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Lecture 5–Friday, July 31, 2009

Section 2.6 (Continued)

Properties of Real Functions

Theorem 1 (6.23, Extreme Value Theorem) Let f be a continuous real-valued function on [a, b].

Then f assumes its minimum and maximum on [a, b]. In particular, f is bounded above and below.

Proof: Let

M = sup{f(t) : t ∈ [a, b]}

If M is finite, for each n, we may choose tn ∈ [a, b] such that M ≥ f(tn) ≥ M − 1
n

(if we couldn’t make

such a choice, then M − 1
n

would be an upper bound and M would not be the supremum). If M is

infinite, choose tn such that f(tn) ≥ n. By the Bolzano-Weierstrass Theorem, {tn} contains a convergent

subsequence {tnk
}, with

lim
k→∞

tnk
= t0 ∈ [a, b]

Since f is continuous,

f(t0) = lim
t→t0

f(t)

= lim
k→∞

f (tnk
)

= M

so M is finite and

f(t0) = M = sup{f(t) : t ∈ [a, b]}

so f attains its maximum and is bounded above. The argument for the minimum is similar.
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Theorem 2 (6.24, Intermediate Value Theorem) Suppose f : [a, b] → R is continuous, and f(a) <

d < f(b). Then there exists c ∈ (a, b) such that f(c) = d.

Proof: We did a hands-on proof already. Now, we can simplify it a bit. Let

B = {t ∈ [a, b] : f(t) < d}

a ∈ B, so B �= ∅. By the Supremum Property, sup B exists and is real so let c = sup B. Since a ∈ B,

c ≥ a. B ⊆ [a, b], so c ≤ b. Therefore, c ∈ [a, b]. We claim that f(c) = d.

Let

tn = min
{
c +

1

n
, b

}
≥ c

Either tn > c, in which case tn �∈ B, or tn = c, in which case tn = b so f(tn) > d, so again tn �∈ B; in either

case, f(tn) ≥ d. Since f is continuous at c, f(c) = limn→∞ f(tn) ≥ d (Theorem 3.5 in de la Fuente).

Since c = sup B, we may find sn ∈ B such that

c ≥ sn ≥ c − 1

n

Since sn ∈ B, f(sn) < d. Since f is continuous at c, f(c) = limn→∞ f(sn) ≤ d (Theorem 3.5 in de la

Fuente).

Since d ≤ f(c) ≤ d, f(c) = d. Since f(a) < d and f(b) > d, a �= c �= b, so c ∈ (a, b).

Monotonic Functions:

Definition 3 A function f is monotonically increasing if

y > x ⇒ f(y) ≥ f(x)
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Theorem 4 (6.27) Suppose f is monotonically increasing on (a, b). Then the one-sided limits

f(t+) = lim
u→t+

f(u)

f(t−) = lim
u→t−

f(u)

exist and are real numbers for all t ∈ (a, b).

Proof: This is analogous to the proof that a bounded monotone sequence converges.

(We say that f has a simple jump discontinuity at t if the one-sided limits f(t−) and f(t+) both exist.

The previous theorem says that monotonic functions have only simple jump discontinuities; note that

monotonicity implies that f(t−) ≤ f(t) ≤ f(t+).)

Theorem 5 (6.28) Suppose that f is monotonically increasing on (a, b). Then

D = {t : f is discontinuous at t}

is finite (possibly empty) or countable. (“A monotonic function is continuous almost everywhere.”)

Proof: If t ∈ D, we have f(t−) < f(t+) (if the left- and right-hand limits agreed, then by monotonicity

they would have to equal f(t), so f would be continuous at t). So for every t ∈ D, since Q is dense, we

may choose

r(t) ∈ Q, f(t−) < r(t) < f(t+)

This defines a function r : D → Q (for those who care about these things, we have used the Axiom of

Choice, which says that
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if we can choose such a rational r for each t ∈ D, then we can can choose a function r : D → Q). Notice

that

s > t ⇒ f(s−) ≥ f(t+)

so

s > t, s, t ∈ D ⇒ r(s) > f(s−) ≥ f(t+) > r(t)

so r(s) �= r(t). Therefore, r is one-to-one, so it is a bijection from D to a subset of Q, so D is finite or

countable.

Section 2.7: Complete Metric Spaces, Contraction Mapping Theorem

Roughly, a metric space is complete if “every sequence that ought to converge to a limit has a limit to

converge to.”

xn → x means

∀ε>0∃N(ε/2) n > N(ε/2) ⇒ d(xn, x) <
ε

2

Observe that if n, m > N(ε/2), then

d(xn, xm) ≤ d(xn, x) + d(x, xm) <
ε

2
+

ε

2
= ε

This motivates the following definition:

Definition 6 A sequence {xn} in a metric space (X, d) is Cauchy if

∀ε>0∃N(ε) n, m > N(ε) ⇒ d(xn, xm) < ε

(A Cauchy sequence is trying really hard to converge, but there may not be anything for it to converge to.)

Theorem 7 (7.2) Every convergent sequence in a metric space is Cauchy.
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Proof: We just did it.

Example: Let X = (0, 1], d the Euclidean metric. Let xn = 1
n
. Then xn → 0 in E1, so {xn} is Cauchy in

E1. But the Cauchy property depends only on the sequence and the metric d, not on the ambient metric

space. So {xn} is Cauchy in (X, d), but {xn} does not converge in (X, d) because the point it is trying to

converge to (0) is not an element of X.

Definition 8 A metric space (X, d) is complete if every Cauchy sequence {xn} ⊆ X converges to a limit

x ∈ X. A Banach space is a normed space which is complete in the metric generated by its norm.

Example: Consider the earlier example of X = (0, 1], d the usual Euclidean metric. Since xn = 1
n

is Cauchy

but does not converge, ((0, 1], d) is not complete.

Example: Q is not complete in the Euclidean metric. To see this, let

xn =
�10n

√
2�

10n

where as before, �y� is the greatest integer less than or equal to y; xn is just equal to the decimal expansion

of
√

2 to n digits past the decimal point. Clearly, xn is rational. |xn − √
2| ≤ 10−n, so xn → √

2 in E1,

so {xn} is Cauchy in E1, hence Cauchy in Q; since
√

2 �∈ Q, {xn} is not convergent in Q, so Q is not

complete.

Theorem 9 (7.10) R is complete with the usual metric (so E1 is a Banach space).

Proof: Our proof is different from the one in de la Fuente. Suppose {xn} is a Cauchy sequence in R. Fix

ε > 0.
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Find N(ε/2) such that

n, m > N(ε/2) ⇒ |xn − xm| <
ε

2

Let

αn = sup{xk : k ≥ n}

βn = inf{xk : k ≥ n}

Fix m > N(ε/2). Then

k ≥ m ⇒ k > N(ε/2) ⇒ xk < xm +
ε

2

⇒ αm = sup{xk : k ≥ m} ≤ xm +
ε

2

Since αm < ∞,

lim supxn = lim
n→∞ αn ≤ αm ≤ xm +

ε

2

since the sequence {αn} is decreasing. Similarly,

lim inf xn ≥ xm − ε

2

Therefore,

0 ≤ lim sup
n→∞

xn − lim inf
n→∞ xn ≤ ε

Since ε is arbitrary,

lim sup
n→∞

xn = lim inf
n→∞ xn ∈ R

so limn→∞ xn exists and is real, so {xn} is convergent.

Theorem 10 (7.11) En is complete for every n ∈ N.

Proof: See de la Fuente.

Theorem 11 (7.9) Suppose (X, d) is a complete metric space, Y ⊆ X. Then (Y, d) = (Y, d|Y ) is complete

if and only if Y is a closed subset of X.
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Proof: Suppose (Y, d) is complete. We need to show that Y is closed. Consider a sequence {yn} ⊆ Y such

that yn →(X,d) x ∈ X. Then {yn} is Cauchy in X, hence Cauchy in Y ; since Y is complete, yn →(Y,d) y for

some y ∈ Y . Therefore, yn →(X,d) y; by uniqueness of limits, y = x, so x ∈ Y , so Y is closed.

Conversely, suppose Y is closed. We need to show that Y is complete. Let {yn} be a Cauchy sequence

in Y . Then {yn} is Cauchy in X, hence convergent, so yn →(X,d) x for some x ∈ X. Since Y is closed,

x ∈ Y , so yn →(Y,d) x ∈ Y , so Y is complete.

Theorem 12 (7.12) Given X ⊆ Rn, let C(X) be the set of bounded continuous functions from X to R

with

‖f‖∞ = sup{|f(x)| : x ∈ X}

Then C(X) is a Banach space.

Contractions

Definition 13 Let (X, d) be a nonempty complete metric space. An operator is a function T : X → X.

An operator T is a contraction of modulus β if β < 1 and

∀x,y∈X d(T (x), T (y)) ≤ βd(x, y)

(A contraction shrinks distances by a uniform factor β < 1.)

Theorem 14 Every contraction is uniformly continuous.

Proof: Let δ = ε
β
.

A fixed point of an operator T is

x∗ ∈ X such that T (x∗) = x∗
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Theorem 15 (7.16, Contraction Mapping Theorem) Let (X, d) be a nonempty complete metric space,

T : X → X a contraction with modulus β < 1. Then

1. T has a unique fixed point x∗.

2. For every x0 ∈ X, the sequence defined by

x1 = T (x0)

x2 = T (x1)

...

xn+1 = T (xn)

converges to x∗.

Note that the Theorem gives us an algorithm to find the fixed point of a contraction.

Proof: The proof comes in several parts:

• There can be at most one fixed point.

• The sequence {xn} defined in Part 2 of the statement of the theorem is Cauchy

– We first show that the distance between the points xn and xn+1 becomes very small as n → ∞.

– We then show that the distance between xn and xm is bounded above by a geometric series,

which shows that the sequence is Cauchy.

• Since the sequence {xn} is Cauchy, it converges to a limit x∗.

• Because T is continuous, x∗ is a fixed point.
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First, we show that there is at most one fixed point. Suppose T (x∗) = x∗ and T (y∗) = y∗. Then

d(x∗, y∗) = d(T (x∗), T (y∗))

≤ βd(x∗, y∗)

(1 − β)d(x∗, y∗) ≤ 0

d(x∗, y∗) ≤ 0

so d(x∗, y∗) = 0 and x∗ = y∗.

Now, we show that the sequence {xn} is Cauchy, and hence converges to a limit x. Choose any x0 ∈ X

and define xn as described in part 2. Let α = d(x1, x0). Then

d(xn+1, xn) = d(T (xn), T (xn−1))

≤ βd(xn, xn−1)

≤ β2d(xn−1, xn−2)

...

≤ βnd(x1, x0)

= βnα

Given ε > 0, by the Archimedean Property, choose N(ε) > log ε−log α+log(1−β)
log β

. Then since β < 1, log β < 0

and

αβN(ε)

1 − β
= e

log

(
αβN(ε)

1−β

)

= eN(ε) logβ+log α−log(1−β)

< elog ε−log α+log(1−β)+logα−log(1−β)

= elog ε

= ε

(Note we follow the mathematics convention and denote the
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natural logarithm by log.) Then if n ≥ m > N(ε),

d(xn, xm)

≤ d(xn, xn−1) + d(xn−1, xn−2) + · · · + d(xm+1, xm)

≤ βn−1α + βn−2α + · · · + βmα

= α
n−1∑
�=m

β�

< α
∞∑

�=m

β�

=
αβm

1 − β
sum of a geometric series)

<
αβN(ε)

1 − β

< ε

Therefore, {xn} is Cauchy. Since (X, d) is complete, xn → x∗ for some x∗ ∈ X.

Finally, we show that x∗ is a fixed point.

T (x∗) = T
(

lim
n→∞ xn

)

= lim
n→∞ T (xn) since T is continuous

= lim
n→∞ xn+1

= x∗

so x∗ is a fixed point.

Theorem 16 (7.18’, Continuous Dependence on Parameters) Let (X, d) and (Ω, ρ) be two metric

spaces, T : X × Ω → X. Let Tω : X → X be defined by

Tω(x) = T (x, ω)
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Suppose (X, d) is complete, T is continuous in ω, β < 1 and

∀ω∈Ω Tω is a contraction of modulus β

Then the fixed point function x∗ : Ω → X defined by

Tω(x∗(ω)) = x∗(ω)

is continuous.

See the comments in the Corrections handout. De la Fuente’s Theorem 7.18 only requires that each map

Tω be a contraction of modulus βω < 1. However, his proof assumes that there is a single β < 1 such that

each Tω is a contraction of modulus β. I do not know whether de la Fuente’s Theorem 7.18 is correct as

stated.
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