Economics 204

Lecture 4–Thursday, July 30, 2009

Section 2.4, Open and Closed Sets

Definition 1 Let (X, d) be a metric space. A set $A \subseteq X$ is open if

$$\forall_{x \in A} \exists_{\varepsilon > 0} B_{\varepsilon}(x) \subseteq A$$

A set $C \subseteq X$ is *closed* if $X \setminus C$ is open.

Example: (a, b) is open in the metric space E^1 (**R** with the usual Euclidean metric). Given $x \in (a, b)$, a < x < b. Let

$$\varepsilon = \min\{x - a, b - x\} > 0$$

Then

$$y \in B_{\varepsilon}(x) \Rightarrow y \in (x - \varepsilon, x + \varepsilon)$$

 $\subseteq (x - (x - a), x + (b - x))$
 $= (a, b)$

so $B_{\varepsilon}(x) \subseteq (a, b)$, so (a, b) is open.

Notice that ε depends on x; in particular, ε gets smaller as x nears the boundary of the set.

Example: In E^1 , [a, b] is closed. $\mathbf{R} \setminus [a, b] = (-\infty, a) \cup (b, \infty)$ is a union of two open sets, which must be open

Example: In the metric space [0, 1], [0, 1] is open. With [0, 1] as the underlying metric space, $B_{\varepsilon}(0) = \{x \in [0, 1] : |x - 0| < \varepsilon = [0, \varepsilon)$. Thus, openness and closedness depend on the underlying metric space as well as on the set.

Example: Most sets are neither open nor closed. For example, in E^1 , $[0,1] \cup (2,3)$ is neither open nor closed.

Example: An open set may consist of a single point. For example,

if
$$X = \mathbf{N}$$
 and $d(m, n) = |m - n|$, then $B_{1/2}(1) = \{m \in \mathbf{N} : |m - 1| < 1/2\} = \{1\}$.

Example: In any metric space (X, d) both \emptyset and X are open, and both \emptyset and X are closed. To see that \emptyset is open, note that the statement

$$\forall_{x\in\emptyset}\exists_{\varepsilon>0}\ B_{\varepsilon}(x)\subseteq\emptyset$$

is vacuously true since there aren't any $x \in \emptyset$. To see that X is open, note that since $B_{\varepsilon}(x)$ is by definition $\{z \in X : d(z,x) < \varepsilon\}$, it is trivially contained in X. Since \emptyset is open, X is closed; since X is open, \emptyset is closed.

Example: Open balls are open sets. Suppose $y \in B_{\varepsilon}(x)$. Then $d(x, y) < \varepsilon$. Let $\delta = \varepsilon - d(x, y) > 0$. If $d(z, y) < \delta$, then

$$d(z,x) \leq d(z,y) + d(y,x)$$

$$< \delta + d(x,y)$$

$$= \varepsilon - d(x,y) + d(x,y)$$

$$= \varepsilon$$

so $B_{\delta}(y) \subseteq B_{\epsilon}(x)$, so $B_{\varepsilon}(x)$ is open.

Theorem 2 (4.2) Let (X, d) be a metric space. Then

- 1. \emptyset and X are both open, and both closed.
- 2. The union of an arbitrary (finite, countable, or uncountable) collection of open sets is open.
- 3. The intersection of a finite collection of open sets is open.

Proof:

1. We have already done this.

2. Suppose $\{A_{\lambda}\}_{\lambda \in \Lambda}$ is a collection of open sets.

$$\begin{aligned} x \in \bigcup_{\lambda \in \Lambda} A_{\lambda} &\Rightarrow \quad \exists_{\lambda_0 \in \Lambda} \ x \in A_{\lambda_0} \\ &\Rightarrow \quad \exists_{\varepsilon > 0} \ B_{\varepsilon}(x) \subseteq A_{\lambda_0} \subseteq \bigcup_{\lambda \in \Lambda} A_{\lambda} \end{aligned}$$

so $\cup_{\lambda \in \Lambda} A_{\lambda}$ is open.

3. Suppose $A_1, \ldots, A_n \subseteq X$ are open sets. If $x \in \bigcap_{i=1}^n A_i$, then

$$x \in A_1, x \in A_2, \ldots, x \in A_n$$

 \mathbf{SO}

$$\exists_{\varepsilon_1 > 0, \dots, \varepsilon_n > 0} \ B_{\varepsilon_1}(x) \subseteq A_1, \dots, B_{\varepsilon_n}(x) \subseteq A_n$$

Let

$$\varepsilon = \min\{\varepsilon_1, \dots, \varepsilon_n\} > 0$$

(Aside: this is where we need the fact that we are taking a finite union. The infimum of an infinite set of positive numbers could be zero.)

Then

$$B_{\varepsilon}(x) \subseteq B_{\varepsilon_1}(x) \subseteq A_1, \dots, B_{\varepsilon}(x) \subseteq B_{\varepsilon_n}(x) \subseteq A_n$$

 \mathbf{SO}

$$B_{\varepsilon}(x) \subseteq \bigcap_{i=1}^{n} A_i$$

which proves that $\bigcap_{i=1}^{n} A_i$ is open.

Definition 3 • int *A*: the *interior* of *A*, the largest open set contained in *A* (the union of all open sets contained in *A*)

Ā: the *closure* of A, the smallest closed set containing A (the intersection of all closed sets containing A)

- ext A: the *exterior* of A, the largest open set contained in $X \setminus A$.
- ∂A : the boundary of A, $\overline{(X \setminus A)} \cap \overline{A}$

Theorem 4 (4.13) A set A in a metric space (X, d) is closed if and only if

$$\{x_n\} \subset A, \{x_n\} \to x \in X \Rightarrow x \in A$$

Proof: (This is different from the proof in de la Fuente: he puts the meat of the proof into Theorem 4.12) Suppose A is closed. Then $X \setminus A$ is open. Consider a convergent sequence $\{x_n\} \to x \in X$, with $x_n \in A$ for all n. If $x \notin A$, $x \in X \setminus A$, so there is some $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq X \setminus A$. Since $x_n \to x$, there exists $N(\varepsilon)$ such that

$$n > N(\varepsilon) \implies x_n \in B_{\varepsilon}(x)$$
$$\implies x_n \in X \setminus A$$
$$\implies x_n \notin A$$

contradiction. Therefore,

$$\{x_n\} \subset A, \{x_n\} \to x \in X \Rightarrow x \in A$$

Conversely, suppose

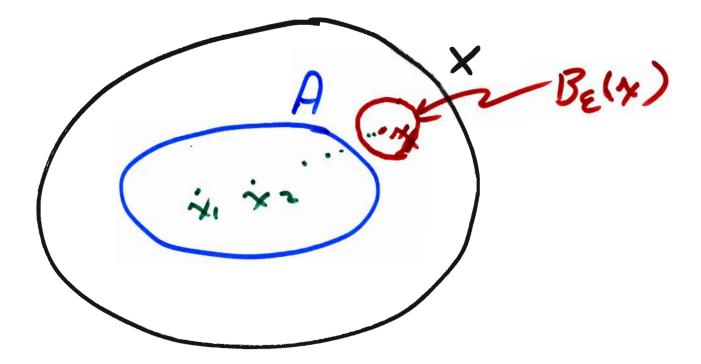
$$\{x_n\} \subset A, \{x_n\} \to x \in X \Rightarrow x \in A$$

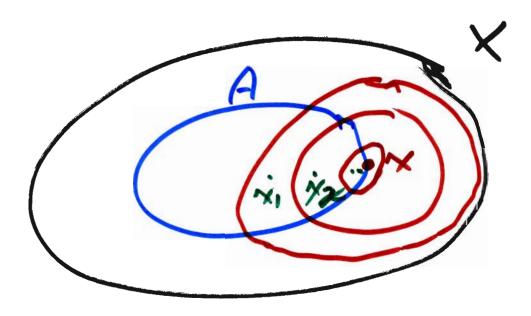
We need to show that A is closed, i.e. $X \setminus A$ is open. Suppose not, so $X \setminus A$ is not open. Then there exists $x \in X \setminus A$ such that for every $\varepsilon > 0$,

$$B_{\varepsilon}(x) \not\subseteq X \setminus A$$

so there exists $y \in B_{\varepsilon}(x)$ such that $y \notin X \setminus A$, so $y \in A$ so

 $B_{\varepsilon}(x) \bigcap A \neq \emptyset$





Construct a sequence $\{x_n\}$ as follows: for each n, choose $x_n \in B_{\frac{1}{n}}(x) \cap A$. Given $\varepsilon > 0$, we can find $N(\varepsilon)$ such that $N(\varepsilon) > \frac{1}{\varepsilon}$ by the Archimedean Property, so $n > N(\varepsilon) \Rightarrow \frac{1}{n} < \frac{1}{N(\varepsilon)} < \varepsilon$, so $x_n \to x$. Then $\{x_n\} \subseteq A, \{x_n\} \to x$, so $x \in A$, contradiction. Therefore, $X \setminus A$ is open, so A is closed.

Section 2.5: Limits of Functions Read this on your own. Note that we may have $\lim_{x\to a} f(x) = y$ even though

- f is not defined at a; or
- f is defined at a but $f(a) \neq y$.

The existence and value of the limit depends on values of f near a but not at a.

Section 2.6: Continuity in Metric Spaces

Definition 5 Let (X, d) and (Y, ρ) be metric spaces, $f : X \to Y$. f is continuous at a point $x_0 \in X$ if

$$\forall_{\varepsilon>0} \exists_{\delta(x_0,\varepsilon)>0} \ d(x,x_0) < \delta(x_0,\varepsilon) \Rightarrow \rho(f(x),f(x_0)) < \varepsilon$$

f is *continuous* if it is continuous at every element of its domain.

Note: δ depends on x_0 , ε . This is a straightforward generalization of the definition of continuity in **R**. Continuity at x_0 requires:

- $f(x_0)$ is defined; and
- either
 - $-x_0$ is an isolated point of X, i.e. $\exists_{\varepsilon>0}B_{\varepsilon}(x) = \{x\}$; or
 - $-\lim_{x\to x_0} f(x)$ exists and equals $f(x_0)$

(We will go out of order.)

Define $f^{-1}(A) = \{x \in X : f(x) \in A\}$

Theorem 6 (6.14) Let (X, d) and (Y, ρ) be metric spaces, $f : X \to Y$. Then f is continuous if and only if

$$\forall_{A\subseteq Y} A \text{ open in } Y \Rightarrow f^{-1}(A) \text{ is open in } X$$

Proof: (We give a direct proof; de la Fuente works via closed sets)

Suppose f is continuous. Given $A \subseteq Y$, A open, we must show that $f^{-1}(A)$ is open in X. Suppose $x_0 \in f^{-1}(A)$. Let $y_0 = f(x_0) \in A$. Since A is open, we can find $\varepsilon > 0$ such that $B_{\varepsilon}(y_0) \subseteq A$. Since f is continuous, there exists $\delta > 0$ such that

$$d(x, x_0) < \delta \implies \rho(f(x), f(x_0)) < \varepsilon$$
$$\implies f(x) \in B_{\varepsilon}(y_0)$$
$$\implies f(x) \in A$$
$$\implies x \in f^{-1}(A)$$

so $B_{\delta}(x_0) \subseteq f^{-1}(A)$, so $f^{-1}(A)$ is open.

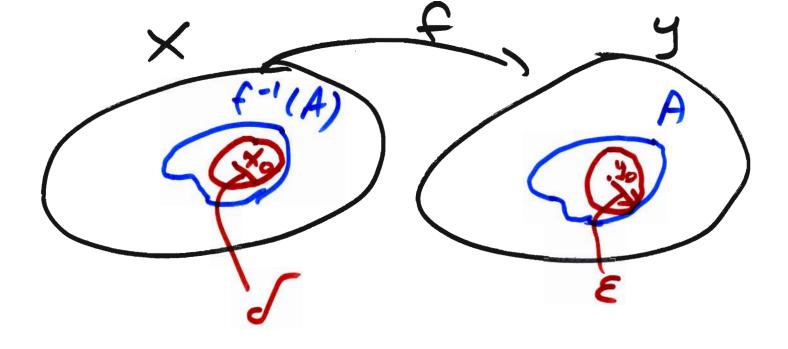
Conversely, suppose

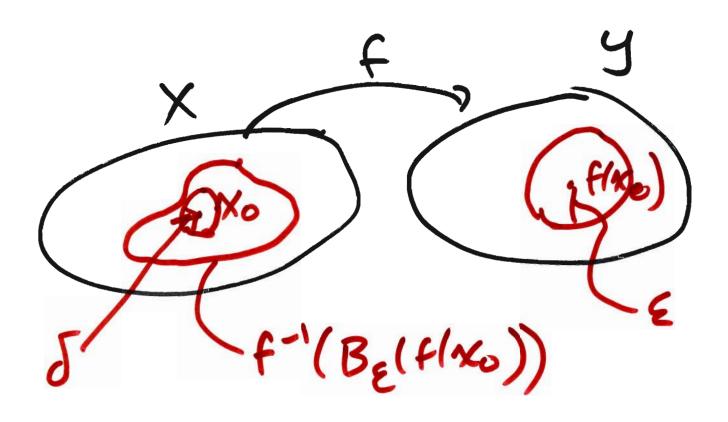
$$\forall_{A \subseteq Y} A \text{ open in } Y \Rightarrow f^{-1}(A) \text{ is open in } X$$

We need to show that f is continuous. Let $x_0 \in X$, $\varepsilon > 0$. Let $A = B_{\varepsilon}(f(x_0))$. A is an open ball, hence an open set, so $f^{-1}(A)$ is open in X. $x_0 \in f^{-1}(A)$, so there exists $\delta > 0$ such that $B_{\delta}(x_0) \subseteq f^{-1}(A)$.

$$d(x, x_0) < \delta \implies x \in B_{\delta}(x_0)$$
$$\implies x \in f^{-1}(A)$$
$$\implies f(x) \in A$$
$$\implies \rho(f(x), f(x_0)) < \varepsilon$$

Thus, we have shown that f is continuous at x_0 ; since x_0 is an arbitrary point in X, f is continuous.





Theorem 7 (Slightly weaker version of 6.10) Let (X, d_X) , (Y, d_Y) and (Z, d_Z) be metric spaces. If $f: X \to Y$ and $g: Y \to Z$ are continuous, then $g \circ f: X \to Z$ is continuous.

Proof: Suppose $A \subseteq Z$ is open. Since g is continuous, $g^{-1}(A)$ is open in Y; since f is continuous, $f^{-1}(g^{-1}(A))$ is open in X.

We claim that

$$f^{-1}(g^{-1}(A)) = (g \circ f)^{-1}(A)$$

Observe

$$\begin{aligned} x \in f^{-1}(g^{-1}(A)) & \Leftrightarrow \quad f(x) \in g^{-1}(A) \\ & \Leftrightarrow \quad g(f(x)) \in A \\ & \Leftrightarrow \quad (g \circ f)(x) \in A \\ & \Leftrightarrow \quad x \in (g \circ f)^{-1}(A) \end{aligned}$$

which establishes the claim. This shows that $(g \circ f)^{-1}(A)$ is open in X, so $g \circ f$ is continuous.

Definition 8 [Uniform Continuity] (*Important*) Suppose $f : (X, d) \to (Y, \rho)$. f is continuous means

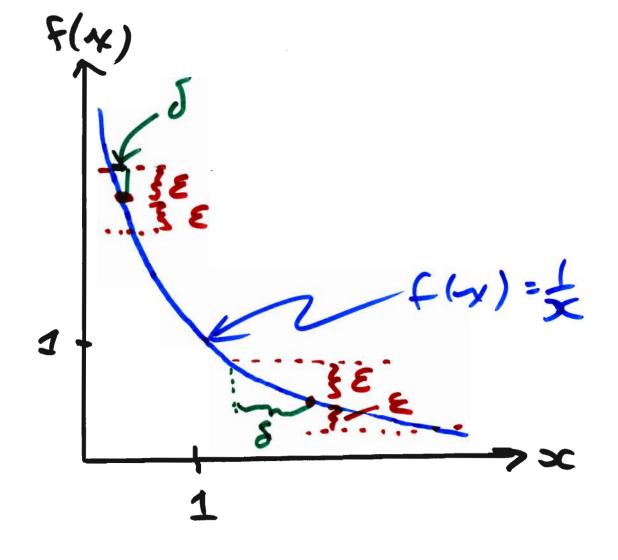
$$\forall_{x_0 \in X, \varepsilon > 0} \exists_{\delta(x_0, \varepsilon) > 0} \ d(x, x_0) < \delta(x_0, \varepsilon) \Rightarrow \rho(f(x), f(x_0)) < \varepsilon$$

f is uniformly continuous means

$$\forall_{\varepsilon>0} \exists_{\delta(\varepsilon)>0} \forall_{x_0 \in X} \ d(x, x_0) < \delta(\varepsilon) \Rightarrow \rho(f(x), f(x_0)) < \varepsilon$$

Example: Consider

$$f(x) = \frac{1}{x}, \ x \in (0, 1]$$



f is continuous from Math 1A. We will show that f is not uniformly continuous. Fix $\varepsilon > 0$ and $x_0 \in (0, 1]$.

If $x = \frac{x_0}{1 + \varepsilon x_0}$, then

$$1 + \varepsilon x_0 > 1$$

$$x = \frac{x_0}{1 + \varepsilon x_0} < x_0$$

$$\frac{1}{x} - \frac{1}{x_0} > 0$$

$$|f(x) - f(x_0)| = \left|\frac{1}{x} - \frac{1}{x_0}\right|$$

$$= \frac{1}{x} - \frac{1}{x_0}$$

$$= \frac{1 + \varepsilon x_0}{x_0} - \frac{1}{x_0}$$

$$= \frac{\varepsilon x_0}{x_0}$$

$$= \varepsilon$$

Thus, $\delta(x_0, \varepsilon)$ must be chosen small enough so that

$$\left|\frac{x_0}{1+\varepsilon x_0} - x_0\right| \ge \delta(x_0,\varepsilon)$$
$$\delta(x_0,\varepsilon) \le x_0 - \frac{x_0}{1+\varepsilon x_0}$$

$$= \frac{\varepsilon(x_0)^2}{1 + \varepsilon x_0}$$
$$< \varepsilon(x_0)^2$$

which converges to zero as $x_0 \to 0$, so there is no $\delta(\varepsilon)$ which will work for all $x_0 \in (0, 1]$.

Example: If f'(x) is defined and uniformly bounded on an interval [a, b], then f(x) is uniformly continuous on [a, b]. However,

even a function with an unbounded derivative may be uniformly continuous. Consider

$$f(x) = \sqrt{x}, \ x \in [0, 1]$$

f is continuous from Math 1A. We will show that f is uniformly continuous. Given $\varepsilon > 0$, let $\delta = \varepsilon^2$. Then given any $x_0 \in [0, 1]$, $|x - x_0| < \delta$ implies by the Fundamental Theorem of Calculus

$$|f(x) - f(x_0)| = \left| \int_{x_0}^x \frac{1}{2\sqrt{t}} dt \right|$$

$$\leq \int_0^{|x - x_0|} \frac{1}{2\sqrt{t}} dt$$

$$= \sqrt{|x - x_0|}$$

$$< \sqrt{\delta}$$

$$= \sqrt{\varepsilon^2}$$

$$= \varepsilon$$

Thus, f(x) is uniformly continuous on [0,1], even though $f'(x) \to \infty$ as $x \to 0$.

Definition 9 [Lipschitz Functions] Let X, Y be normed vector space, $E \subseteq X$. $f : X \to Y$ is Lipschitz on E if

$$\exists_{K>0} \forall_{x,z \in E} \| f(x) - f(z) \|_{Y} \le K \| x - z \|_{X}$$

f is *locally Lipschitz* on E if

$$\forall_{x_0 \in E} \exists_{\varepsilon > 0} f \text{ is Lipschitz on } B_{\varepsilon}(x_0) \cap E$$

 $C^1 \Rightarrow$ locally Lipschitz \Rightarrow continuous

Lipschitz \Rightarrow uniformly continuous

Homeomorphisms:

Definition 10 Let (X, d) and (Y, ρ) be metric spaces. A function $f : X \to Y$ is called a *homeomorphism* if it is one-to-one and continuous, and its inverse function is continuous on f(X).

(Aside: this is not the standard definition; most texts also require that the function be onto. See the Corrections handout for a correction to Theorem 6.21)

Now suppose that f is a homeomorphism and $U \subset X$.

$$y \in (f^{-1})^{-1}(U) \iff f^{-1}(y) \in U$$
$$\Leftrightarrow \ y \in f(U)$$
$$U \text{ open in } X \implies (f^{-1})^{-1}(U) \text{ is open in } (f(X), \rho)$$
$$\Rightarrow \ f(U) \text{ is open in } (f(X), \rho)$$

This says that X and $(f(X), \rho|_{f(X)})$ are identical in terms of properties that can be characterized solely in terms of open sets; such properties are called "topological properties."