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Sticky Notes

Section 2.4, Open and Closed Sets

Definition 1 Let (X, d) be a metric space. A set A ⊆ X is open
if

∀x∈A∃ε>0Bε(x) ⊆ A

A set C ⊆ X is closed if X \ C is open.

Example: (a, b) is open in the metric space E1 (R with the usual
Euclidean metric). Given x ∈ (a, b), a < x < b. Let

ε = min{x − a, b − x} > 0

Then

y ∈ Bε(x) ⇒ y ∈ (x − ε, x + ε)

⊆ (x − (x − a), x + (b − x))

= (a, b)

so Bε(x) ⊆ (a, b), so (a, b) is open.
Notice that ε depends on x; in particular, ε gets smaller as x
nears the boundary of the set.
Example: In E1, [a, b] is closed. R \ [a, b] = (−∞, a) ∪ (b,∞) is
a union of two open sets, which must be open . . . .
Example: In the metric space [0, 1], [0, 1] is open. With [0, 1] as
the underlying metric space, Bε(0) = {x ∈ [0, 1] : |x − 0| < ε =
[0, ε). Thus, openness and closedness depend on the underyling
metric space as well as on the set.
Example: Most sets are neither open nor closed. For example, in
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E1, [0, 1] ∪ (2, 3) is neither open nor closed.
Example: An open set may consist of a single point. For example,
if X = N and d(m, n) = |m − n|, then B1/2(1) = {m ∈ N :
|m − 1| < 1/2} = {1}.
Example: In any metric space (X, d) both ∅ and X are open, and
both ∅ and X are closed. To see that ∅ is open, note that the
statement

∀x∈∅∃ε>0 Bε(x) ⊆ ∅
is vacuously true since there aren’t any x ∈ ∅. To see that X is
open, note that since Bε(x) is by definition {z ∈ X : d(z, x) < ε},
it is trivially contained in X . Since ∅ is open, X is closed; since
X is open, ∅ is closed.
Example: Open balls are open sets. Suppose y ∈ Bε(x). Then
d(x, y) < ε. Let δ = ε − d(x, y) > 0. If d(z, y) < δ, then

d(z, x) ≤ d(z, y) + d(y, x)

< δ + d(x, y)

= ε − d(x, y) + d(x, y)

= ε

so Bδ(y) ⊆ Bε(x), so Bε(x) is open.

Theorem 2 (4.2) Let (X, d) be a metric space. Then

1. ∅ and X are both open, and both closed.

2. The union of an arbitrary (finite, countable, or uncount-
able) collection of open sets is open.

3. The intersection of a finite collection of open sets is open.

Proof:

1. We have already done this.
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2. Suppose {Aλ}λ∈Λ is a collection of open sets.

x ∈ ⋃
λ∈Λ

Aλ ⇒ ∃λ0∈Λ x ∈ Aλ0

⇒ ∃ε>0 Bε(x) ⊆ Aλ0
⊆ ⋃

λ∈Λ
Aλ

so ∪λ∈ΛAλ is open.

3. Suppose A1, . . . , An ⊆ X are open sets. If x ∈ ∩n
i=1Ai, then

x ∈ A1, x ∈ A2, . . . , x ∈ An

so
∃ε1>0,...,εn>0 Bε1

(x) ⊆ A1, . . . , Bεn(x) ⊆ An

Let
ε = min{ε1, . . . , εn} > 0

(Aside: this is where we need the fact that we are taking
a finite **intersection. The infimum of an infinite set of
positive numbers could be zero.)
Then

Bε(x) ⊆ Bε1
(x) ⊆ A1, . . . , Bε(x) ⊆ Bεn(x) ⊆ An

so
Bε(x) ⊆ n⋂

i=1
Ai

which proves that ∩n
i=1Ai is open.

Definition 3 • int A: the interior of A, the largest open set
contained in A (the union of all open sets contained in A)

• Ā: the closure of A, the smallest closed set containing A (the
intersection of all closed sets containing A)
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• extA: the exterior of A, the largest open set contained in
X \ A.

• ∂A: the boundary of A, (X \ A) ∩ Ā

Theorem 4 (4.13) A set A in a metric space (X, d) is closed
if and only if

{xn} ⊂ A, {xn} → x ∈ X ⇒ x ∈ A

Proof: (This is different from the proof in de la Fuente: he
puts the meat of the proof into Theorem 4.12)
Suppose A is closed. Then X \ A is open. Consider a convergent
sequence {xn} → x ∈ X , with xn ∈ A for all n. If x �∈ A,
x ∈ X \ A, so there is some ε > 0 such that Bε(x) ⊆ X \ A.
Since xn → x, there exists N (ε) such that

n > N (ε) ⇒ xn ∈ Bε(x)

⇒ xn ∈ X \ A

⇒ xn �∈ A

contradiction. Therefore,

{xn} ⊂ A, {xn} → x ∈ X ⇒ x ∈ A

Conversely, suppose

{xn} ⊂ A, {xn} → x ∈ X ⇒ x ∈ A

We need to show that A is closed, i.e. X \ A is open. Suppose
not, so X \A is not open. Then there exists x ∈ X \A such that
for every ε > 0,

Bε(x) �⊆ X \ A

so there exists y ∈ Bε(x) such that y �∈ X \ A, so y ∈ A so

Bε(x)
⋂

A �= ∅
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Construct a sequence {xn} as follows: for each n, choose xn ∈
B1

n
(x) ∩ A. Given ε > 0, we can find N (ε) such that N (ε) > 1

ε

by the Archimedean Property, so n > N (ε) ⇒ 1
n

< 1
N(ε)

< ε, so

xn → x. Then {xn} ⊆ A, {xn} → x, so x ∈ A, contradiction.
Therefore, X \ A is open, so A is closed.
Section 2.5: Limits of Functions Read this on your own.
Note that we may have limx→a f (x) = y even though

• f is not defined at a; or

• f is defined at a but f (a) �= y.

The existence and value of the limit depends on values of f near
a but not at a.
Section 2.6: Continuity in Metric Spaces

Definition 5 Let (X, d) and (Y, ρ) be metric spaces, f : X →
Y . f is continuous at a point x0 ∈ X if

∀ε>0∃δ(x0,ε)>0 d(x, x0) < δ(x0, ε) ⇒ ρ(f (x), f (x0)) < ε

f is continuous if it is continuous at every element of its domain.

Note: δ depends on x0, ε. This is a straightforward generalization
of the definition of continuity in R. Continuity at x0 requires:

• f (x0) is defined; and

• either

– x0 is an isolated point of X , i.e. ∃ε>0Bε(x) = {x}; or

– limx→x0 f (x) exists and equals f (x0)

(We will go out of order.)
** Suppose f : X → Y and A ⊆ Y . Define f−1(A) = {x ∈ X :
f (x) ∈ A}.
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Theorem 6 (6.14) Let (X, d) and (Y, ρ) be metric spaces, f :
X → Y . Then f is continuous if and only if

∀A⊆Y A open in Y ⇒ f−1(A) is open in X

Proof: (We give a direct proof; de la Fuente works via closed
sets)

Suppose f is continuous. Given A ⊆ Y , A open, we must
show that f−1(A) is open in X . Suppose x0 ∈ f−1(A). Let
y0 = f (x0) ∈ A. Since A is open, we can find ε > 0 such that
Bε(y0) ⊆ A. Since f is continuous, there exists δ > 0 such that

d(x, x0) < δ ⇒ ρ(f (x), f (x0)) < ε

⇒ f (x) ∈ Bε(y0)

⇒ f (x) ∈ A

⇒ x ∈ f−1(A)

so Bδ(x0) ⊆ f−1(A), so f−1(A) is open.
Conversely, suppose

∀A⊆Y A open in Y ⇒ f−1(A) is open in X

We need to show that f is continuous. Let x0 ∈ X , ε > 0. Let
A = Bε(f (x0)). A is an open ball, hence an open set, so f−1(A)
is open in X . x0 ∈ f−1(A), so there exists δ > 0 such that
Bδ(x0) ⊆ f−1(A).

d(x, x0) < δ ⇒ x ∈ Bδ(x0)

⇒ x ∈ f−1(A)

⇒ f (x) ∈ A

⇒ ρ(f (x), f (x0)) < ε

Thus, we have shown that f is continuous at x0; since x0 is an
arbitrary point in X , f is continuous.
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Theorem 7 (Slightly weaker version of 6.10) Let (X, dX),
(Y, dY ) and (Z, dZ) be metric spaces. If f : X → Y and
g : Y → Z are continuous, then g ◦ f : X → Z is contin-
uous.

Proof: Suppose A ⊆ Z is open. Since g is continuous, g−1(A) is
open in Y ; since f is continuous, f−1(g−1(A)) is open in X .

We claim that

f−1(g−1(A)) = (g ◦ f )−1(A)

Observe

x ∈ f−1(g−1(A)) ⇔ f (x) ∈ g−1(A)

⇔ g(f (x)) ∈ A

⇔ (g ◦ f )(x) ∈ A

⇔ x ∈ (g ◦ f )−1(A)

which establishes the claim. This shows that (g ◦ f )−1(A) is open
in X , so g ◦ f is continuous.

Definition 8 [Uniform Continuity] (Important) Suppose f : (X, d)
→ (Y, ρ). f is continuous means

∀x0∈X,ε>0∃δ(x0,ε)>0 d(x, x0) < δ(x0, ε) ⇒ ρ(f (x), f (x0)) < ε

f is uniformly continuous means

∀ε>0∃δ(ε)>0∀x0∈X d(x, x0) < δ(ε) ⇒ ρ(f (x), f (x0)) < ε

Example: Consider

f (x) =
1

x
, x ∈ (0, 1]
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f is continuous from Math 1A. We will show that f is not uni-
formly continuous. Fix ε > 0 and x0 ∈ (0, 1]. If x = x0

1+εx0
,

then

1 + εx0 > 1

x =
x0

1 + εx0
< x0

1

x
− 1

x0
> 0

|f (x) − f (x0)| =

∣∣∣∣∣∣∣
1

x
− 1

x0

∣∣∣∣∣∣∣

=
1

x
− 1

x0

=
1 + εx0

x0
− 1

x0

=
εx0

x0
= ε

Thus, δ(x0, ε) must be chosen small enough so that
∣∣∣∣∣∣∣

x0

1 + εx0
− x0

∣∣∣∣∣∣∣ ≥ δ(x0, ε)

δ(x0, ε) ≤ x0 − x0

1 + εx0

=
ε(x0)

2

1 + εx0

< ε(x0)
2

which converges to zero as x0 → 0, so there is no δ(ε) which will
work for all x0 ∈ (0, 1].
Example: If f ′(x) is defined and uniformly bounded on an in-
terval [a, b], then f (x) is uniformly continuous on [a, b]. However,
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even a function with an unbounded derivative may be uniformly
continuous. Consider

f (x) =
√

x, x ∈ [0, 1]

f is continuous from Math 1A. We will show that f is uniformly
continuous. Given ε > 0, let δ = ε2. Then given any x0 ∈ [0, 1],
|x − x0| < δ implies by the Fundamental Theorem of Calculus

|f (x) − f (x0)| =

∣∣∣∣∣∣∣
∫ x
x0

1

2
√

t
dt

∣∣∣∣∣∣∣

≤ ∫ |x−x0|
0

1

2
√

t
dt

=
√
|x − x0|

<
√

δ

=
√

ε2

= ε

Thus, f (x) is uniformly continuous on [0, 1], even though f ′(x) →
∞ as x → 0.

Definition 9 [Lipschitz Functions] Let X,Y be normed vector
space, E ⊆ X . f : X → Y is Lipschitz on E if

∃K>0∀x,z∈E ‖f (x) − f (z)||Y ≤ K‖x − z‖X

f is locally Lipschitz on E if

∀x0∈E∃ε>0 f is Lipschitz on Bε(x0) ∩ E

**Remark: De la Fuente only defines Lipschitz and locally Lips-
chitz in the context of normed vector spaces. The notions make
sense in a metric space: Let (X, d) and (Y, ρ) be metric spaces,
E ⊆ X . f : X → Y is Lipschitz on E if

∃K>0∀x,z∈E ρ(f (x), f (z)) ≤ Kd(x, z)
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f is locally Lipschitz on E if

∀x0∈E∃ε>0 f is Lipschitz on Bε(x0) ∩ E

However, my sense is that Lipschitz and locally Lipschitz are more
useful in the context of normed spaces, because these notions inter-
act with the vector space structure present in the normed space,
but absent in the metric space. However, in both the normed
vector space and metric space contexts, we have

locally Lipschitz ⇒ continuous

Lipschitz ⇒ uniformly continuous

A function f : Rm → Rn is said to be C1 if all its first partial
derivatives exist and are continuous. A C1 function is locally
Lipschitz.**

Homeomorphisms:

Definition 10 Let (X, d) and (Y, ρ) be metric spaces. A func-
tion f : X → Y is called a homeomorphism if it is one-to-one
and continuous, and its inverse function is continuous on f (X).

(Aside: this is not the standard definition; most texts also
require that the function be onto. See the Corrections handout
for a correction to Theorem 6.21)

Now suppose that f is a homeomorphism and U ⊂ X .

y ∈ (
f−1

)−1
(U) ⇔ f−1(y) ∈ U

⇔ y ∈ f (U)

U open in X ⇒ (
f−1

)−1
(U) is open in (f (X), ρ)

⇒ f (U) is open in (f (X), ρ)
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This says that X and
(
f (X), ρ|f(X)

)
are identical in terms of

properties that can be characterized solely in terms of open
sets; such properties are called “topological properties.”
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