,

α = ∗ ∗ sup

⎧⎪⎪⎨
⎪⎪⎩
dG(y(t))

dt
: C ≤ G(y(t)) ≤ G(y(0))

⎫⎪⎪⎬
⎪⎪⎭ < 0

since {y : C ≤ G(y) ≤ G(y(0))} is compact.

– If G(y(t)) ≥ C for all t,

G(y(t)) = G(y(0)) +
∫ t
0

dG(y(s))

ds
ds

≤ G(y(0)) + αt

→ −∞ as t → ∞
contradiction.

– Thus, G(y(t)) → 0 and solution of initial value problem (6)

converges to stationary point

⎛
⎜⎜⎝ 0

0

⎞
⎟⎟⎠ as t → ∞.
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Anderson
Sticky Note
sup rather than inf.  The point is that the values of the derivative dG/dt are negative and uniformly bounded away from zero.



In initial value problems (5) and (6), we were lucky to some
extent.

• We took G to be function whose level sets are the solutions
of the linearized differential equation, and found tangent to
the solution always pointed outside the level curve in (5) and
always pointed inside the level curve in (6).

• Not hard to construct examples in which tangent points out-
ward at some points and inward at others, so the value G(y(t))
is not monotonic.

– May be able to show by calculation that G(y(t)) → ∞, so
the solution disappears off into the distance

– May be able to show by calculation that G(y(t)) → 0, so
the solution converges to the stationary point.

– Alternative method is to choose a different function G,
whose level sets are not solutions of linearized equation, but
for which one can prove that dG(y(t))

dt is always positive or
always negative; this is called Liapunov’s Second Method.
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