
Economics 204
Lecture 3–Wednesday, July 29, 2009

Revised 7/29/09, Revisions Indicated by ** and
Sticky Notes

Section 2.1, Metric Spaces and Normed Spaces
Generalization of distance notion in Rn

Definition 1 A metric space is a pair (X, d), where X is a set
and d : X ×X → R+, satisfying

1. ∀x,y∈X d(x, y) ≥ 0, d(x, y) = 0⇔ x = y

2. ∀x,y∈X d(x, y) = d(y, x)

3. (triangle inequality)

∀x,y,z∈X d(x, y) + d(y, z) ≥ d(x, z)

y
↗ ↘

x → z

Definition 2 Let V be a vector space over R. A norm on V is
a function ‖ · ‖ : V → R+ satisfying

1. ∀x∈V ‖x‖ ≥ 0

2. ∀x∈V ‖x‖ = 0⇔ x = 0

3. (triangle inequality)

∀x,y∈V ‖x + y‖ ≤ ‖x‖ + ‖y‖
x

x↗ ↘ y
0 → x + y
y ↘ ↗ x

y
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4. ∀α∈R,x∈V ‖αx‖ = |α|‖x‖
A normed vector space is a vector space over R equipped with a
norm.

Theorem 3 Let (V, ‖ · ‖) be a normed vector space. Let d :
V × V ⇒ R+ be defined by

d(v, w) = ‖v − w‖
Then (V, d) is a metric space.

Proof: We must verify that d satisfies all the properties of a
metric.

1.

d(v, w) = ‖v − w‖ ≥ 0

d(v, w) = 0 ⇔ ‖v − w‖ = 0

⇔ v − w = 0

⇔ (v + (−w)) + w = w

⇔ v + ((−w) + w) = w

⇔ v + 0 = w

⇔ v = w

2. First, note that for any x ∈ V , 0 ·x = (0+0) ·x = 0 ·x+0 ·x,
so 0 · x = 0. Then 0 = 0 · x = (1− 1) · x = 1 · x + (−1) · x =
x + (−1) · x, so we have (−1) · x = (−x).

d(v, w) = ‖v − w‖
= | − 1|‖v − w‖
= ‖(−1)(v + (−w))‖
= ‖(−1)v + (−1)(−w)‖
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= ‖ − v + w‖
= ‖w + (−v)‖
= ‖w − v‖
= d(w, v)

3.

d(u, w) = ‖u− w‖
= ‖u + (−v + v)− w‖
= ‖u− v + v − w‖
≤ ‖u− v‖ + ‖v − w‖
= d(u, v) + d(v, w)

Examples of Normed Vector Spaces

• En: n-dimensional Euclidean space.

V = Rn, ‖x‖2 = |x| =
√√√√√ n∑

i=1
(xi)2

•
V = Rn, ‖x‖1 =

n∑
i=1
|xi|

•
V = Rn, ‖x‖∞ = max{|x1|, . . . , |xn|}

•
C([0, 1]), ‖f‖∞ = sup{|f (t)| : t ∈ [0, 1]}

•
C([0, 1]), ‖f‖2 =

√∫ 1
0 (f (t))2 dt

•
C([0, 1]), ‖f‖1 =

∫ 1
0 |f (t)| dt
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Theorem 4 (Cauchy-Schwarz Inequality)
If v, w ∈ Rn, then

⎛
⎜⎝ n∑
i=1

viwi

⎞
⎟⎠
2

≤
⎛
⎜⎝ n∑
i=1

v2
i

⎞
⎟⎠

⎛
⎜⎝ n∑
i=1

w2
i

⎞
⎟⎠

|v · w|2 ≤ |v|2|w|2
|v · w| ≤ |v||w|

Read the proof in De La Fuente. The Cauchy-Schwarz In-
equality is essential in proving the triangle inequality in En.
Note that v ·w = |v||w| cos θ where θ is the angle between v and
w:

v w
↖ θ ↗

0

Definition 5 Two norms ‖·‖ and ‖·‖′ on the same vector space
V are said to be Lipschitz-equivalent if

∃m,M > 0 ∀x∈V m‖x‖ ≤ ‖x‖′ ≤M‖x‖
Equivalently,

∃m,M > 0 ∀x∈V,x�=0 m ≤ ‖x‖
′

‖x‖ ≤M

Theorem 6 (**10.8 on page 107 of de la Fuente) All norms
on Rn are Lipschitz-equivalent.

**The Theorem is correct, but the proof in de la Fuente has a
problem.

However, infinite-dimensional spaces support norms which are
not Lipschitz-equivalent. For example, on C([0, 1]), let fn be the
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function

fn(t) =

⎧⎪⎪⎨
⎪⎪⎩

1− nt if t ∈ [
0, 1

n

]

0 if t ∈ (
1
n
, 1

]

Then
‖fn‖1
‖fn‖∞ =

1
2n

1
=

1

2n
→ 0

Definition 7 In a metric space (X, d), define

Bε(x) = open ball with center x and radius ε

= {y ∈ X : d(y, x) < ε}
Bε[x] = closed ball with center x and radius ε

= {y ∈ X : d(y, x) ≤ ε}
S ⊆ X is bounded if

∃x∈X,β∈R∀s∈S d(s, x) ≤ β

diam (S) = sup{d(s, s′) : s, s′ ∈ S}
d(A, x) = inf

a∈A
d(a, x)

d(A, B) = inf
a∈A

d(B, a)

= inf{d(a, b) : a ∈ A, b ∈ B}
Note that d(A, x) cannot be a metric (since a metric is a function
on X × X , the first and second arguments must be objects of
the same type); in addition, d(A, B) does not define a metric on
the space of subsets of X . Another, more useful notion of the
distance between sets is the Hausdorff distance, will probably
see it in 201B

Section 2.2: Convergence of sequences in metric spaces

Definition 8 Let (X, d) be a metric space. A sequence {xn}
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converges to x (written xn → x or limn→∞ xn = x) if

∀ε>0∃N(ε)∈N n > N (ε)⇒ d(xn, x) < ε

This is exactly the same as the definition of convergence of a
sequence of real numbers, except we replace | · | in R by the
metric d.

Theorem 9 (Uniqueness of Limits) In a metric space (X, d),
if xn → x and xn → x′, then x = x′.

Proof:
·x
· ↓ ε

xn · ↓
· · · · ��

· ↑
· ↑ ε
·x′

ε =
d(x, x′)

2

Suppose {xn} is a sequence in X , xn → x, xn → x′, x �= x′.
Since x �= x′, d(x, x′) > 0. Let

ε =
d(x, x′)

2

Then there exist N (ε) and N ′(ε) such that

n > N (ε) ⇒ d(xn, x) < ε

n > N ′(ε) ⇒ d(xn, x
′) < ε

Choose
n > max{N (ε), N ′(ε)}

Then

d(x, x′) ≤ d(x, xn) + d(xn, x
′)
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< ε + ε

= 2ε

= d(x, x′)
d(x, x′) < d(x, x′)

a contradiction.
c is a cluster point of a sequence {xn} in a metric space (X, d) if

∀ε>0 {n : xn ∈ Bε(c)} is an infinite set.

Equivalently,
∀ε>0,N∈N∃n>N xn ∈ Bε(c)

Example:

xn =

⎧⎪⎪⎨
⎪⎪⎩

1− 1
n

if n even
1
n

if n odd

For n large and odd, xn is close to zero; for n large and even, xn

is close to one. The sequence does not converge; the set of cluster
points is {0, 1}.
If {xn} is a sequence and n1 < n2 < n3 < · · ·, then {xnk

} is
called a subsequence.
Note that we take some of the elements of the parent sequence, in
the same order.
Example: xn = 1

n
, so {xn} =

(
1, 1

2
, 1

3
, . . .

)
. If nk = 2k, then

{xnk
} =

(
1
2,

1
4,

1
6, . . .

)
.

Theorem 10 (2.4 in De La Fuente, plus ...) Let (X, d) be
a metric space, c ∈ X, and {xn} a sequence in X. Then c is
a cluster point of {xn} if and only if there is a subsequence
{xnk
} such that limk→∞ xnk

= c.

Proof: Suppose c is a cluster point of {xn}. We inductively
construct a subsequence that converges to c. For k = 1, {n : xn ∈

7



B1(c)} is infinite, so nonempty; let

n1 = min{n : xn ∈ B1(c)}
Now, suppose we have chosen n1 < n2 < · · · < nk such that

xnj
∈ B1

j
(c) for j = 1, . . . , k

{n : xn ∈ B 1
k+1

(c)} is infinite, so it contains at least one element

bigger than nk, so let

nk+1 = min
⎧⎨
⎩n : n > nk, xn ∈ B 1

k+1
(c)

⎫⎬
⎭

Thus, we have chosen n1 < n2 < · · · < nk < nk+1 such that

xnj ∈ B1
j
(c) for j = 1, . . . , k, k + 1

Thus, by induction, we obtain a subsequence {xnk
} such that

xnk
∈ B1

k
(c)

Given any ε > 0, by the Archimedean property, there exists
N (ε) > 1/ε.

k > N (ε) ⇒ xnk
∈ B1

k
(c)

⇒ xnk
∈ Bε(c)

so
xnk
→ c as k →∞

Conversely, suppose that there is a subsequence {xnk
} converg-

ing to c. Given any ε > 0, there exists K ∈ N such that

k > K ⇒ d(xnk
, c) < ε⇒ xnk

∈ Bε(c)

Therefore,

{n : xn ∈ Bε(c)} ⊇ {nK+1, nK+2, nK+3, . . .}
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Since nK+1 < nK+2 < nK+3 < · · ·, this set is infinite, so c is a
cluster point of {xn}.
Section 2.3: Sequences in R and Rm

Definition 11 A sequence of real number {xn} is increasing
(decreasing) if xn+1 ≥ xn (xn+1 ≤ xn) for all n.

Definition 12 If {xn} is a sequence of real numbers, {xn} tends
to infinity (written xn→∞ or lim xn =∞) if

∀K∈R∃N(K) n > N (K)⇒ xn > K

Similarly define lim xn = −∞.

We don’t say the sequence converges to infinity; the term “con-
verge” is limited to the case of finite limts.

Theorem 13 (Theorem 3.1’) Let {xn} be an increasing (de-
creasing) sequence of real numbers. Then limn→∞ xn = sup{xn :
n ∈ N} (limn→∞ xn = inf{xn : n ∈ N}). In particular, the
limit exists.

Proof: Read the proof in the book, and figure out how to handle
the unbounded case.
Lim Sups and Lim Infs Handout:
Consider a sequence {xn} of real numbers. Let

αn = sup{xk : k ≥ n}
= sup{xn, xn+1, xn+2, . . .}

βn = inf{xk : k ≥ n}
Either αn = +∞ for all n, or αn ∈ R and α1 ≥ α2 ≥ α3 ≥ · · ·.
Either βn = −∞ for all n, or βn ∈ R and β1 ≤ β2 ≤ β3 ≤ · · ·.
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Definition 14

lim sup
n→∞ xn =

⎧⎪⎪⎨
⎪⎪⎩

+∞ if αn = +∞ for all n
lim αn otherwise.

lim inf
n→∞ xn =

⎧⎪⎪⎨
⎪⎪⎩
−∞ if βn = −∞ for all n

lim βn otherwise.

Theorem 15 Let {xn} be a sequence of real numbers. Then

limn→∞ xn = γ ∈ R ∪ {−∞,∞}
⇔ lim supn→∞ xn = lim infn→∞ xn = γ

Return to Section 2.3:

Theorem 16 (Theorem 3.2, Rising Sun Lemma) Every se-
quence of real numbers contains an increasing subsequence or
a decreasing subsequence or both.

◦ ← ← ← ← ← ← ← ← ← ← ← ← S
• • • • ◦ ← ← ← ← ← ← ← ← U
• • • • • ◦ ← ← ← N

• • •
•

Proof: Let
S = {s ∈ N : ∀n>s xs > xn}

Either S is infinite, or S is finite.
If S is infinite, let

n1 = min S

n2 = min (S \ {n1})
n3 = min (S \ {n1, n2})

...

nk+1 = min (S \ {n1, n2, . . . , nk})
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Then n1 < n2 < n3 < · · ·.
xn1 > xn2 since n1 ∈ S and n2 > n1

xn2
> xn3

since n2 ∈ S and n3 > n2
...

xnk
> xnk+1

since nk ∈ S and nk+1 > nk
...

so {xnk
} is a strictly decreasing subsequence of {xn}.

If S is finite and nonempty, let n1 = (max S) + 1; if S = ∅, let
n1 = 1. Then

n1 �∈ S so ∃n2>n1 xn2 ≥ xn1

n2 �∈ S so ∃n3>n2 xn3 ≥ xn2
...

nk �∈ S so ∃nk+1>nk
xnk+1

≥ xnk
...

so {xnk
} is a (weakly) increasing subsequence of {xn}.

Theorem 17 (Thm. 3.3, Bolzano-Weierstrass) Every
bounded sequence of real numbers contains a convergent sub-
sequence.

Proof: Let {xn} be a bounded sequence of real numbers. By the
Rising Sun Lemma, find an increasing or decreasing subsequence
{xnk
}. If {xnk

} is increasing, then by Theorem 3.1’, lim xnk
=

sup{xnk
: k ∈ N} ≤ sup{xn : n ∈ N} < ∞, since the sequence

is bounded; since the limit is finite, the subsequence converges.
Similarly, if the subsequence is decreasing, it converges.
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