Economics 204
Lecture 2, July 28, 2009

Section 1.4, Cardinality (Cont.)
Theorem 1 (Cantor) 2N, the set of all subsets of N, is not countable.

Proof: Suppose 2N is countable. Then there is a bijection f : N — 2N, Let A,, = f(m). We create an

infinite matrix, whose (m, n)™ entry is 1 if n € A,,, 0 otherwise:

N

A = 0 0 0 0 0 0

Ay, = {1} |1 0o 0 0 0

N Ay = {1,231 1 1 0 0

Ay = N 1 1 1 1 1




Now, on the main diagonal, change all the Os to 1s and vice versa:

A = 0 1 0 0O 0 0

A, = {1} 1 1 0 0 0

N Ay = {1,231 1 0 0 0

The coding on the diagonal represents a subset of N which differs from each of the A,,, contradiction.
It is important that we go along the diagonal. We need to define a set A C N which is different from
f(1), f(2),.... To define a set, we need to specify exactly what its elements are, and we do this by taking
one entry from each column and one entry from each row. The entry from column n tells us whether or
not n is in the set, and the entry in row m is used to ensure that A # A,,.

More formally, let
1 ifne A,

tmn

0 ifné A,

Let A= {m € N : t;,,, = 0}. (Aside: this is the set described by changing all the codings on the diagonal.)



meA & tpm=0
S méE Ay
le A & 1%14180147&141

2c A & QQAQSOA#AQ

meA & megA,soA# A,

Therefore, A # f(m) for any m, so f is not onto, contradiction. m
Message: There are fundamentally more subsets of N than elements of N. One can show that 2N is

numerically equivalent to R, so there are fundamentally more real numbers than rational numbers.

Section 1.5: Algebraic Structures
Field Axioms
A field F = (F,+,-) is a 3-tuple consisting of a set F' and two binary operations +,- : F' x F' — F such

that

1. Associativity of +:

Vagrer (@+08)+y=a+ (6+7)

2. Commutativity of +:

Vaper a+ 0 =0+«

3. Existence of additive identity:

E”()Ep((l?é(])/\(vaeF Oé+0:0+Oé:Od>)

(Aside: This says that 0 behaves like zero in the real numbers; it need not be zero in the real numbers.)
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4. Existence of additive inverse:
Vaer3(cayer o+ (—a) = (—a) +a =0

(Aside: We wrote o+ (—«) rather than a — « because substraction has not yet been defined. In fact,

we define o — 3 to be a + (—3).)

5. Associativity of -

va,,@,"/EF (&B> Y=o (ﬁﬁﬂ

6. Commutativity of -
va,ﬁeF@‘B:B‘@
7. Existence of multiplicative identity:
dherVaera-1=1-a =«
(Aside: This says that 1 behaves like one in the real numbers; it need not be one in the real numbers.)
8. Existence of multiplicative inverse:
Vacrazodla-1er - al=atla=1

(Aside: We define § = af™!.)

9. Distributivity of multiplication over addition:
va,,@,'\/EF&'(ﬁ—i_ﬁy) :Od'ﬁ—i_&'ﬁ)/

The point is that any property that follows from the definition of field (the “Field Axioms”) must apply to
any field

Examples of Fields:

e R



C={z+iy:x,yceR}. i*=—1,s0

(z +iy)(w + iz) = 2w + izz + iwy + i*yz = (zw — yz) +i(vz + wy)

Q: QCR,Q#R. Qisclosed under +, -, taking additive and multiplicate inverses; the field axioms

are inherited from the field axioms on R, so Q is a field.

N is not a field: no additive identity.

Z is not a field; no multiplicative inverse for 2.

e Q(V/2), the smallest field containing Q U {v/2}. Take Q, add v/2, and close up under +, -, taking

additive and multiplicative inverses. One can show

Q(V2)={g+rvV2:q.1€Q}

For example,

(q+r\/§)_l = a — L V2

Q> —2r2 ¢ —2r?
e A finite field: Fy = ({0,1},+,-) where

0+1 =140 =1 0-1 =1-0 =0
1+1 = 0 1-1 =1

( “Arithmetic mod 27)

Vector Space Axioms
Abstract definition of objects that “behave like R™”
A wector space is a 4-tuple (V) F, +,-) where V' is a set of elements, called vectors, F' is a field, + is a binary

operation on V called vector addition, and - : F' x V' — V is called scalar multiplication, satisfying



1. Associativity of +:

Voyzev (T+y)+2z=2+ (y+2)

2. Commutativity of +:

vac,yEVx—i_y:y—i_x

3. Existence of vector additive identity:

AloevVeey x+0=0+2z =2

(Note that 0 € V and 0 € F are different.)

4. Existence of vector additive inverse:

VeoevIcpyev 4 (—2) = (—2) +2 =0

(We define x —y to be x + (—y).)

5. Distributivity of scalar multiplication over vector addition:

vaEF,ac,yEV&'(x—i_y):&'x—i_&'y

6. Distributivity of scalar multiplication over scalar addition:

Vagerzev (@+0) - c=a-2+0

7. Associativity of -:

va,,@EF,acEV (04 . B) T = (ﬁ : 33')

8. Multiplicative identity:

Veev 1z =2

(Note that 1 is the multiplicative identity in F; 1 & V)

Examples of vector spaces:



. R" over R.

. R is a vector space over Q:

(scalar multiplication) ¢ - 7 = ¢r (product in R)

R is not finite-dimensional over @), i.e. R is not Q" for any n € N.
. R is a vector space over R.

. Q(v/2) is a vector space over Q. As a vector space, it is Q?; as a field, you need to take the funny

field multiplication.

. Q(¥/2), as a vector space over Q, is Q.
. (F»)™ is a finite vector space over Fb.
. C([0,1]), the space of all continuous functions from [0, 1] to R, is a vector space over R.

e vector addition:
(f +9)(@) = f(t) + 9(t)
(We define the function f + g by specifying what value it takes for each t € [0,1].)
e scalar multiplication:
(@f)(t) = a(f(?))
e vector additive identity: 0 is the function which is identically zero: 0(¢) = 0 for all ¢ € [0, 1].

e vector additive inverse:



Section 1.6: Axioms for R

1. R is a field with the usual operations +, -, additive identity 0, and multiplicative identity 1.

2. Order Axiom: There is a complete ordering <, i.e. < is reflexive, transitive, antisymmetric (o <

8,0 < a = a=[() with the property that

Vagper (@< B) V(8 < a)

The order is compatible with + and -, i.e.

a<fB = a+y7<[+7y
va,,@,"/ER
a<p,0<y = ay<py
a > [ means [ < a.

a < fmeans o < 3 and o # f3.

3. Completeness Axiom: Suppose L, H C R, L # () # H satisfy

Yeerhen L < h

Then

E'aeRVEEL,heH (<a<h

The Completeness Axiom differentiates R from Q: Q satisfies all the axioms for R except the Complete-
ness Axiom
The most useful consequence of the Completeness Aziom (and often used as an alternative axiom) is the

Supremum Property.




Definition 2 Suppose X C R. We say u is an upper bound for X if
Veex T < u
and ¢ is a lower bound for X if
Veex £ <
X is bounded above if there is an upper bound for X, and bounded below if there is a lower bound for X.

Definition 3 Suppose X is bounded above. The supremum of X, written sup X, is the smallest upper

bound for X i.e. sup X satisfies

Veex sup X > x (sup is an upper bound)

Vy<sup xJzex T >y (there is no smaller upper bound)

Analogously, suppose X is bounded below. The infimum of X, written inf X, is the greatest lower bound
for X, i.e. inf X satisfies

Veex inf X <z (inf X is a lower bound)

Vysinf x Jzex T < y (there is no greater lower bound)

(Not in book) If X is not bounded above, write sup X = co. If X is not bounded below, write inf X = —occ.
sup ) = —o0o, inf ) = +o0.

The Supremum Property: Every nonempty set of real numbers which is bounded above has a supre-
mum, which is a real number. Every nonempty set of real numbers which is bounded below has an infimum,
which is a real number.

Caution: sup X need not be an element of X. For example, sup(0,1) =1 ¢ (0,1).



Theorem 4 (Theorem 6.8, plus ...) The Supremum Property and the Completeness Axiom are equiv-

alent.

Proof: Assume the Completeness Axiom. Let X C R be a nonempty set which is bounded above. Let U
be the set of all upper bounds for X. Since X is bounded above, U # (. If x € X and v € U, x < u since
u is an upper bound for X. So

vQCEX,uEU X S u

By the Completeness Axiom,

ElaERvacEX,uEU X S « S u

« is an upper bound for X, and it is less than or equal to every other upper bound for X, so it is the
least upper bound for X, so sup X = a € R. The case in which X is bounded below is similar. Thus, the
Supremum Property holds.

Conversely, assume the Supremum Property. Suppose L, H C R, L # () # H, and

Veerhern ¢ < h

Since L # () and L is bounded above (by any element of H), a = sup L exists and is real. By the definition

of supremum, « is an upper bound for L, so

vﬁeLfg@

Suppose h € H. Then h is an upper bound for L, so by the definition of supremum, o < h. Therefore, we
have shown that

vEGL,heH (<a<h

so the Completeness Axiom holds. m
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Theorem 5 (Archimedean Property, Theorem 6.10 + ...)

VoyeRys0Tnen ny = (y+---+y) >
n times

Theorem 6 (Intermediate Value Theorem) Suppose f : [a,b] — R is continuous, and f(a) < d <

f(b). Then there exists c € (a,b) such that f(c) = d.

Proof: Later, we will give a slick proof. Here, we give a bare-hands proof using the Supremum Property.

Let

B={x¢€la,b]: f(x) < d}

a € B,so B#0; BC la,b], so B is bounded above. By the Supremum Property, sup B exists and is real
so let ¢ = sup B. Since a € B, ¢ > a. B C [a,b], so ¢ < b. Therefore, ¢ € [a, b].
We claim that f(c¢) = d. If not, suppose f(c¢) < d. Then since f(b) > d, ¢ # b, so ¢ < b. Let

E =

d_Tf(C) > (. Since f is continuous at ¢, there exists > 0 such that

[z —cf<d = [flz)=fl)] < ¢

= f(x) < fle)+e
d—f(c
= fle)+ =
_ flo)+d
2
< i
= d

so (¢,c+9) C B, so ¢ # sup B, contradiction.

Suppose f(c) > d. Then since f(a) < d, a # ¢, so ¢ > a. Let € = f(CT)_d > (. Since f is continuous at
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¢, there exists 0 > 0 such that

[z —c| <o = [f(z)=fl)] < ¢

= f(z) > f(e)—¢

so (c—d,c+ )N B = 0. So either there exists © € B with x > ¢+ ¢ (in which case ¢ is not an upper
bound for B) or ¢ — § is an upper bound for B (in which case ¢ is not the least upper bound for B); in
either case, ¢ # sup B, contradiction.

Since f(c) £ d, f(c) # d, and the order is complete, f(c) = d. Since f(a) < d and f(b) > d, a # ¢ # b,

socé€ (a,b). m

Corollary 7 There exists v € R such that 2 = 2.

Proof: Let f(z) = 22, for x € [0,2]. From Math 1A, f is continuous. f(0) =0 < 2 and f(2) =4 > 2, so
by the Intermediate Value Theorem, there exists ¢ € (0,2) such that f(c) =2, ie. 2 =2. m

Read sections 1.6(c) (absolute values) and 1.7 (complex numbers) on your own.
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