Economics 204

Lecture 2, July 28, 2009

Section 1.4, Cardinality (Cont.)

Theorem 1 (Cantor) $2^{\mathbf{N}}$, the set of all subsets of \mathbf{N} , is not countable.

Proof: Suppose $2^{\mathbf{N}}$ is countable. Then there is a bijection $f : \mathbf{N} \to 2^{\mathbf{N}}$. Let $A_m = f(m)$. We create an infinite matrix, whose $(m, n)^{th}$ entry is 1 if $n \in A_m$, 0 otherwise:

				\mathbf{N}				
			1	2	3	4	5	
	$A_1 =$	Ø {1} {1,2,3} N 2 N	0	0	0	0	0	
2 N	$A_2 =$	{1}	1	0	0	0	0	
	$A_3 =$	$\{1, 2, 3\}$	1	1	1	0	0	
	$A_4 =$	Ν	1	1	1	1	1	
	$A_5 =$	$2\mathbf{N}$	0 :	1 :	0 :	1 :	0 :	••••

Now, on the main diagonal, change all the 0s to 1s and vice versa:

				\mathbf{N}			
			1	2	3	4	5
		\emptyset {1} {1, 2, 3} N 2 N					
	$A_1 =$	Ø	1	0	0	0	0
	$A_2 =$	{1}	1	1	0	0	0
$2^{\mathbf{N}}$	$A_3 =$	$\{1, 2, 3\}$	1	1	0	0	0
	$A_4 =$	Ν	1	1	1	0	1
	$A_5 =$	$2\mathbf{N}$	0	1	0	1	1
	:		:	:	÷	:	÷ •.

The coding on the diagonal represents a subset of \mathbf{N} which differs from each of the A_m , contradiction. It is important that we go along the diagonal. We need to define a set $A \subseteq \mathbf{N}$ which is different from $f(1), f(2), \ldots$ To define a set, we need to specify exactly what its elements are, and we do this by taking one entry from each column and one entry from each row. The entry from column n tells us whether or not n is in the set, and the entry in row m is used to ensure that $A \neq A_m$.

More formally, let

$$t_{mn} = \begin{cases} 1 & \text{if } n \in A_m \\ 0 & \text{if } n \notin A_m \end{cases}$$

Let $A = \{m \in \mathbb{N} : t_{mm} = 0\}$. (Aside: this is the set described by changing all the codings on the diagonal.)

 $m \in A \iff t_{mm} = 0$ $\Leftrightarrow m \notin A_m$ $1 \in A \iff 1 \notin A_1 \text{ so } A \neq A_1$ $2 \in A \iff 2 \notin A_2 \text{ so } A \neq A_2$ \vdots $m \in A \iff m \notin A_m \text{ so } A \neq A_m$

Therefore, $A \neq f(m)$ for any m, so f is not onto, contradiction.

Message: There are fundamentally more subsets of \mathbf{N} than elements of \mathbf{N} . One can show that $2^{\mathbf{N}}$ is numerically equivalent to \mathbf{R} , so there are fundamentally more real numbers than rational numbers.

Section 1.5: Algebraic Structures

Field Axioms

A field $\mathcal{F} = (F, +, \cdot)$ is a 3-tuple consisting of a set F and two binary operations $+, \cdot : F \times F \to F$ such that

1. Associativity of +:

$$\forall_{\alpha,\beta,\gamma\in F} \ (\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$$

2. Commutativity of +:

$$\forall_{\alpha,\beta\in F} \ \alpha + \beta = \beta + \alpha$$

3. Existence of additive identity:

$$\exists !_{0 \in F} \left((1 \neq 0) \land (\forall_{\alpha \in F} \ \alpha + 0 = 0 + \alpha = \alpha) \right)$$

(Aside: This says that 0 behaves like zero in the real numbers; it need not be zero in the real numbers.)

4. Existence of additive inverse:

$$\forall_{\alpha \in F} \exists !_{(-\alpha) \in F} \alpha + (-\alpha) = (-\alpha) + \alpha = 0$$

(Aside: We wrote $\alpha + (-\alpha)$ rather than $\alpha - \alpha$ because substraction has not yet been defined. In fact, we define $\alpha - \beta$ to be $\alpha + (-\beta)$.)

5. Associativity of \cdot :

$$\forall_{\alpha,\beta,\gamma\in F} \ (\alpha\cdot\beta)\cdot\gamma = \alpha\cdot(\beta\cdot\gamma)$$

6. Commutativity of \cdot :

$$\forall_{\alpha,\beta\in F} \; \alpha \cdot \beta = \beta \cdot \alpha$$

7. Existence of multiplicative identity:

$$\exists !_{1 \in F} \forall_{\alpha \in F} \; \alpha \cdot 1 = 1 \cdot \alpha = \alpha$$

(Aside: This says that 1 behaves like one in the real numbers; it need not be one in the real numbers.)

8. Existence of multiplicative inverse:

$$\forall_{\alpha \in F, \alpha \neq 0} \exists !_{\alpha^{-1} \in F} \; \alpha \cdot \alpha^{-1} = \alpha^{-1} \cdot \alpha = 1$$

(Aside: We define $\frac{\alpha}{\beta} = \alpha \beta^{-1}$.)

9. Distributivity of multiplication over addition:

$$\forall_{\alpha,\beta,\gamma\in F} \ \alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$$

The point is that any property that follows from the definition of field (the "Field Axioms") must apply to any field

Examples of Fields:

• R

• $C = \{x + iy : x, y \in R\}$. $i^2 = -1$, so

$$(x + iy)(w + iz) = xw + ixz + iwy + i^{2}yz = (xw - yz) + i(xz + wy)$$

- Q: Q ⊂ R, Q ≠ R. Q is closed under +, ·, taking additive and multiplicate inverses; the field axioms are inherited from the field axioms on R, so Q is a field.
- N is not a field: no additive identity.
- Z is not a field; no multiplicative inverse for 2.
- $\mathbf{Q}(\sqrt{2})$, the smallest field containing $\mathbf{Q} \cup \{\sqrt{2}\}$. Take \mathbf{Q} , add $\sqrt{2}$, and close up under +, \cdot , taking additive and multiplicative inverses. One can show

$$\mathbf{Q}(\sqrt{2}) = \{q + r\sqrt{2} : q, r \in \mathbf{Q}\}$$

For example,

$$(q+r\sqrt{2})^{-1} = \frac{q}{q^2-2r^2} - \frac{r}{q^2-2r^2}\sqrt{2}$$

• A finite field: $F_2 = (\{0, 1\}, +, \cdot)$ where

		0 + 0	=	0			$0 \cdot 0$	=	0
0 + 1	=	1 + 0	=	1	$0 \cdot 1$	=	$1 \cdot 0$	=	0
		1 + 1	=	0			$1 \cdot 1$	=	1

("Arithmetic mod 2")

Vector Space Axioms

Abstract definition of objects that "behave like \mathbf{R}^{n} "

A vector space is a 4-tuple $(V, F, +, \cdot)$ where V is a set of elements, called vectors, F is a field, + is a binary operation on V called vector addition, and $\cdot : F \times V \to V$ is called scalar multiplication, satisfying 1. Associativity of +:

$$\forall_{x,y,z\in V} \ (x+y) + z = x + (y+z)$$

2. Commutativity of +:

$$\forall_{x,y\in V} \ x+y=y+x$$

3. Existence of vector additive identity:

$$\exists !_{0 \in V} \forall_{x \in V} \ x + 0 = 0 + x = x$$

(Note that $0 \in V$ and $0 \in F$ are different.)

4. Existence of vector additive inverse:

$$\forall_{x \in V} \exists !_{(-x) \in V} \ x + (-x) = (-x) + x = 0$$

(We define x - y to be x + (-y).)

5. Distributivity of scalar multiplication over vector addition:

$$\forall_{\alpha \in F, x, y \in V} \ \alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$$

6. Distributivity of scalar multiplication over scalar addition:

$$\forall_{\alpha,\beta\in F,x\in V} \ (\alpha+\beta) \cdot x = \alpha \cdot x + \beta \cdot x$$

7. Associativity of \cdot :

$$\forall_{\alpha,\beta\in F,x\in V} \ (\alpha\cdot\beta)\cdot x = \alpha\cdot(\beta\cdot x)$$

8. Multiplicative identity:

 $\forall_{x \in V} \ 1 \cdot x = x$

(Note that 1 is the multiplicative identity in F; $1 \notin V$)

Examples of vector spaces:

- 1. \mathbf{R}^n over \mathbf{R} .
- 2. **R** is a vector space over \mathbf{Q} :

(scalar multiplication) $q \cdot r = qr$ (product in **R**)

R is not finite-dimensional over Q, i.e. **R** is not **Q**ⁿ for any $n \in \mathbf{N}$.

- 3. **R** is a vector space over **R**.
- 4. $\mathbf{Q}(\sqrt{2})$ is a vector space over \mathbf{Q} . As a vector space, it is \mathbf{Q}^2 ; as a field, you need to take the funny field multiplication.
- 5. $\mathbf{Q}(\sqrt[3]{2})$, as a vector space over \mathbf{Q} , is \mathbf{Q}^3 .
- 6. $(F_2)^n$ is a *finite* vector space over F_2 .
- 7. C([0,1]), the space of all continuous functions from [0,1] to **R**, is a vector space over **R**.
 - vector addition:

$$(f+g)(t) = f(t) + g(t)$$

(We define the function f + g by specifying what value it takes for each $t \in [0, 1]$.)

• scalar multiplication:

$$(\alpha f)(t) = \alpha(f(t))$$

- vector additive identity: 0 is the function which is identically zero: 0(t) = 0 for all $t \in [0, 1]$.
- vector additive inverse:

$$(-f)(t) = -(f(t))$$

Section 1.6: Axioms for R

- 1. **R** is a field with the usual operations $+, \cdot,$ additive identity 0, and multiplicative identity 1.
- 2. Order Axiom: There is a complete ordering \leq , i.e. \leq is reflexive, transitive, antisymmetric ($\alpha \leq \beta, \beta \leq \alpha \Rightarrow \alpha = \beta$) with the property that

$$\forall_{\alpha,\beta\in\mathbf{R}} \ (\alpha\leq\beta)\lor(\beta\leq\alpha)$$

The order is compatible with + and \cdot , i.e.

$$\forall_{\alpha,\beta,\gamma\in\mathbf{R}} \begin{cases} \alpha \leq \beta \Rightarrow \alpha + \gamma \leq \beta + \gamma \\ \alpha \leq \beta, 0 \leq \gamma \Rightarrow \alpha\gamma \leq \beta\gamma \end{cases}$$

 $\alpha \geq \beta$ means $\beta \leq \alpha$.

- $\alpha < \beta$ means $\alpha \leq \beta$ and $\alpha \neq \beta$.
- 3. Completeness Axiom: Suppose $L, H \subseteq \mathbf{R}, L \neq \emptyset \neq H$ satisfy

 $\forall_{\ell \in L, h \in H} \ \ell \le h$

Then

```
\exists_{\alpha \in \mathbf{R}} \forall_{\ell \in L, h \in H} \ \ell \le \alpha \le h\alphaL \qquad \downarrow \qquad H----) \qquad \cdot \qquad (-----
```

The Completeness Axiom differentiates \mathbf{R} from \mathbf{Q} : \mathbf{Q} satisfies all the axioms for \mathbf{R} except the Completeness Axiom

The most useful consequence of the Completeness Axiom (and often used as an alternative axiom) is the Supremum Property.

Definition 2 Suppose $X \subseteq \mathbf{R}$. We say *u* is an *upper bound* for *X* if

$$\forall_{x \in X} \ x \le u$$

and ℓ is a *lower bound* for X if

$$\forall_{x \in X} \ \ell \le x$$

X is bounded above if there is an upper bound for X, and bounded below if there is a lower bound for X.

Definition 3 Suppose X is bounded above. The *supremum* of X, written $\sup X$, is the smallest upper bound for X, i.e. $\sup X$ satisfies

 $\forall_{x \in X} \sup X \ge x \text{ (sup is an upper bound)}$

 $\forall_{y < \sup X} \exists_{x \in X} x > y \text{ (there is no smaller upper bound)}$

Analogously, suppose X is bounded below. The *infimum* of X, written $\inf X$, is the greatest lower bound for X, i.e. $\inf X$ satisfies

 $\forall_{x \in X} \inf X \leq x \pmod{x}$ (inf X is a lower bound)

 $\forall_{y \ge \inf X} \exists_{x \in X} x < y \text{ (there is no greater lower bound)}$

(Not in book) If X is not bounded above, write $\sup X = \infty$. If X is not bounded below, write $\inf X = -\infty$. $\sup \emptyset = -\infty$, $\inf \emptyset = +\infty$.

The Supremum Property: Every nonempty set of real numbers which is bounded above has a supremum, which is a real number. Every nonempty set of real numbers which is bounded below has an infimum, which is a real number.

Caution: sup X need not be an element of X. For example, sup $(0,1) = 1 \notin (0,1)$.

Theorem 4 (Theorem 6.8, plus ...) The Supremum Property and the Completeness Axiom are equivalent.

Proof: Assume the Completeness Axiom. Let $X \subseteq \mathbf{R}$ be a nonempty set which is bounded above. Let U be the set of all upper bounds for X. Since X is bounded above, $U \neq \emptyset$. If $x \in X$ and $u \in U$, $x \leq u$ since u is an upper bound for X. So

$$\forall_{x \in X, u \in U} \ x \le u$$

By the Completeness Axiom,

$$\exists_{\alpha \in \mathbf{R}} \forall_{x \in X, u \in U} \ x \le \alpha \le u$$

 α is an upper bound for X, and it is less than or equal to every other upper bound for X, so it is the least upper bound for X, so $\sup X = \alpha \in \mathbf{R}$. The case in which X is bounded below is similar. Thus, the Supremum Property holds.

Conversely, assume the Supremum Property. Suppose $L, H \subseteq \mathbf{R}, L \neq \emptyset \neq H$, and

$$\forall_{\ell \in L, h \in H} \ \ell \le h$$

Since $L \neq \emptyset$ and L is bounded above (by any element of H), $\alpha = \sup L$ exists and is real. By the definition of supremum, α is an upper bound for L, so

$$\forall_{\ell \in L} \ \ell \le \alpha$$

Suppose $h \in H$. Then h is an upper bound for L, so by the definition of supremum, $\alpha \leq h$. Therefore, we have shown that

$$\forall_{\ell \in L, h \in H} \ \ell \le \alpha \le h$$

so the Completeness Axiom holds. \blacksquare

Theorem 5 (Archimedean Property, Theorem 6.10 + ...)

$$\forall_{x,y \in \mathbf{R}, y > 0} \exists_{n \in \mathbf{N}} ny = (y + \dots + y) > x$$

n times

Theorem 6 (Intermediate Value Theorem) Suppose $f : [a,b] \to \mathbf{R}$ is continuous, and f(a) < d < f(b). Then there exists $c \in (a,b)$ such that f(c) = d.

Proof: Later, we will give a slick proof. Here, we give a bare-hands proof using the Supremum Property. Let

$$B = \{ x \in [a, b] : f(x) < d \}$$

 $a \in B$, so $B \neq \emptyset$; $B \subseteq [a, b]$, so B is bounded above. By the Supremum Property, sup B exists and is real so let $c = \sup B$. Since $a \in B$, $c \ge a$. $B \subseteq [a, b]$, so $c \le b$. Therefore, $c \in [a, b]$.

We claim that f(c) = d. If not, suppose f(c) < d. Then since f(b) > d, $c \neq b$, so c < b. Let $\varepsilon = \frac{d-f(c)}{2} > 0$. Since f is continuous at c, there exists $\delta > 0$ such that

$$|x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$$

$$\implies f(x) < f(c) + \varepsilon$$

$$= f(c) + \frac{d - f(c)}{2}$$

$$= \frac{f(c) + d}{2}$$

$$< \frac{d + d}{2}$$

$$= d$$

so $(c, c + \delta) \subseteq B$, so $c \neq \sup B$, contradiction.

Suppose f(c) > d. Then since f(a) < d, $a \neq c$, so c > a. Let $\varepsilon = \frac{f(c)-d}{2} > 0$. Since f is continuous at

$$|x - c| < \delta \implies |f(x) - f(c)| < \varepsilon$$

$$\implies f(x) > f(c) - \varepsilon$$

$$= f(c) - \frac{f(c) - d}{2}$$

$$= \frac{f(c) + d}{2}$$

$$> \frac{d + d}{2}$$

$$= d$$

so $(c - \delta, c + \delta) \cap B = \emptyset$. So either there exists $x \in B$ with $x \ge c + \delta$ (in which case c is not an upper bound for B) or $c - \delta$ is an upper bound for B (in which case c is not the least upper bound for B); in either case, $c \ne \sup B$, contradiction.

Since $f(c) \neq d$, $f(c) \neq d$, and the order is complete, f(c) = d. Since f(a) < d and f(b) > d, $a \neq c \neq b$, so $c \in (a, b)$.

Corollary 7 There exists $x \in \mathbf{R}$ such that $x^2 = 2$.

Proof: Let $f(x) = x^2$, for $x \in [0, 2]$. From Math 1A, f is continuous. f(0) = 0 < 2 and f(2) = 4 > 2, so by the Intermediate Value Theorem, there exists $c \in (0, 2)$ such that f(c) = 2, i.e. $c^2 = 2$.

Read sections 1.6(c) (absolute values) and 1.7 (complex numbers) on your own.