Lecture 2, July 28, 2009

Section 1.4, Cardinality (Cont.)

Theorem 1 (Cantor) $2^{\mathbf{N}}$, the set of all subsets of \mathbf{N}, is not countable.

Proof: Suppose $2^{\mathbf{N}}$ is countable. Then there is a bijection $f: \mathbf{N} \rightarrow 2^{\mathbf{N}}$. Let $A_{m}=f(m)$. We create an infinite matrix, whose $(m, n)^{t h}$ entry is 1 if $n \in A_{m}, 0$ otherwise:

				N						
				1	2	3	4			\ldots
	A_{1}	$=$	\emptyset	0	0	0	0	0		\ldots
$2^{\text {N }}$	A_{2}	$=$	\{1\}	1	0	0	0			\ldots
	A_{3}	$=$	$\{1,2,3\}$	1	1	1	0			\ldots
	A_{4}	$=$	N	1	1	1	1			\cdots
	A_{5}	$=$	2 N	0	1	0	1			\ldots
		:		;	\vdots	\vdots	\vdots			

Now, on the main diagonal, change all the 0 s to 1 s and vice versa:

The coding on the diagonal represents a subset of \mathbf{N} which differs from each of the A_{m}, contradiction. It is important that we go along the diagonal. We need to define a set $A \subseteq \mathbf{N}$ which is different from $f(1), f(2), \ldots$ To define a set, we need to specify exactly what its elements are, and we do this by taking one entry from each column and one entry from each row. The entry from column n tells us whether or not n is in the set, and the entry in row m is used to ensure that $A \neq A_{m}$.

More formally, let

$$
t_{m n}= \begin{cases}1 & \text { if } n \in A_{m} \\ 0 & \text { if } n \notin A_{m}\end{cases}
$$

Let $A=\left\{m \in \mathbf{N}: t_{m m}=0\right\}$. (Aside: this is the set described by changing all the codings on the diagonal.)

$$
\begin{aligned}
m \in A & \Leftrightarrow t_{m m}=0 \\
& \Leftrightarrow m \notin A_{m} \\
1 \in A & \Leftrightarrow 1 \notin A_{1} \text { so } A \neq A_{1} \\
2 \in A & \Leftrightarrow 2 \notin A_{2} \text { so } A \neq A_{2} \\
& \vdots \\
m \in A & \Leftrightarrow m \notin A_{m} \text { so } A \neq A_{m}
\end{aligned}
$$

Therefore, $A \neq f(m)$ for any m, so f is not onto, contradiction.
Message: There are fundamentally more subsets of \mathbf{N} than elements of \mathbf{N}. One can show that $2^{\mathbf{N}}$ is numerically equivalent to \mathbf{R}, so there are fundamentally more real numbers than rational numbers.

Section 1.5: Algebraic Structures

Field Axioms

A field $\mathcal{F}=(F,+, \cdot)$ is a 3 -tuple consisting of a set F and two binary operations $+, \cdot: F \times F \rightarrow F$ such that

1. Associativity of + :

$$
\forall_{\alpha, \beta, \gamma \in F}(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)
$$

2. Commutativity of + :

$$
\forall_{\alpha, \beta \in F} \alpha+\beta=\beta+\alpha
$$

3. Existence of additive identity:

$$
\exists!_{0 \in F}\left((1 \neq 0) \wedge\left(\forall_{\alpha \in F} \alpha+0=0+\alpha=\alpha\right)\right)
$$

(Aside: This says that 0 behaves like zero in the real numbers; it need not be zero in the real numbers.)
4. Existence of additive inverse:

$$
\forall_{\alpha \in F} \exists!_{(-\alpha) \in F} \alpha+(-\alpha)=(-\alpha)+\alpha=0
$$

(Aside: We wrote $\alpha+(-\alpha)$ rather than $\alpha-\alpha$ because substraction has not yet been defined. In fact, we define $\alpha-\beta$ to be $\alpha+(-\beta)$.)
5. Associativity of $\cdot:$

$$
\forall_{\alpha, \beta, \gamma \in F}(\alpha \cdot \beta) \cdot \gamma=\alpha \cdot(\beta \cdot \gamma)
$$

6. Commutativity of $:$

$$
\forall_{\alpha, \beta \in F} \alpha \cdot \beta=\beta \cdot \alpha
$$

7. Existence of multiplicative identity:

$$
\exists!_{1 \in F} \forall_{\alpha \in F} \alpha \cdot 1=1 \cdot \alpha=\alpha
$$

(Aside: This says that 1 behaves like one in the real numbers; it need not be one in the real numbers.)
8. Existence of multiplicative inverse:

$$
\forall_{\alpha \in F, \alpha \neq 0} \exists!_{\alpha^{-1} \in F} \alpha \cdot \alpha^{-1}=\alpha^{-1} \cdot \alpha=1
$$

(Aside: We define $\frac{\alpha}{\beta}=\alpha \beta^{-1}$.)
9. Distributivity of multiplication over addition:

$$
\forall_{\alpha, \beta, \gamma \in F} \alpha \cdot(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma
$$

The point is that any property that follows from the definition of field (the "Field Axioms") must apply to any field

Examples of Fields:

- R
- $\mathbf{C}=\{x+i y: x, y \in \mathbf{R}\} . i^{2}=-1$, so

$$
(x+i y)(w+i z)=x w+i x z+i w y+i^{2} y z=(x w-y z)+i(x z+w y)
$$

- $\mathbf{Q}: \mathbf{Q} \subset \mathbf{R}, \mathbf{Q} \neq \mathbf{R} . \mathbf{Q}$ is closed under,$+ \cdot$, taking additive and multiplicate inverses; the field axioms are inherited from the field axioms on \mathbf{R}, so \mathbf{Q} is a field.
- \mathbf{N} is not a field: no additive identity.
- \mathbf{Z} is not a field; no multiplicative inverse for 2.
- $\mathbf{Q}(\sqrt{2})$, the smallest field containing $\mathbf{Q} \cup\{\sqrt{2}\}$. Take \mathbf{Q}, add $\sqrt{2}$, and close up under + , \cdot, taking additive and multiplicative inverses. One can show

$$
\mathbf{Q}(\sqrt{2})=\{q+r \sqrt{2}: q, r \in \mathbf{Q}\}
$$

For example,

$$
(q+r \sqrt{2})^{-1}=\frac{q}{q^{2}-2 r^{2}}-\frac{r}{q^{2}-2 r^{2}} \sqrt{2}
$$

- A finite field: $F_{2}=(\{0,1\},+, \cdot)$ where

$$
\begin{array}{rlr}
0+0=0 & 0 \cdot 0=0 \\
0+1=1+0=1 \\
1+1=0 & 0 \cdot 1=1 \cdot 0=0 \\
1 \cdot 1=1
\end{array}
$$

("Arithmetic mod 2")

Vector Space Axioms

Abstract definition of objects that "behave like $\mathbf{R}^{n "}$
A vector space is a 4-tuple $(V, F,+, \cdot)$ where V is a set of elements, called vectors, F is a field, + is a binary operation on V called vector addition, and $\cdot F \times V \rightarrow V$ is called scalar multiplication, satisfying

1. Associativity of + :

$$
\forall_{x, y, z \in V}(x+y)+z=x+(y+z)
$$

2. Commutativity of + :

$$
\forall_{x, y \in V} x+y=y+x
$$

3. Existence of vector additive identity:

$$
\exists!_{0 \in V} \forall_{x \in V} x+0=0+x=x
$$

(Note that $0 \in V$ and $0 \in F$ are different.)
4. Existence of vector additive inverse:

$$
\forall_{x \in V} \exists!_{(-x) \in V} x+(-x)=(-x)+x=0
$$

(We define $x-y$ to be $x+(-y)$.)
5. Distributivity of scalar multiplication over vector addition:

$$
\forall_{\alpha \in F, x, y \in V} \alpha \cdot(x+y)=\alpha \cdot x+\alpha \cdot y
$$

6. Distributivity of scalar multiplication over scalar addition:

$$
\forall_{\alpha, \beta \in F, x \in V}(\alpha+\beta) \cdot x=\alpha \cdot x+\beta \cdot x
$$

7. Associativity of \cdot :

$$
\forall_{\alpha, \beta \in F, x \in V}(\alpha \cdot \beta) \cdot x=\alpha \cdot(\beta \cdot x)
$$

8. Multiplicative identity:

$$
\forall_{x \in V} \quad 1 \cdot x=x
$$

(Note that 1 is the multiplicative identity in $F ; 1 \notin V$)

Examples of vector spaces:

1. \mathbf{R}^{n} over \mathbf{R}.
2. \mathbf{R} is a vector space over \mathbf{Q} :
(scalar multiplication) $q \cdot r=q r($ product in $\mathbf{R})$
\mathbf{R} is not finite-dimensional over Q, i.e. \mathbf{R} is not \mathbf{Q}^{n} for any $n \in \mathbf{N}$.
3. \mathbf{R} is a vector space over \mathbf{R}.
4. $\mathbf{Q}(\sqrt{2})$ is a vector space over \mathbf{Q}. As a vector space, it is \mathbf{Q}^{2}; as a field, you need to take the funny field multiplication.
5. $\mathbf{Q}(\sqrt[3]{2})$, as a vector space over \mathbf{Q}, is \mathbf{Q}^{3}.
6. $\left(F_{2}\right)^{n}$ is a finite vector space over F_{2}.
7. $C([0,1])$, the space of all continuous functions from $[0,1]$ to \mathbf{R}, is a vector space over \mathbf{R}.

- vector addition:

$$
(f+g)(t)=f(t)+g(t)
$$

(We define the function $f+g$ by specifying what value it takes for each $t \in[0,1]$.)

- scalar multiplication:

$$
(\alpha f)(t)=\alpha(f(t))
$$

- vector additive identity: 0 is the function which is identically zero: $0(t)=0$ for all $t \in[0,1]$.
- vector additive inverse:

$$
(-f)(t)=-(f(t))
$$

Section 1.6: Axioms for R

1. \mathbf{R} is a field with the usual operations,$+ \cdot$, additive identity 0 , and multiplicative identity 1 .
2. Order Axiom: There is a complete ordering \leq, i.e. \leq is reflexive, transitive, antisymmetric $(\alpha \leq$ $\beta, \beta \leq \alpha \Rightarrow \alpha=\beta)$ with the property that

$$
\forall_{\alpha, \beta \in \mathbf{R}}(\alpha \leq \beta) \vee(\beta \leq \alpha)
$$

The order is compatible with + and \cdot, i.e.

$$
\forall_{\alpha, \beta, \gamma \in \mathbf{R}}\left\{\begin{aligned}
\alpha \leq \beta & \Rightarrow \alpha+\gamma \leq \beta+\gamma \\
\alpha \leq \beta, 0 \leq \gamma & \Rightarrow \alpha \gamma \leq \beta \gamma
\end{aligned}\right.
$$

$\alpha \geq \beta$ means $\beta \leq \alpha$.
$\alpha<\beta$ means $\alpha \leq \beta$ and $\alpha \neq \beta$.
3. Completeness Axiom: Suppose $L, H \subseteq \mathbf{R}, L \neq \emptyset \neq H$ satisfy

$$
\forall_{\ell \in L, h \in H} \ell \leq h
$$

Then

$$
\begin{array}{ccc}
\exists_{\alpha \in \mathbf{R}} \forall_{\ell \in L, h \in H} & \ell \leq \alpha \leq h \\
& \alpha & \\
L & \downarrow & H \\
----) & \cdot & (----
\end{array}
$$

The Completeness Axiom differentiates \mathbf{R} from \mathbf{Q} : \mathbf{Q} satisfies all the axioms for \mathbf{R} except the Completeness Axiom

The most useful consequence of the Completeness Axiom (and often used as an alternative axiom) is the Supremum Property.

Definition 2 Suppose $X \subseteq \mathbf{R}$. We say u is an upper bound for X if

$$
\forall_{x \in X} x \leq u
$$

and ℓ is a lower bound for X if

$$
\forall_{x \in X} \ell \leq x
$$

X is bounded above if there is an upper bound for X, and bounded below if there is a lower bound for X.

Definition 3 Suppose X is bounded above. The supremum of X, written $\sup X$, is the smallest upper bound for X, i.e. $\sup X$ satisfies

$$
\begin{aligned}
& \forall_{x \in X} \sup X \geq x \text { (sup is an upper bound) } \\
& \forall_{y<\sup X} \exists_{x \in X} x>y \text { (there is no smaller upper bound) }
\end{aligned}
$$

Analogously, suppose X is bounded below. The infimum of X, written $\inf X$, is the greatest lower bound for X, i.e. $\inf X$ satisfies

$$
\begin{gathered}
\forall_{x \in X} \inf X \leq x \quad \text { (inf } X \text { is a lower bound) } \\
\forall_{y>\inf X} \exists_{x \in X} x<y \text { (there is no greater lower bound) }
\end{gathered}
$$

(Not in book) If X is not bounded above, write $\sup X=\infty$. If X is not bounded below, write $\inf X=-\infty$. $\sup \emptyset=-\infty, \inf \emptyset=+\infty$.

The Supremum Property: Every nonempty set of real numbers which is bounded above has a supremum, which is a real number. Every nonempty set of real numbers which is bounded below has an infimum, which is a real number.

Caution: $\sup X$ need not be an element of X. For example, $\sup (0,1)=1 \notin(0,1)$.

Theorem 4 (Theorem 6.8, plus ...) The Supremum Property and the Completeness Axiom are equivalent.

Proof: Assume the Completeness Axiom. Let $X \subseteq \mathbf{R}$ be a nonempty set which is bounded above. Let U be the set of all upper bounds for X. Since X is bounded above, $U \neq \emptyset$. If $x \in X$ and $u \in U, x \leq u$ since u is an upper bound for X. So

$$
\forall_{x \in X, u \in U} x \leq u
$$

By the Completeness Axiom,

$$
\exists_{\alpha \in \mathbf{R}} \forall_{x \in X, u \in U} x \leq \alpha \leq u
$$

α is an upper bound for X, and it is less than or equal to every other upper bound for X, so it is the least upper bound for X, so $\sup X=\alpha \in \mathbf{R}$. The case in which X is bounded below is similar. Thus, the Supremum Property holds.

Conversely, assume the Supremum Property. Suppose $L, H \subseteq \mathbf{R}, L \neq \emptyset \neq H$, and

$$
\forall_{\ell \in L, h \in H} \ell \leq h
$$

Since $L \neq \emptyset$ and L is bounded above (by any element of H), $\alpha=\sup L$ exists and is real. By the definition of supremum, α is an upper bound for L, so

$$
\forall_{\ell \in L} \ell \leq \alpha
$$

Suppose $h \in H$. Then h is an upper bound for L, so by the definition of supremum, $\alpha \leq h$. Therefore, we have shown that

$$
\forall_{\ell \in L, h \in H} \ell \leq \alpha \leq h
$$

so the Completeness Axiom holds.

Theorem 5 (Archimedean Property, Theorem $6.10+\ldots$)

$$
\begin{gathered}
\forall_{x, y \in \mathbf{R}, y>0} \exists_{n \in \mathbf{N}} n y=(y+\cdots+y)>x \\
n \text { times }
\end{gathered}
$$

Theorem 6 (Intermediate Value Theorem) Suppose $f:[a, b] \rightarrow \mathbf{R}$ is continuous, and $f(a)<d<$ $f(b)$. Then there exists $c \in(a, b)$ such that $f(c)=d$.

Proof: Later, we will give a slick proof. Here, we give a bare-hands proof using the Supremum Property. Let

$$
B=\{x \in[a, b]: f(x)<d\}
$$

$a \in B$, so $B \neq \emptyset ; B \subseteq[a, b]$, so B is bounded above. By the Supremum Property, sup B exists and is real so let $c=\sup B$. Since $a \in B, c \geq a . B \subseteq[a, b]$, so $c \leq b$. Therefore, $c \in[a, b]$.

We claim that $f(c)=d$. If not, suppose $f(c)<d$. Then since $f(b)>d, c \neq b$, so $c<b$. Let $\varepsilon=\frac{d-f(c)}{2}>0$. Since f is continuous at c, there exists $\delta>0$ such that

$$
\begin{aligned}
|x-c|<\delta \Rightarrow|f(x)-f(c)| & <\varepsilon \\
\Rightarrow \quad f(x) & <f(c)+\varepsilon \\
& =f(c)+\frac{d-f(c)}{2} \\
& =\frac{f(c)+d}{2} \\
& <\frac{d+d}{2} \\
& =d
\end{aligned}
$$

so $(c, c+\delta) \subseteq B$, so $c \neq \sup B$, contradiction.
Suppose $f(c)>d$. Then since $f(a)<d, a \neq c$, so $c>a$. Let $\varepsilon=\frac{f(c)-d}{2}>0$. Since f is continuous at

c, there exists $\delta>0$ such that

$$
\begin{aligned}
|x-c|<\delta \Rightarrow|f(x)-f(c)| & <\varepsilon \\
\Rightarrow f(x) & >f(c)-\varepsilon \\
& =f(c)-\frac{f(c)-d}{2} \\
& =\frac{f(c)+d}{2} \\
& >\frac{d+d}{2} \\
& =d
\end{aligned}
$$

so $(c-\delta, c+\delta) \cap B=\emptyset$. So either there exists $x \in B$ with $x \geq c+\delta$ (in which case c is not an upper bound for B) or $c-\delta$ is an upper bound for B (in which case c is not the least upper bound for B); in either case, $c \neq \sup B$, contradiction.

Since $f(c) \nless d, f(c) \ngtr d$, and the order is complete, $f(c)=d$. Since $f(a)<d$ and $f(b)>d, a \neq c \neq b$, so $c \in(a, b)$.

Corollary 7 There exists $x \in \mathbf{R}$ such that $x^{2}=2$.

Proof: Let $f(x)=x^{2}$, for $x \in[0,2]$. From Math $1 \mathrm{~A}, f$ is continuous. $f(0)=0<2$ and $f(2)=4>2$, so by the Intermediate Value Theorem, there exists $c \in(0,2)$ such that $f(c)=2$, i.e. $c^{2}=2$.

Read sections $1.6(\mathrm{c})$ (absolute values) and 1.7 (complex numbers) on your own.

