Economics 204

Lecture 5–Friday, July 31, 2009

Section 2.6 (Continued)

Properties of Real Functions

Theorem 1 (6.23, Extreme Value Theorem) Let f be a continuous real-valued function on [a, b]. Then f assumes its minimum and maximum on [a, b]. In particular, f is bounded above and below.

Proof: Let

$$M = \sup\{f(t) : t \in [a, b]\}$$

If M is finite, for each n, we may choose $t_n \in [a, b]$ such that $M \ge f(t_n) \ge M - \frac{1}{n}$ (if we couldn't make such a choice, then $M - \frac{1}{n}$ would be an upper bound and M would not be the supremum). If M is infinite, choose t_n such that $f(t_n) \ge n$. By the Bolzano-Weierstrass Theorem, $\{t_n\}$ contains a convergent subsequence $\{t_{n_k}\}$, with

$$\lim_{k \to \infty} t_{n_k} = t_0 \in [a, b]$$

Since f is continuous,

$$f(t_0) = \lim_{t \to t_0} f(t)$$
$$= \lim_{k \to \infty} f(t_{n_k})$$
$$= M$$

so M is finite and

$$f(t_0) = M = \sup\{f(t) : t \in [a, b]\}$$

so f attains its maximum and is bounded above. The argument for the minimum is similar.

Theorem 2 (6.24, Intermediate Value Theorem) Suppose $f : [a, b] \to \mathbb{R}$ is continuous, and f(a) < d < f(b). Then there exists $c \in (a, b)$ such that f(c) = d.

Proof: We did a hands-on proof already. Now, we can simplify it a bit. Let

$$B = \{t \in [a,b] : f(t) < d\}$$

 $a \in B$, so $B \neq \emptyset$. By the Supremum Property, sup B exists and is real so let $c = \sup B$. Since $a \in B$, $c \ge a$. $B \subseteq [a, b]$, so $c \le b$. Therefore, $c \in [a, b]$. We claim that f(c) = d.

Let

$$t_n = \min\left\{c + \frac{1}{n}, b\right\} \ge c$$

Either $t_n > c$, in which case $t_n \notin B$, or $t_n = c$, in which case $t_n = b$ so $f(t_n) > d$, so again $t_n \notin B$; in either case, $f(t_n) \ge d$. Since f is continuous at c, $f(c) = \lim_{n \to \infty} f(t_n) \ge d$ (Theorem 3.5 in de la Fuente).

Since $c = \sup B$, we may find $s_n \in B$ such that

$$c \ge s_n \ge c - \frac{1}{n}$$

Since $s_n \in B$, $f(s_n) < d$. Since f is continuous at c, $f(c) = \lim_{n \to \infty} f(s_n) \le d$ (Theorem 3.5 in de la Fuente).

Since $d \leq f(c) \leq d$, f(c) = d. Since f(a) < d and f(b) > d, $a \neq c \neq b$, so $c \in (a, b)$.

Monotonic Functions:

Definition 3 A function f is monotonically increasing if

$$y > x \Rightarrow f(y) \ge f(x)$$

Theorem 4 (6.27) Suppose f is monotonically increasing on (a, b). Then the one-sided limits

$$f(t^{+}) = \lim_{u \to t^{+}} f(u)$$
$$f(t^{-}) = \lim_{u \to t^{-}} f(u)$$

exist and are real numbers for all $t \in (a, b)$.

Proof: This is analogous to the proof that a bounded monotone sequence converges.

(We say that f has a simple jump discontinuity at t if the one-sided limits f(t-) and f(t+) both exist. The previous theorem says that monotonic functions have only simple jump discontinuities; note that monotonicity implies that $f(t-) \leq f(t) \leq f(t+)$.)

Theorem 5 (6.28) Suppose that f is monotonically increasing on (a, b). Then

$$D = \{t : f \text{ is discontinuous at } t\}$$

is finite (possibly empty) or countable. ("A monotonic function is continuous almost everywhere.")

Proof: If $t \in D$, we have $f(t^{-}) < f(t^{+})$ (if the left- and right-hand limits agreed, then by monotonicity they would have to equal f(t), so f would be continuous at t). So for every $t \in D$, since \mathbf{Q} is dense, we may choose

$$r(t) \in \mathbf{Q}, \ f(t^{-}) < r(t) < f(t^{+})$$

This defines a function $r: D \to \mathbf{Q}$ (for those who care about these things, we have used the Axiom of Choice, which says that

if we can choose such a rational r for each $t \in D$, then we can can choose a function $r: D \to \mathbf{Q}$). Notice that

$$s > t \Rightarrow f(s^{-}) \ge f(t^{+})$$

 \mathbf{SO}

$$s > t, s, t \in D \Rightarrow r(s) > f(s^{-}) \ge f(t^{+}) > r(t)$$

so $r(s) \neq r(t)$. Therefore, r is one-to-one, so it is a bijection from D to a subset of \mathbf{Q} , so D is finite or countable.

Section 2.7: Complete Metric Spaces, Contraction Mapping Theorem

Roughly, a metric space is complete if "every sequence that ought to converge to a limit has a limit to converge to."

 $x_n \to x$ means

$$\forall_{\varepsilon>0} \exists_{N(\varepsilon/2)} \ n > N(\varepsilon/2) \Rightarrow d(x_n, x) < \frac{\varepsilon}{2}$$

Observe that if $n, m > N(\varepsilon/2)$, then

$$d(x_n, x_m) \le d(x_n, x) + d(x, x_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

This motivates the following definition:

Definition 6 A sequence $\{x_n\}$ in a metric space (X, d) is *Cauchy* if

$$\forall_{\varepsilon>0} \exists_{N(\varepsilon)} \ n, m > N(\varepsilon) \Rightarrow d(x_n, x_m) < \varepsilon$$

(A Cauchy sequence is trying really hard to converge, but there may not be anything for it to converge to.)

Theorem 7 (7.2) Every convergent sequence in a metric space is Cauchy.

Proof: We just did it.∎

Example: Let X = (0, 1], d the Euclidean metric. Let $x_n = \frac{1}{n}$. Then $x_n \to 0$ in E^1 , so $\{x_n\}$ is Cauchy in E^1 . But the Cauchy property depends only on the sequence and the metric d, not on the ambient metric space. So $\{x_n\}$ is Cauchy in (X, d), but $\{x_n\}$ does not *converge* in (X, d) because the point it is trying to converge to (0) is not an element of X.

Definition 8 A metric space (X, d) is *complete* if every Cauchy sequence $\{x_n\} \subseteq X$ converges to a limit $x \in X$. A *Banach space* is a normed space which is complete in the metric generated by its norm.

Example: Consider the earlier example of X = (0, 1], d the usual Euclidean metric. Since $x_n = \frac{1}{n}$ is Cauchy but does not converge, ((0, 1], d) is not complete.

 $\mathit{Example:}~\mathbf{Q}$ is not complete in the Euclidean metric. To see this, let

$$x_n = \frac{\lfloor 10^n \sqrt{2} \rfloor}{10^n}$$

where as before, $\lfloor y \rfloor$ is the greatest integer less than or equal to y; x_n is just equal to the decimal expansion of $\sqrt{2}$ to n digits past the decimal point. Clearly, x_n is rational. $|x_n - \sqrt{2}| \le 10^{-n}$, so $x_n \to \sqrt{2}$ in E^1 , so $\{x_n\}$ is Cauchy in E^1 , hence Cauchy in \mathbf{Q} ; since $\sqrt{2} \notin \mathbf{Q}$, $\{x_n\}$ is not convergent in \mathbf{Q} , so \mathbf{Q} is not complete.

Theorem 9 (7.10) R is complete with the usual metric (so E^1 is a Banach space).

Proof: Our proof is different from the one in de la Fuente. Suppose $\{x_n\}$ is a Cauchy sequence in **R**. Fix $\varepsilon > 0$.

Find $N(\varepsilon/2)$ such that

$$n, m > N(\varepsilon/2) \Rightarrow |x_n - x_m| < \frac{\varepsilon}{2}$$

Let

$$\alpha_n = \sup\{x_k : k \ge n\}$$

$$\beta_n = \inf\{x_k : k \ge n\}$$

Fix $m > N(\varepsilon/2)$. Then

$$k \ge m \Rightarrow k > N(\varepsilon/2) \Rightarrow x_k < x_m + \frac{\varepsilon}{2}$$

 $\Rightarrow \alpha_m = \sup\{x_k : k \ge m\} \le x_m + \frac{\varepsilon}{2}$

Since $\alpha_m < \infty$,

$$\limsup x_n = \lim_{n \to \infty} \alpha_n \le \alpha_m \le x_m + \frac{\varepsilon}{2}$$

since the sequence $\{\alpha_n\}$ is decreasing. Similarly,

$$\liminf x_n \ge x_m - \frac{\varepsilon}{2}$$

Therefore,

$$0 \le \limsup_{n \to \infty} x_n - \liminf_{n \to \infty} x_n \le \varepsilon$$

Since ε is arbitrary,

$$\limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n \in \mathbf{R}$$

so $\lim_{n\to\infty} x_n$ exists and is real, so $\{x_n\}$ is convergent.

Theorem 10 (7.11) E^n is complete for every $n \in \mathbf{N}$.

Proof: See de la Fuente. ■

Theorem 11 (7.9) Suppose (X, d) is a complete metric space, $Y \subseteq X$. Then $(Y, d) = (Y, d|_Y)$ is complete if and only if Y is a closed subset of X.

Proof: Suppose (Y, d) is complete. We need to show that Y is closed. Consider a sequence $\{y_n\} \subseteq Y$ such that $y_n \to_{(X,d)} x \in X$. Then $\{y_n\}$ is Cauchy in X, hence Cauchy in Y; since Y is complete, $y_n \to_{(Y,d)} y$ for some $y \in Y$. Therefore, $y_n \to_{(X,d)} y$; by uniqueness of limits, y = x, so $x \in Y$, so Y is closed.

Conversely, suppose Y is closed. We need to show that Y is complete. Let $\{y_n\}$ be a Cauchy sequence in Y. Then $\{y_n\}$ is Cauchy in X, hence convergent, so $y_n \to_{(X,d)} x$ for some $x \in X$. Since Y is closed, $x \in Y$, so $y_n \to_{(Y,d)} x \in Y$, so Y is complete.

Theorem 12 (7.12) Given $X \subseteq \mathbb{R}^n$, let C(X) be the set of bounded continuous functions from X to \mathbb{R} with

$$||f||_{\infty} = \sup\{|f(x)| : x \in X\}$$

Then C(X) is a Banach space.

Contractions

Definition 13 Let (X, d) be a nonempty complete metric space. An *operator* is a function $T : X \to X$. An operator T is a *contraction of modulus* β if $\beta < 1$ and

$$\forall_{x,y \in X} \ d(T(x), T(y)) \le \beta d(x, y)$$

(A contraction shrinks distances by a *uniform* factor $\beta < 1$.)

Theorem 14 Every contraction is uniformly continuous.

Proof: Let $\delta = \frac{\varepsilon}{\beta}$.

A fixed point of an operator T is

 $x^* \in X$ such that $T(x^*) = x^*$

Theorem 15 (7.16, Contraction Mapping Theorem) Let (X, d) be a nonempty complete metric space,

 $T: X \to X$ a contraction with modulus $\beta < 1$. Then

- 1. T has a unique fixed point x^* .
- 2. For every $x_0 \in X$, the sequence defined by

```
x_1 = T(x_0)x_2 = T(x_1)\vdotsx_{n+1} = T(x_n)
```

converges to x^* .

Note that the Theorem gives us an algorithm to find the fixed point of a contraction.

Proof: The proof comes in several parts:

- There can be at most one fixed point.
- The sequence $\{x_n\}$ defined in Part 2 of the statement of the theorem is Cauchy
 - We first show that the distance between the points x_n and x_{n+1} becomes very small as $n \to \infty$.
 - We then show that the distance between x_n and x_m is bounded above by a geometric series, which shows that the sequence is Cauchy.
- Since the sequence $\{x_n\}$ is Cauchy, it converges to a limit x^* .
- Because T is continuous, x^* is a fixed point.

First, we show that there is at most one fixed point. Suppose $T(x^*) = x^*$ and $T(y^*) = y^*$. Then

$$\begin{array}{lcl} d(x^{*},y^{*}) &=& d(T(x^{*}),T(y^{*})) \\ &\leq& \beta d(x^{*},y^{*}) \\ (1-\beta)d(x^{*},y^{*}) &\leq& 0 \\ &d(x^{*},y^{*}) &\leq& 0 \end{array}$$

so $d(x^*, y^*) = 0$ and $x^* = y^*$.

Now, we show that the sequence $\{x_n\}$ is Cauchy, and hence converges to a limit x. Choose any $x_0 \in X$ and define x_n as described in part 2. Let $\alpha = d(x_1, x_0)$. Then

$$d(x_{n+1}, x_n) = d(T(x_n), T(x_{n-1}))$$

$$\leq \beta d(x_n, x_{n-1})$$

$$\leq \beta^2 d(x_{n-1}, x_{n-2})$$

$$\vdots$$

$$\leq \beta^n d(x_1, x_0)$$

$$= \beta^n \alpha$$

Given $\varepsilon > 0$, by the Archimedean Property, choose $N(\varepsilon) > \frac{\log \varepsilon - \log \alpha + \log(1-\beta)}{\log \beta}$. Then since $\beta < 1$, $\log \beta < 0$ and

$$\frac{\alpha\beta^{N(\varepsilon)}}{1-\beta} = e^{\log\left(\frac{\alpha\beta^{N(\varepsilon)}}{1-\beta}\right)}$$
$$= e^{N(\varepsilon)\log\beta + \log\alpha - \log(1-\beta)}$$
$$< e^{\log\varepsilon - \log\alpha + \log(1-\beta) + \log\alpha - \log(1-\beta)}$$
$$= e^{\log\varepsilon}$$
$$= \varepsilon$$

(Note we follow the mathematics convention and denote the

natural logarithm by log.) Then if $n \ge m > N(\varepsilon)$,

$$d(x_n, x_m)$$

$$\leq d(x_n, x_{n-1}) + d(x_{n-1}, x_{n-2}) + \dots + d(x_{m+1}, x_m)$$

$$\leq \beta^{n-1}\alpha + \beta^{n-2}\alpha + \dots + \beta^m \alpha$$

$$= \alpha \sum_{\ell=m}^{n-1} \beta^{\ell}$$

$$< \alpha \sum_{\ell=m}^{\infty} \beta^{\ell}$$

$$= \frac{\alpha \beta^m}{1-\beta} \text{ sum of a geometric series})$$

$$< \frac{\alpha \beta^{N(\varepsilon)}}{1-\beta}$$

$$< \varepsilon$$

Therefore, $\{x_n\}$ is Cauchy. Since (X, d) is complete, $x_n \to x^*$ for some $x^* \in X$.

Finally, we show that x^* is a fixed point.

$$T(x^*) = T\left(\lim_{n \to \infty} x_n\right)$$

= $\lim_{n \to \infty} T(x_n)$ since *T* is continuous
= $\lim_{n \to \infty} x_{n+1}$
= x^*

so x^* is a fixed point.

Theorem 16 (7.18', Continuous Dependence on Parameters) Let (X, d) and (Ω, ρ) be two metric spaces, $T: X \times \Omega \to X$. Let $T_{\omega}: X \to X$ be defined by

$$T_{\omega}(x) = T(x,\omega)$$

Suppose (X,d) is complete, T is continuous in $\omega,\ \beta<1$ and

 $\forall_{\omega\in\Omega} T_{\omega} \text{ is a contraction of modulus } \beta$

Then the fixed point function $x^*: \Omega \to X$ defined by

$$T_{\omega}(x^*(\omega)) = x^*(\omega)$$

is continuous.

See the comments in the *Corrections* handout. De la Fuente's Theorem 7.18 only requires that each map T_{ω} be a contraction of modulus $\beta_{\omega} < 1$. However, his proof assumes that there is a single $\beta < 1$ such that each T_{ω} is a contraction of modulus β . I do not know whether de la Fuente's Theorem 7.18 is correct as stated.