
Economics 204

Lecture 2, July 28, 2009

Section 1.4, Cardinality (Cont.)

Theorem 1 (Cantor) 2N, the set of all subsets of N, is not countable.

Proof: Suppose 2N is countable. Then there is a bijection f : N → 2N. Let Am = f(m). We create an

infinite matrix, whose (m, n)th entry is 1 if n ∈ Am, 0 otherwise:

N

1 2 3 4 5 · · ·

A1 = ∅ 0 0 0 0 0 · · ·

A2 = {1} 1 0 0 0 0 · · ·

2N A3 = {1, 2, 3} 1 1 1 0 0 · · ·

A4 = N 1 1 1 1 1 · · ·

A5 = 2N 0 1 0 1 0 · · ·
...

...
...

...
...

...
. . .
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Now, on the main diagonal, change all the 0s to 1s and vice versa:

N

1 2 3 4 5 · · ·

A1 = ∅ 1 0 0 0 0 · · ·

A2 = {1} 1 1 0 0 0 · · ·

2N A3 = {1, 2, 3} 1 1 0 0 0 · · ·

A4 = N 1 1 1 0 1 · · ·

A5 = 2N 0 1 0 1 1 · · ·
...

...
...

...
...

...
. . .

The coding on the diagonal represents a subset of N which differs from each of the Am, contradiction.

It is important that we go along the diagonal. We need to define a set A ⊆ N which is different from

f(1), f(2), . . .. To define a set, we need to specify exactly what its elements are, and we do this by taking

one entry from each column and one entry from each row. The entry from column n tells us whether or

not n is in the set, and the entry in row m is used to ensure that A �= Am.

More formally, let

tmn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if n ∈ Am

0 if n �∈ Am

Let A = {m ∈ N : tmm = 0}. (Aside: this is the set described by changing all the codings on the diagonal.)
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m ∈ A ⇔ tmm = 0

⇔ m �∈ Am

1 ∈ A ⇔ 1 �∈ A1 so A �= A1

2 ∈ A ⇔ 2 �∈ A2 so A �= A2

...

m ∈ A ⇔ m �∈ Am so A �= Am

Therefore, A �= f(m) for any m, so f is not onto, contradiction.

Message: There are fundamentally more subsets of N than elements of N. One can show that 2N is

numerically equivalent to R, so there are fundamentally more real numbers than rational numbers.

Section 1.5: Algebraic Structures

Field Axioms

A field F = (F, +, ·) is a 3-tuple consisting of a set F and two binary operations +, · : F × F → F such

that

1. Associativity of +:

∀α,β,γ∈F (α + β) + γ = α + (β + γ)

2. Commutativity of +:

∀α,β∈F α + β = β + α

3. Existence of additive identity:

∃!0∈F ((1 �= 0) ∧ (∀α∈F α + 0 = 0 + α = α))

(Aside: This says that 0 behaves like zero in the real numbers; it need not be zero in the real numbers.)
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4. Existence of additive inverse:

∀α∈F∃!(−α)∈F α + (−α) = (−α) + α = 0

(Aside: We wrote α + (−α) rather than α−α because substraction has not yet been defined. In fact,

we define α − β to be α + (−β).)

5. Associativity of ·:

∀α,β,γ∈F (α · β) · γ = α · (β · γ)

6. Commutativity of ·:

∀α,β∈F α · β = β · α

7. Existence of multiplicative identity:

∃!1∈F∀α∈F α · 1 = 1 · α = α

(Aside: This says that 1 behaves like one in the real numbers; it need not be one in the real numbers.)

8. Existence of multiplicative inverse:

∀α∈F,α �=0∃!α−1∈F α · α−1 = α−1 · α = 1

(Aside: We define α
β

= αβ−1.)

9. Distributivity of multiplication over addition:

∀α,β,γ∈F α · (β + γ) = α · β + α · γ

The point is that any property that follows from the definition of field (the “Field Axioms”) must apply to

any field

Examples of Fields:

• R
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• C = {x + iy : x, y ∈ R}. i2 = −1, so

(x + iy)(w + iz) = xw + ixz + iwy + i2yz = (xw − yz) + i(xz + wy)

• Q: Q ⊂ R, Q �= R. Q is closed under +, ·, taking additive and multiplicate inverses; the field axioms

are inherited from the field axioms on R, so Q is a field.

• N is not a field: no additive identity.

• Z is not a field; no multiplicative inverse for 2.

• Q(
√

2), the smallest field containing Q ∪ {√2}. Take Q, add
√

2, and close up under +, ·, taking

additive and multiplicative inverses. One can show

Q(
√

2) = {q + r
√

2 : q, r ∈ Q}

For example,

(
q + r

√
2
)−1

=
q

q2 − 2r2
− r

q2 − 2r2

√
2

• A finite field: F2 = ({0, 1}, +, ·) where

0 + 0 = 0 0 · 0 = 0

0 + 1 = 1 + 0 = 1 0 · 1 = 1 · 0 = 0

1 + 1 = 0 1 · 1 = 1

(“Arithmetic mod 2”)

Vector Space Axioms

Abstract definition of objects that “behave like Rn”

A vector space is a 4-tuple (V, F, +, ·) where V is a set of elements, called vectors, F is a field, + is a binary

operation on V called vector addition, and · : F × V → V is called scalar multiplication, satisfying
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1. Associativity of +:

∀x,y,z∈V (x + y) + z = x + (y + z)

2. Commutativity of +:

∀x,y∈V x + y = y + x

3. Existence of vector additive identity:

∃!0∈V ∀x∈V x + 0 = 0 + x = x

(Note that 0 ∈ V and 0 ∈ F are different.)

4. Existence of vector additive inverse:

∀x∈V ∃!(−x)∈V x + (−x) = (−x) + x = 0

(We define x − y to be x + (−y).)

5. Distributivity of scalar multiplication over vector addition:

∀α∈F,x,y∈V α · (x + y) = α · x + α · y

6. Distributivity of scalar multiplication over scalar addition:

∀α,β∈F,x∈V (α + β) · x = α · x + β · x

7. Associativity of ·:

∀α,β∈F,x∈V (α · β) · x = α · (β · x)

8. Multiplicative identity:

∀x∈V 1 · x = x

(Note that 1 is the multiplicative identity in F ; 1 �∈ V )

Examples of vector spaces:
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1. Rn over R.

2. R is a vector space over Q:

(scalar multiplication) q · r = qr (product in R)

R is not finite-dimensional over Q, i.e. R is not Qn for any n ∈ N.

3. R is a vector space over R.

4. Q(
√

2) is a vector space over Q. As a vector space, it is Q2; as a field, you need to take the funny

field multiplication.

5. Q( 3
√

2), as a vector space over Q, is Q3.

6. (F2)
n is a finite vector space over F2.

7. C([0, 1]), the space of all continuous functions from [0, 1] to R, is a vector space over R.

• vector addition:

(f + g)(t) = f(t) + g(t)

(We define the function f + g by specifying what value it takes for each t ∈ [0, 1].)

• scalar multiplication:

(αf)(t) = α(f(t))

• vector additive identity: 0 is the function which is identically zero: 0(t) = 0 for all t ∈ [0, 1].

• vector additive inverse:

(−f)(t) = −(f(t))
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Section 1.6: Axioms for R

1. R is a field with the usual operations +, ·, additive identity 0, and multiplicative identity 1.

2. Order Axiom: There is a complete ordering ≤, i.e. ≤ is reflexive, transitive, antisymmetric (α ≤

β, β ≤ α ⇒ α = β) with the property that

∀α,β∈R (α ≤ β) ∨ (β ≤ α)

The order is compatible with + and ·, i.e.

∀α,β,γ∈R

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α ≤ β ⇒ α + γ ≤ β + γ

α ≤ β, 0 ≤ γ ⇒ αγ ≤ βγ

α ≥ β means β ≤ α.

α < β means α ≤ β and α �= β.

3. Completeness Axiom: Suppose L, H ⊆ R, L �= ∅ �= H satisfy

∀�∈L,h∈H � ≤ h

Then

∃α∈R∀�∈L,h∈H � ≤ α ≤ h

α

L ↓ H

−−−− ) · ( −−−−

The Completeness Axiom differentiates R from Q: Q satisfies all the axioms for R except the Complete-

ness Axiom

The most useful consequence of the Completeness Axiom (and often used as an alternative axiom) is the

Supremum Property.

8



Definition 2 Suppose X ⊆ R. We say u is an upper bound for X if

∀x∈X x ≤ u

and � is a lower bound for X if

∀x∈X � ≤ x

X is bounded above if there is an upper bound for X, and bounded below if there is a lower bound for X.

Definition 3 Suppose X is bounded above. The supremum of X, written supX, is the smallest upper

bound for X, i.e. sup X satisfies

∀x∈X sup X ≥ x (sup is an upper bound)

∀y<sup X∃x∈X x > y (there is no smaller upper bound)

Analogously, suppose X is bounded below. The infimum of X, written inf X, is the greatest lower bound

for X, i.e. inf X satisfies

∀x∈X inf X ≤ x (inf X is a lower bound)

∀y>inf X∃x∈X x < y (there is no greater lower bound)

(Not in book) If X is not bounded above, write sup X = ∞. If X is not bounded below, write inf X = −∞.

sup ∅ = −∞, inf ∅ = +∞.

The Supremum Property: Every nonempty set of real numbers which is bounded above has a supre-

mum, which is a real number. Every nonempty set of real numbers which is bounded below has an infimum,

which is a real number.

Caution: supX need not be an element of X. For example, sup(0, 1) = 1 �∈ (0, 1).
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Theorem 4 (Theorem 6.8, plus . . . ) The Supremum Property and the Completeness Axiom are equiv-

alent.

Proof: Assume the Completeness Axiom. Let X ⊆ R be a nonempty set which is bounded above. Let U

be the set of all upper bounds for X. Since X is bounded above, U �= ∅. If x ∈ X and u ∈ U , x ≤ u since

u is an upper bound for X. So

∀x∈X,u∈U x ≤ u

By the Completeness Axiom,

∃α∈R∀x∈X,u∈U x ≤ α ≤ u

α is an upper bound for X, and it is less than or equal to every other upper bound for X, so it is the

least upper bound for X, so sup X = α ∈ R. The case in which X is bounded below is similar. Thus, the

Supremum Property holds.

Conversely, assume the Supremum Property. Suppose L, H ⊆ R, L �= ∅ �= H, and

∀�∈L,h∈H � ≤ h

Since L �= ∅ and L is bounded above (by any element of H), α = sup L exists and is real. By the definition

of supremum, α is an upper bound for L, so

∀�∈L � ≤ α

Suppose h ∈ H. Then h is an upper bound for L, so by the definition of supremum, α ≤ h. Therefore, we

have shown that

∀�∈L,h∈H � ≤ α ≤ h

so the Completeness Axiom holds.
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Theorem 5 (Archimedean Property, Theorem 6.10 + ...)

∀x,y∈R,y>0∃n∈N ny = (y + · · · + y) > x

n times

Theorem 6 (Intermediate Value Theorem) Suppose f : [a, b] → R is continuous, and f(a) < d <

f(b). Then there exists c ∈ (a, b) such that f(c) = d.

Proof: Later, we will give a slick proof. Here, we give a bare-hands proof using the Supremum Property.

Let

B = {x ∈ [a, b] : f(x) < d}

a ∈ B, so B �= ∅; B ⊆ [a, b], so B is bounded above. By the Supremum Property, sup B exists and is real

so let c = sup B. Since a ∈ B, c ≥ a. B ⊆ [a, b], so c ≤ b. Therefore, c ∈ [a, b].

We claim that f(c) = d. If not, suppose f(c) < d. Then since f(b) > d, c �= b, so c < b. Let

ε = d−f(c)
2

> 0. Since f is continuous at c, there exists δ > 0 such that

|x − c| < δ ⇒ |f(x)− f(c)| < ε

⇒ f(x) < f(c) + ε

= f(c) + d−f(c)
2

= f(c)+d
2

< d+d
2

= d

so (c, c + δ) ⊆ B, so c �= sup B, contradiction.

Suppose f(c) > d. Then since f(a) < d, a �= c, so c > a. Let ε = f(c)−d
2

> 0. Since f is continuous at
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c, there exists δ > 0 such that

|x − c| < δ ⇒ |f(x) − f(c)| < ε

⇒ f(x) > f(c) − ε

= f(c) − f(c)−d
2

= f(c)+d
2

> d+d
2

= d

so (c − δ, c + δ) ∩ B = ∅. So either there exists x ∈ B with x ≥ c + δ (in which case c is not an upper

bound for B) or c − δ is an upper bound for B (in which case c is not the least upper bound for B); in

either case, c �= supB, contradiction.

Since f(c) �< d, f(c) �> d, and the order is complete, f(c) = d. Since f(a) < d and f(b) > d, a �= c �= b,

so c ∈ (a, b).

Corollary 7 There exists x ∈ R such that x2 = 2.

Proof: Let f(x) = x2, for x ∈ [0, 2]. From Math 1A, f is continuous. f(0) = 0 < 2 and f(2) = 4 > 2, so

by the Intermediate Value Theorem, there exists c ∈ (0, 2) such that f(c) = 2, i.e. c2 = 2.

Read sections 1.6(c) (absolute values) and 1.7 (complex numbers) on your own.
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