Economics 204 Lecture 3–Wednesday, July 29, 2009 Revised 7/29/09, Revisions Indicated by ** and Sticky Notes

Section 2.1, Metric Spaces and Normed Spaces Generalization of distance notion in \mathbb{R}^n

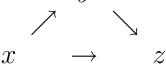
Definition 1 A *metric space* is a pair (X, d), where X is a set and $d: X \times X \to \mathbf{R}_+$, satisfying

1.
$$\forall_{x,y\in X} d(x,y) \ge 0, \ d(x,y) = 0 \Leftrightarrow x = y$$

- 2. $\forall_{x,y\in X} d(x,y) = d(y,x)$
- 3. (triangle inequality)

$$\forall_{x,y,z \in X} \ d(x,y) + d(y,z) \ge d(x,z)$$

$$y$$

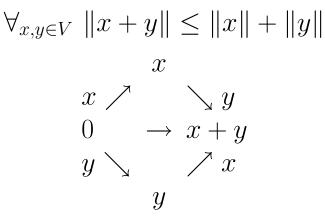


Definition 2 Let V be a vector space over **R**. A *norm* on V is a function $\|\cdot\|: V \to \mathbf{R}_+$ satisfying

 $1. \forall_{x \in V} \|x\| \ge 0$

2.
$$\forall_{x \in V} ||x|| = 0 \Leftrightarrow x = 0$$

3. (triangle inequality)



4. $\forall_{\alpha \in \mathbf{R}, x \in V} \|\alpha x\| = |\alpha| \|x\|$

A normed vector space is a vector space over \mathbf{R} equipped with a norm.

Theorem 3 Let $(V, \|\cdot\|)$ be a normed vector space. Let $d : V \times V \Rightarrow \mathbf{R}_+$ be defined by

$$d(v,w) = \|v - w\|$$

Then (V, d) is a metric space.

Proof: We must verify that d satisfies all the properties of a metric.

1.

$$d(v, w) = \|v - w\| \ge 0$$

$$d(v, w) = 0 \iff \|v - w\| = 0$$

$$\Leftrightarrow v - w = 0$$

$$\Leftrightarrow (v + (-w)) + w = w$$

$$\Leftrightarrow v + ((-w) + w) = w$$

$$\Leftrightarrow v + 0 = w$$

$$\Leftrightarrow v = w$$

2. First, note that for any $x \in V$, $0 \cdot x = (0+0) \cdot x = 0 \cdot x + 0 \cdot x$, so $0 \cdot x = 0$. Then $0 = 0 \cdot x = (1-1) \cdot x = 1 \cdot x + (-1) \cdot x = x + (-1) \cdot x$, so we have $(-1) \cdot x = (-x)$.

$$\begin{aligned} d(v,w) &= \|v-w\| \\ &= |-1|\|v-w\| \\ &= \|(-1)(v+(-w))\| \\ &= \|(-1)v+(-1)(-w)\| \end{aligned}$$

$$= \| - v + w \| \\ = \| w + (-v) \| \\ = \| w - v \| \\ = d(w, v)$$

3.

$$d(u, w) = ||u - w||$$

= $||u + (-v + v) - w|$
= $||u - v + v - w||$
 $\leq ||u - v|| + ||v - w||$
= $d(u, v) + d(v, w)$

Examples of Normed Vector Spaces

• E^n : *n*-dimensional Euclidean space.

$$V = \mathbf{R}^{n}, \ \|x\|_{2} = |x| = \sqrt{\sum_{i=1}^{n} (x_{i})^{2}}$$

$$V = \mathbf{R}^{n}, \ \|x\|_{1} = \sum_{i=1}^{n} |x_{i}|$$

$$V = \mathbf{R}^{n}, \ \|x\|_{\infty} = \max\{|x_{1}|, \dots, |x_{n}|\}$$

$$C([0, 1]), \ \|f\|_{\infty} = \sup\{|f(t)| : t \in [0, 1]\}$$

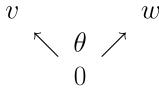
$$C([0, 1]), \ \|f\|_{2} = \sqrt{\int_{0}^{1} (f(t))^{2} dt}$$

$$C([0, 1]), \ \|f\|_{1} = \int_{0}^{1} |f(t)| dt$$

Theorem 4 (Cauchy-Schwarz Inequality) If $v, w \in \mathbf{R}^n$, then

$$\begin{pmatrix} \sum_{i=1}^{n} v_i w_i \end{pmatrix}^2 \leq \left(\sum_{i=1}^{n} v_i^2 \right) \begin{pmatrix} \sum_{i=1}^{n} w_i^2 \\ \sum_{i=1}^{n} v_i w_i^2 \end{pmatrix}$$
$$|v \cdot w|^2 \leq |v|^2 |w|^2$$
$$|v \cdot w| \leq |v| |w|$$

Read the proof in De La Fuente. The Cauchy-Schwarz Inequality is essential in proving the triangle inequality in E^n . Note that $v \cdot w = |v||w| \cos \theta$ where θ is the angle between v and w:



Definition 5 Two norms $\|\cdot\|$ and $\|\cdot\|'$ on the same vector space V are said to be *Lipschitz-equivalent* if

$$\exists_{m,M} > 0 \ \forall_{x \in V} \ m \|x\| \le \|x\|' \le M \|x\|$$

Equivalently,

$$\exists_{m,M} > 0 \ \forall_{x \in V, x \neq 0} \ m \le \frac{\|x\|'}{\|x\|} \le M$$

Theorem 6 (**10.8 on page 107 of de la Fuente) All norme on \mathbb{R}^n are Lipschitz-equivalent.

**The Theorem is correct, but the proof in de la Fuente has a problem.

However, infinite-dimensional spaces support norms which are not Lipschitz-equivalent. For example, on C([0, 1]), let f_n be the function

$$f_n(t) = \begin{cases} 1 - nt & \text{if } t \in \left[0, \frac{1}{n}\right] \\ 0 & \text{if } t \in \left(\frac{1}{n}, 1\right] \end{cases}$$

Then

$$\frac{\|f_n\|_1}{\|f_n\|_{\infty}} = \frac{\frac{1}{2n}}{1} = \frac{1}{2n} \to 0$$

Definition 7 In a metric space (X, d), define

$$\begin{split} B_{\varepsilon}(x) &= open \ ball \ with \ center \ x \ and \ radius \ \varepsilon \\ &= \{y \in X : d(y, x) < \varepsilon\} \\ B_{\varepsilon}[x] &= closed \ ball \ with \ center \ x \ and \ radius \ \varepsilon \\ &= \{y \in X : d(y, x) \le \varepsilon\} \\ S \subseteq X \qquad \text{is bounded if} \\ &= \exists_{x \in X, \beta \in \mathbf{R}} \forall_{s \in S} \ d(s, x) \le \beta \\ \text{diam} (S) &= \sup\{d(s, s') : s, s' \in S\} \\ d(A, x) &= \inf_{a \in A} d(a, x) \\ d(A, B) &= \inf_{a \in A} d(B, a) \\ &= \inf\{d(a, b) : a \in A, b \in B\} \end{split}$$

Note that d(A, x) cannot be a metric (since a metric is a function on $X \times X$, the first and second arguments must be objects of the same type); in addition, d(A, B) does not define a metric on the space of subsets of X. Another, more useful notion of the distance between sets is the Hausdorff distance, will probably see it in 201B

Section 2.2: Convergence of sequences in metric spaces Definition 8 Let (X, d) be a metric space. A sequence $\{x_n\}$ *converges* to x (written $x_n \to x$ or $\lim_{n\to\infty} x_n = x$) if

$$\forall_{\varepsilon>0} \exists_{N(\varepsilon)\in\mathbf{N}} \ n > N(\varepsilon) \Rightarrow d(x_n, x) < \varepsilon$$

This is exactly the same as the definition of convergence of a sequence of real numbers, except we replace $|\cdot|$ in **R** by the metric d.

Theorem 9 (Uniqueness of Limits) In a metric space (X, d), if $x_n \to x$ and $x_n \to x'$, then x = x'.

Proof:

$$\begin{array}{cccc} & \cdot x \\ \cdot & \downarrow & \varepsilon \\ \cdot & \cdot & \downarrow & \\ \cdot & \cdot & \stackrel{\wedge}{\sim} & \varepsilon = \frac{d(x, x')}{2} \\ & \cdot & \uparrow & \varepsilon \\ & \cdot & \uparrow & \varepsilon \\ & \cdot & x' \end{array}$$

Suppose $\{x_n\}$ is a sequence in $X, x_n \to x, x_n \to x', x \neq x'$. Since $x \neq x', d(x, x') > 0$. Let

$$\varepsilon = \frac{d(x, x')}{2}$$

Then there exist $N(\varepsilon)$ and $N'(\varepsilon)$ such that

$$n > N(\varepsilon) \implies d(x_n, x) < \varepsilon$$

$$n > N'(\varepsilon) \implies d(x_n, x') < \varepsilon$$

Choose

$$n > \max\{N(\varepsilon), N'(\varepsilon)\}$$

Then

$$d(x, x') \leq d(x, x_n) + d(x_n, x')$$

$$< \varepsilon + \varepsilon$$
$$= 2\varepsilon$$
$$= d(x, x')$$
$$d(x, x') < d(x, x')$$

a contradiction.

c is a cluster point of a sequence $\{x_n\}$ in a metric space (X, d) if

$$\forall_{\varepsilon>0} \{n : x_n \in B_{\varepsilon}(c)\}$$
 is an infinite set.

Equivalently,

$$\forall_{\varepsilon>0,N\in\mathbf{N}}\exists_{n>N}\ x_n\in B_{\varepsilon}(c)$$

Example:

$$x_n = \begin{cases} 1 - \frac{1}{n} & \text{if } n \text{ even} \\ \frac{1}{n} & \text{if } n \text{ odd} \end{cases}$$

For n large and odd, x_n is close to zero; for n large and even, x_n is close to one. The sequence does not converge; the set of cluster points is $\{0, 1\}$.

If $\{x_n\}$ is a sequence and $n_1 < n_2 < n_3 < \cdots$, then $\{x_{n_k}\}$ is called a *subsequence*.

Note that we take some of the elements of the parent sequence, in the same order.

Example: $x_n = \frac{1}{n}$, so $\{x_n\} = (1, \frac{1}{2}, \frac{1}{3}, \ldots)$. If $n_k = 2k$, then $\{x_{n_k}\} = (\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots)$.

Theorem 10 (2.4 in De La Fuente, plus ...) Let (X, d) be a metric space, $c \in X$, and $\{x_n\}$ a sequence in X. Then c is a cluster point of $\{x_n\}$ if and only if there is a subsequence $\{x_{n_k}\}$ such that $\lim_{k\to\infty} x_{n_k} = c$.

Proof: Suppose c is a cluster point of $\{x_n\}$. We inductively construct a subsequence that converges to c. For k = 1, $\{n : x_n \in$

 $B_1(c)$ is infinite, so nonempty; let

 $n_1 = \min\{n : x_n \in B_1(c)\}$

Now, suppose we have chosen $n_1 < n_2 < \cdots < n_k$ such that

$$x_{n_j} \in B_{\frac{1}{j}}(c)$$
 for $j = 1, \dots, k$

 ${n : x_n \in B_{\frac{1}{k+1}}(c)}$ is infinite, so it contains at least one element bigger than n_k , so let

$$n_{k+1} = \min\left\{n : n > n_k, \ x_n \in B_{\frac{1}{k+1}}(c)\right\}$$

Thus, we have chosen $n_1 < n_2 < \cdots < n_k < n_{k+1}$ such that

$$x_{n_j} \in B_{\frac{1}{j}}(c)$$
 for $j = 1, \dots, k, k+1$

Thus, by induction, we obtain a subsequence $\{x_{n_k}\}$ such that

$$x_{n_k} \in B_{\frac{1}{k}}(c)$$

Given any $\varepsilon > 0$, by the Archimedean property, there exists $N(\varepsilon) > 1/\varepsilon$.

$$k > N(\varepsilon) \implies x_{n_k} \in B_{\frac{1}{k}}(c)$$
$$\implies x_{n_k} \in B_{\varepsilon}(c)$$

SO

$$x_{n_k} \to c \text{ as } k \to \infty$$

Conversely, suppose that there is a subsequence $\{x_{n_k}\}$ converging to c. Given any $\varepsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$k > K \Rightarrow d(x_{n_k}, c) < \varepsilon \Rightarrow x_{n_k} \in B_{\varepsilon}(c)$$

Therefore,

$${n : x_n \in B_{\varepsilon}(c)} \supseteq {n_{K+1}, n_{K+2}, n_{K+3}, \ldots}$$

Since $n_{K+1} < n_{K+2} < n_{K+3} < \cdots$, this set is infinite, so c is a cluster point of $\{x_n\}$.

Section 2.3: Sequences in R and R^m

Definition 11 A sequence of real number $\{x_n\}$ is *increasing* (*decreasing*) if $x_{n+1} \ge x_n$ ($x_{n+1} \le x_n$) for all n.

Definition 12 If $\{x_n\}$ is a sequence of real numbers, $\{x_n\}$ tends to infinity (written $x_n \to \infty$ or $\lim x_n = \infty$) if

 $\forall_{K \in \mathbf{R}} \exists_{N(K)} \ n > N(K) \Rightarrow x_n > K$

Similarly define $\lim x_n = -\infty$.

We don't say the sequence *converges* to infinity; the term "converge" is limited to the case of finite limts.

Theorem 13 (Theorem 3.1') Let $\{x_n\}$ be an increasing (decreasing) sequence of real numbers. Then $\lim_{n\to\infty} x_n = \sup\{x_n : n \in \mathbf{N}\}$ ($\lim_{n\to\infty} x_n = \inf\{x_n : n \in \mathbf{N}\}$). In particular, the limit exists.

Proof: Read the proof in the book, and figure out how to handle the unbounded case. \blacksquare

Lim Sups and Lim Infs Handout:

Consider a sequence $\{x_n\}$ of real numbers. Let

$$\alpha_n = \sup\{x_k : k \ge n\}$$

= sup{ $x_n, x_{n+1}, x_{n+2}, \ldots$ }
 $\beta_n = \inf\{x_k : k \ge n\}$

Either $\alpha_n = +\infty$ for all n, or $\alpha_n \in \mathbf{R}$ and $\alpha_1 \ge \alpha_2 \ge \alpha_3 \ge \cdots$. Either $\beta_n = -\infty$ for all n, or $\beta_n \in \mathbf{R}$ and $\beta_1 \le \beta_2 \le \beta_3 \le \cdots$.

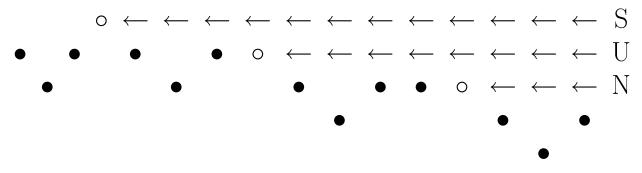
Definition 14

$$\limsup_{n \to \infty} x_n = \begin{cases} +\infty & \text{if } \alpha_n = +\infty \text{ for all } n \\ \lim_{n \to \infty} \alpha_n & \text{otherwise.} \end{cases}$$
$$\lim_{n \to \infty} x_n = \begin{cases} -\infty & \text{if } \beta_n = -\infty \text{ for all } n \\ \lim_{n \to \infty} \beta_n & \text{otherwise.} \end{cases}$$

Theorem 15 Let $\{x_n\}$ be a sequence of real numbers. Then $\lim_{n \to \infty} x_n = \gamma \in \mathbf{R} \cup \{-\infty, \infty\}$ $\Leftrightarrow \limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n = \gamma$

Return to Section 2.3:

Theorem 16 (Theorem 3.2, Rising Sun Lemma) Every sequence of real numbers contains an increasing subsequence or a decreasing subsequence or both.



Proof: Let

$$S = \{s \in \mathbf{N} : \forall_{n>s} \ x_s > x_n\}$$

Either S is infinite, or S is finite.

If S is infinite, let

$$n_1 = \min S$$

$$n_2 = \min (S \setminus \{n_1\})$$

$$n_3 = \min (S \setminus \{n_1, n_2\})$$

$$\vdots$$

$$n_{k+1} = \min (S \setminus \{n_1, n_2, \dots, n_k\})$$

Then $n_1 < n_2 < n_3 < \cdots$.

$$\begin{array}{ll} x_{n_1} > x_{n_2} & \text{since } n_1 \in S \text{ and } n_2 > n_1 \\ x_{n_2} > x_{n_3} & \text{since } n_2 \in S \text{ and } n_3 > n_2 \\ & \vdots \\ x_{n_k} > x_{n_{k+1}} & \text{since } n_k \in S \text{ and } n_{k+1} > n_k \\ & \vdots \end{array}$$

so $\{x_{n_k}\}$ is a strictly decreasing subsequence of $\{x_n\}$.

If S is finite and nonempty, let $n_1 = (\max S) + 1$; if $S = \emptyset$, let $n_1 = 1$. Then

$$n_{1} \notin S \text{ so } \exists_{n_{2} > n_{1}} x_{n_{2}} \geq x_{n_{1}}$$

$$n_{2} \notin S \text{ so } \exists_{n_{3} > n_{2}} x_{n_{3}} \geq x_{n_{2}}$$

$$\vdots$$

$$n_{k} \notin S \text{ so } \exists_{n_{k+1} > n_{k}} x_{n_{k+1}} \geq x_{n_{k}}$$

$$\vdots$$

so $\{x_{n_k}\}$ is a (weakly) increasing subsequence of $\{x_n\}$.

Theorem 17 (Thm. 3.3, Bolzano-Weierstrass) Every bounded sequence of real numbers contains a convergent subsequence.

Proof: Let $\{x_n\}$ be a bounded sequence of real numbers. By the Rising Sun Lemma, find an increasing or decreasing subsequence $\{x_{n_k}\}$. If $\{x_{n_k}\}$ is increasing, then by Theorem 3.1', $\lim x_{n_k} = \sup\{x_{n_k} : k \in \mathbf{N}\} \le \sup\{x_n : n \in \mathbf{N}\} < \infty$, since the sequence is bounded; since the limit is finite, the subsequence converges. Similarly, if the subsequence is decreasing, it converges.