Economics 204

Lecture 3-Wednesday, July 29, 2009

Section 2.1, Metric Spaces and Normed Spaces

Generalization of distance notion in \mathbf{R}^{n}

Definition 1 A metric space is a pair (X, d), where X is a set and $d: X \times X \rightarrow \mathbf{R}_{+}$, satisfying

1. $\forall_{x, y \in X} d(x, y) \geq 0, d(x, y)=0 \Leftrightarrow x=y$
2. $\forall_{x, y \in X} d(x, y)=d(y, x)$
3. (triangle inequality)

$$
\forall_{x, y, z \in X} d(x, y)+d(y, z) \geq d(x, z)
$$

y

Definition 2 Let V be a vector space over \mathbf{R}. A norm on V is a function $\|\cdot\|: V \rightarrow \mathbf{R}_{+}$satisfying

1. $\forall_{x \in V}\|x\| \geq 0$
2. $\forall_{x \in V}\|x\|=0 \Leftrightarrow x=0$
3. (triangle inequality)

$$
\begin{array}{rll}
\forall_{x, y \in V}\|x+y\| & \leq\|x\|+\|y\| \\
& x & \\
x \nearrow & & \searrow y \\
0 & \rightarrow & x+y \\
y & \searrow & \\
& & \\
& y &
\end{array}
$$

4. $\forall_{\alpha \in \mathbf{R}, x \in V}\|\alpha x\|=|\alpha|\|x\|$

A normed vector space is a vector space over \mathbf{R} equipped with a norm.

Theorem 3 Let $(V,\|\cdot\|)$ be a normed vector space. Let $d: V \times V \Rightarrow \mathbf{R}_{+}$be defined by

$$
d(v, w)=\|v-w\|
$$

Then (V, d) is a metric space.

Proof: We must verify that d satisfies all the properties of a metric.
1.

$$
\begin{aligned}
d(v, w)=\|v-w\| & \geq 0 \\
d(v, w)=0 & \Leftrightarrow\|v-w\|=0 \\
& \Leftrightarrow v-w=0 \\
& \Leftrightarrow(v+(-w))+w=w \\
& \Leftrightarrow v+((-w)+w)=w \\
& \Leftrightarrow v+0=w \\
& \Leftrightarrow v=w
\end{aligned}
$$

2. First, note that for any $x \in V, 0 \cdot x=(0+0) \cdot x=0 \cdot x+0 \cdot x$, so $0 \cdot x=0$. Then $0=0 \cdot x=$ $(1-1) \cdot x=1 \cdot x+(-1) \cdot x=x+(-1) \cdot x$, so we have $(-1) \cdot x=(-x)$.

$$
\begin{aligned}
d(v, w) & =\|v-w\| \\
& =|-1|\|v-w\| \\
& =\|(-1)(v+(-w))\| \\
& =\|(-1) v+(-1)(-w)\| \\
& =\|-v+w\|
\end{aligned}
$$

$$
\begin{aligned}
& =\|w+(-v)\| \\
& =\|w-v\| \\
& =d(w, v)
\end{aligned}
$$

3.

$$
\begin{aligned}
d(u, w) & =\|u-w\| \\
& =\|u+(-v+v)-w\| \\
& =\|u-v+v-w\| \\
& \leq\|u-v\|+\|v-w\| \\
& =d(u, v)+d(v, w)
\end{aligned}
$$

Examples of Normed Vector Spaces

- $E^{n}: n$-dimensional Euclidean space.

$$
V=\mathbf{R}^{n},\|x\|_{2}=|x|=\sqrt{\sum_{i=1}^{n}\left(x_{i}\right)^{2}}
$$

\bullet

$$
V=\mathbf{R}^{n},\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|
$$

-

$$
V=\mathbf{R}^{n},\|x\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}
$$

$$
C([0,1]),\|f\|_{\infty}=\sup \{|f(t)|: t \in[0,1]\}
$$

$$
C([0,1]),\|f\|_{2}=\sqrt{\int_{0}^{1}(f(t))^{2} d t}
$$

$$
C([0,1]),\|f\|_{1}=\int_{0}^{1}|f(t)| d t
$$

Theorem 4 (Cauchy-Schwarz Inequality)

If $v, w \in \mathbf{R}^{n}$, then

$$
\begin{aligned}
\left(\sum_{i=1}^{n} v_{i} w_{i}\right)^{2} & \leq\left(\sum_{i=1}^{n} v_{i}^{2}\right)\left(\sum_{i=1}^{n} w_{i}^{2}\right) \\
|v \cdot w|^{2} & \leq|v|^{2}|w|^{2} \\
|v \cdot w| & \leq|v||w|
\end{aligned}
$$

Read the proof in De La Fuente. The Cauchy-Schwarz Inequality is essential in proving the triangle inequality in E^{n}. Note that $v \cdot w=|v||w| \cos \theta$ where θ is the angle between v and w :

Definition 5 Two norms $\|\cdot\|$ and $\|\cdot\|^{\prime}$ on the same vector space V are said to be Lipschitz-equivalent if

$$
\exists_{m, M}>0 \forall_{x \in V} m\|x\| \leq\|x\|^{\prime} \leq M\|x\|
$$

Equivalently,

$$
\exists_{m, M}>0 \forall_{x \in V, x \neq 0} m \leq \frac{\|x\|^{\prime}}{\|x\|} \leq M
$$

Theorem 6 (Not in De La Fuente) All norms on \mathbf{R}^{n} are Lipschitz-equivalent.

However, infinite-dimensional spaces support norms which are not Lipschitz-equivalent. For example, on $C([0,1])$, let f_{n} be the function

$$
f_{n}(t)= \begin{cases}1-n t & \text { if } t \in\left[0, \frac{1}{n}\right] \\ 0 & \text { if } t \in\left(\frac{1}{n}, 1\right]\end{cases}
$$

Then

$$
\frac{\left\|f_{n}\right\|_{1}}{\left\|f_{n}\right\|_{\infty}}=\frac{\frac{1}{2 n}}{1}=\frac{1}{2 n} \rightarrow 0
$$

Definition 7 In a metric space (X, d), define

$$
\begin{aligned}
B_{\varepsilon}(x)= & \text { open ball with center } x \text { and radius } \varepsilon \\
= & \{y \in X: d(y, x)<\varepsilon\} \\
B_{\varepsilon}[x]= & \text { closed ball with center } x \text { and radius } \varepsilon \\
= & \{y \in X: d(y, x) \leq \varepsilon\} \\
S \subseteq X= & \text { is bounded if } \\
& \exists_{x \in X, \beta \in \mathbf{R}} \forall_{s \in S} d(s, x) \leq \beta \\
\operatorname{diam}(S)= & \sup \left\{d\left(s, s^{\prime}\right): s, s^{\prime} \in S\right\} \\
d(A, x)= & \inf _{a \in A} d(a, x) \\
d(A, B)= & \inf _{a \in A} d(B, a) \\
= & \inf \{d(a, b): a \in A, b \in B\}
\end{aligned}
$$

Note that $d(A, x)$ cannot be a metric (since a metric is a function on $X \times X$, the first and second arguments must be objects of the same type); in addition, $d(A, B)$ does not define a metric on the space of subsets of X. Another, more useful notion of the distance between sets is the Hausdorff distance, will probably see it in 201B

Section 2.2: Convergence of sequences in metric spaces

Definition 8 Let (X, d) be a metric space. A sequence $\left\{x_{n}\right\}$ converges to x (written $x_{n} \rightarrow x$ or $\lim _{n \rightarrow \infty} x_{n}=$ $x)$ if

$$
\forall_{\varepsilon>0} \exists_{N(\varepsilon) \in \mathbf{N}} n>N(\varepsilon) \Rightarrow d\left(x_{n}, x\right)<\varepsilon
$$

This is exactly the same as the definition of convergence of a sequence of real numbers, except we replace $|\cdot|$ in \mathbf{R} by the metric d.

Theorem 9 (Uniqueness of Limits) In a metric space (X, d), if $x_{n} \rightarrow x$ and $x_{n} \rightarrow x^{\prime}$, then $x=x^{\prime}$.

Proof:

$$
\begin{array}{rlll}
& & & x \\
& & \cdot & \downarrow \\
x_{n} & \cdot & \downarrow & \\
\cdot & \cdot & & \\
& & & \\
& \cdot & & \\
& & & \\
& & & \\
& & \varepsilon & \\
& & x^{\prime}
\end{array}
$$

Suppose $\left\{x_{n}\right\}$ is a sequence in $X, x_{n} \rightarrow x, x_{n} \rightarrow x^{\prime}, x \neq x^{\prime}$. Since $x \neq x^{\prime}, d\left(x, x^{\prime}\right)>0$. Let

$$
\varepsilon=\frac{d\left(x, x^{\prime}\right)}{2}
$$

Then there exist $N(\varepsilon)$ and $N^{\prime}(\varepsilon)$ such that

$$
\begin{aligned}
& n>N(\varepsilon) \Rightarrow d\left(x_{n}, x\right)<\varepsilon \\
& n>N^{\prime}(\varepsilon) \Rightarrow d\left(x_{n}, x^{\prime}\right)<\varepsilon
\end{aligned}
$$

Choose

$$
n>\max \left\{N(\varepsilon), N^{\prime}(\varepsilon)\right\}
$$

Then

$$
\begin{aligned}
d\left(x, x^{\prime}\right) & \leq d\left(x, x_{n}\right)+d\left(x_{n}, x^{\prime}\right) \\
& <\varepsilon+\varepsilon \\
& =2 \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& =d\left(x, x^{\prime}\right) \\
d\left(x, x^{\prime}\right) & <d\left(x, x^{\prime}\right)
\end{aligned}
$$

a contradiction.
c is a cluster point of a sequence $\left\{x_{n}\right\}$ in a metric space (X, d) if

$$
\forall_{\varepsilon>0}\left\{n: x_{n} \in B_{\varepsilon}(c)\right\} \text { is an infinite set. }
$$

Equivalently,

$$
\forall_{\varepsilon>0, N \in \mathbf{N}} \exists_{n>N} x_{n} \in B_{\varepsilon}(c)
$$

Example:

$$
x_{n}=\left\{\begin{array}{cl}
1-\frac{1}{n} & \text { if } n \text { even } \\
\frac{1}{n} & \text { if } n \text { odd }
\end{array}\right.
$$

For n large and odd, x_{n} is close to zero; for n large and even, x_{n} is close to one. The sequence does not converge; the set of cluster points is $\{0,1\}$.

If $\left\{x_{n}\right\}$ is a sequence and $n_{1}<n_{2}<n_{3}<\cdots$, then $\left\{x_{n_{k}}\right\}$ is called a subsequence.
Note that we take some of the elements of the parent sequence, in the same order.
Example: $x_{n}=\frac{1}{n}$, so $\left\{x_{n}\right\}=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right)$. If $n_{k}=2 k$, then $\left\{x_{n_{k}}\right\}=\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots\right)$.

Theorem 10 (2.4 in De La Fuente, plus ...) Let (X, d) be a metric space, $c \in X$, and $\left\{x_{n}\right\}$ a sequence in X. Then c is a cluster point of $\left\{x_{n}\right\}$ if and only if there is a subsequence $\left\{x_{n_{k}}\right\}$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=c$.

Proof: Suppose c is a cluster point of $\left\{x_{n}\right\}$. We inductively construct a subsequence that converges to c. For $k=1,\left\{n: x_{n} \in B_{1}(c)\right\}$ is infinite, so nonempty; let

$$
n_{1}=\min \left\{n: x_{n} \in B_{1}(c)\right\}
$$

Now, suppose we have chosen $n_{1}<n_{2}<\cdots<n_{k}$ such that

$$
x_{n_{j}} \in B_{\frac{1}{j}}(c) \text { for } j=1, \ldots, k
$$

$\left\{n: x_{n} \in B_{\frac{1}{k+1}}(c)\right\}$ is infinite, so it contains at least one element bigger than n_{k}, so let

$$
n_{k+1}=\min \left\{n: n>n_{k}, x_{n} \in B_{\frac{1}{k+1}}(c)\right\}
$$

Thus, we have chosen $n_{1}<n_{2}<\cdots<n_{k}<n_{k+1}$ such that

$$
x_{n_{j}} \in B_{\frac{1}{j}}(c) \text { for } j=1, \ldots, k, k+1
$$

Thus, by induction, we obtain a subsequence $\left\{x_{n_{k}}\right\}$ such that

$$
x_{n_{k}} \in B_{\frac{1}{k}}(c)
$$

Given any $\varepsilon>0$, by the Archimedean property, there exists $N(\varepsilon)>1 / \varepsilon$.

$$
\begin{aligned}
k>N(\varepsilon) & \Rightarrow x_{n_{k}} \in B_{\frac{1}{k}}(c) \\
& \Rightarrow x_{n_{k}} \in B_{\varepsilon}(c)
\end{aligned}
$$

so

$$
x_{n_{k}} \rightarrow c \text { as } k \rightarrow \infty
$$

Conversely, suppose that there is a subsequence $\left\{x_{n_{k}}\right\}$ converging to c. Given any $\varepsilon>0$, there exists $K \in \mathbf{N}$ such that

$$
k>K \Rightarrow d\left(x_{n_{k}}, c\right)<\varepsilon \Rightarrow x_{n_{k}} \in B_{\varepsilon}(c)
$$

Therefore,

$$
\left\{n: x_{n} \in B_{\varepsilon}(c)\right\} \supseteq\left\{n_{K+1}, n_{K+2}, n_{K+3}, \ldots\right\}
$$

Since $n_{K+1}<n_{K+2}<n_{K+3}<\cdots$, this set is infinite, so c is a cluster point of $\left\{x_{n}\right\}$.

Definition 11 A sequence of real number $\left\{x_{n}\right\}$ is increasing (decreasing) if $x_{n+1} \geq x_{n}\left(x_{n+1} \leq x_{n}\right)$ for all n.

Definition 12 If $\left\{x_{n}\right\}$ is a sequence of real numbers, $\left\{x_{n}\right\}$ tends to infinity (written $x_{n} \rightarrow \infty$ or $\lim x_{n}=$ $\infty)$ if

$$
\forall_{K \in \mathbf{R}} \exists_{N(K)} n>N(K) \Rightarrow x_{n}>K
$$

Similarly define $\lim x_{n}=-\infty$.

We don't say the sequence converges to infinity; the term "converge" is limited to the case of finite limts.

Theorem 13 (Theorem 3.1') Let $\left\{x_{n}\right\}$ be an increasing (decreasing) sequence of real numbers. Then $\lim _{n \rightarrow \infty} x_{n}=\sup \left\{x_{n}: n \in \mathbf{N}\right\}\left(\lim _{n \rightarrow \infty} x_{n}=\inf \left\{x_{n}: n \in \mathbf{N}\right\}\right)$. In particular, the limit exists.

Proof: Read the proof in the book, and figure out how to handle the unbounded case.

Lim Sups and Lim Infs Handout:

Consider a sequence $\left\{x_{n}\right\}$ of real numbers. Let

$$
\begin{aligned}
\alpha_{n} & =\sup \left\{x_{k}: k \geq n\right\} \\
& =\sup \left\{x_{n}, x_{n+1}, x_{n+2}, \ldots\right\} \\
\beta_{n} & =\inf \left\{x_{k}: k \geq n\right\}
\end{aligned}
$$

Either $\alpha_{n}=+\infty$ for all n, or $\alpha_{n} \in \mathbf{R}$ and $\alpha_{1} \geq \alpha_{2} \geq \alpha_{3} \geq \cdots$. Either $\beta_{n}=-\infty$ for all n, or $\beta_{n} \in \mathbf{R}$ and $\beta_{1} \leq \beta_{2} \leq \beta_{3} \leq \cdots$.

Definition 14

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} x_{n}= \begin{cases}+\infty & \text { if } \alpha_{n}=+\infty \text { for all } n \\
\lim \alpha_{n} & \text { otherwise. }\end{cases} \\
& \liminf _{n \rightarrow \infty} x_{n}=\left\{\begin{aligned}
-\infty & \text { if } \beta_{n}=-\infty \text { for all } n \\
\lim \beta_{n} & \text { otherwise }
\end{aligned}\right.
\end{aligned}
$$

Theorem 15 Let $\left\{x_{n}\right\}$ be a sequence of real numbers. Then

$$
\begin{gathered}
\lim _{n \rightarrow \infty} x_{n}=\gamma \in \mathbf{R} \cup\{-\infty, \infty\} \\
\Leftrightarrow \lim \sup _{n \rightarrow \infty} x_{n}=\liminf _{n \rightarrow \infty} x_{n}=\gamma
\end{gathered}
$$

Return to Section 2.3:

Theorem 16 (Theorem 3.2, Rising Sun Lemma) Every sequence of real numbers contains an increasing subsequence or a decreasing subsequence or both.

Proof: Let

$$
S=\left\{s \in \mathbf{N}: \forall_{n>s} x_{s}>x_{n}\right\}
$$

Either S is infinite, or S is finite.
If S is infinite, let

$$
\begin{aligned}
n_{1} & =\min S \\
n_{2} & =\min \left(S \backslash\left\{n_{1}\right\}\right) \\
n_{3} & =\min \left(S \backslash\left\{n_{1}, n_{2}\right\}\right) \\
& \vdots \\
n_{k+1} & =\min \left(S \backslash\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}\right)
\end{aligned}
$$

Then $n_{1}<n_{2}<n_{3}<\cdots$.

$$
x_{n_{1}}>x_{n_{2}} \quad \text { since } n_{1} \in S \text { and } n_{2}>n_{1}
$$

$$
\begin{aligned}
x_{n_{2}}>x_{n_{3}} \quad & \text { since } n_{2} \in S \text { and } n_{3}>n_{2} \\
& \vdots \\
x_{n_{k}}>x_{n_{k+1}} \quad & \text { since } n_{k} \in S \text { and } n_{k+1}>n_{k}
\end{aligned}
$$

so $\left\{x_{n_{k}}\right\}$ is a strictly decreasing subsequence of $\left\{x_{n}\right\}$.

If S is finite and nonempty, let $n_{1}=(\max S)+1$; if $S=\emptyset$, let $n_{1}=1$. Then

$$
\begin{array}{cll}
n_{1} \notin S & \text { so } \quad \exists \exists_{n_{2}>n_{1}} x_{n_{2}} \geq x_{n_{1}} \\
n_{2} \notin S & \text { so } \quad \exists_{n_{3}>n_{2}} x_{n_{3}} \geq x_{n_{2}} \\
& \vdots & \\
n_{k} \notin S & \text { so } \quad \exists \exists_{n_{k+1}>n_{k}} x_{n_{k+1}} \geq x_{n_{k}}
\end{array}
$$

so $\left\{x_{n_{k}}\right\}$ is a (weakly) increasing subsequence of $\left\{x_{n}\right\}$.

Theorem 17 (Thm. 3.3, Bolzano-Weierstrass) Every

bounded sequence of real numbers contains a convergent subsequence.

Proof: Let $\left\{x_{n}\right\}$ be a bounded sequence of real numbers. By the Rising Sun Lemma, find an increasing or decreasing subsequence $\left\{x_{n_{k}}\right\}$. If $\left\{x_{n_{k}}\right\}$ is increasing, then by Theorem 3.1', $\lim x_{n_{k}}=\sup \left\{x_{n_{k}}: k \in \mathbf{N}\right\} \leq$ $\sup \left\{x_{n}: n \in \mathbf{N}\right\}<\infty$, since the sequence is bounded; since the limit is finite, the subsequence converges. Similarly, if the subsequence is decreasing, it converges.

