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Lecture 6-Monday, August 3, 2009

Section 2.8, Compactness

Definition 1 A collection of sets

U={Uy: A€ A}

in a metric space (X, d) is an open cover of A if Uy is open for all A € A and
Uxeals 2 A

(A may be finite, countably infinite, or uncountable.)
A set A in a metric space is compact if every open cover of A contains a finite subcover of A. In other

words, if {Uy : A € A} is an open cover of A, there exist n € N and Ay, ---, A, € A such that
ACU, U---UUy,

It is important to understand what this definition does not say. In particular, it does not say “A has a
finite open cover;” note that every set is contained in X, and X is open, so every set has a cover consisting
of exactly one open set. Like the -0 definition of continuity, in which you are given an arbitrary € > 0
and are challenged to specify an appropriate 0, here you are given an arbitrary open cover and challenged
to specify a finite subcover of the given open cover.

Ezample: (0,1] is not compact in E*. To see this, let

L{:{Um:<%,2>:meN}

Then

UmenUnm = (0,2) D (0, 1]






Given any finite subset {U,,,,...,Un,} of U, let

m = max{mi, ..., my,}

Then

so (0, 1] is not compact.

Note that this argument does not work for [0, 1]. Given an open cover {U) : A € A}, there must be some
A € A such that 0 € Uy, and therefore Uy D [0, ¢) for some € > 0, and a finite number of the U,,’s we used
to cover (0, 1] would cover the interval (g,1]. This is not a proof that [0, 1] is compact, since we need to
show that every open cover has a finite subcover, but it is suggestive, and we will soon see that [0, 1] is
indeed compact.

Ezample: [0, 00) is closed but not compact. To see that [0,00) is not compact, let

U={U,=(—1,m): me N}

Given any finite subset

{Unis - U, }

of U, let

m = max{ms, ..., my,}

Then

Um1 U“'UUmn = (_17m> Z [0,00)

Theorem 2 (8.14) Every closed subset A of a compact metric space (X,d) is compact.

Proof: If you can get past the abstraction (admittedly, a serious hurdle), this is easy. Let {U) : A € A}

be an open cover of A.






In order to use the compactness of X, we need to produce an open cover of X. There are two ways to do

this:

U, = U,U(X\A)

AN = AU{X} Uy, =X\ 4

We choose the first path, and let
Uy =UU(X\A)
Since A is closed, X \ A is open; since U, is open, so is UJ.
reX = reA V zeX\A
= (Ierz €Uy CU}) V (Mrenzel))

Therefore, X C UyeaUS, so {U; : A € A} is an open cover of X.

Since X is compact,

El)q ..... A EAXCU;QU UU;\
SO
a€A = a€eX
= a € Uy, for some i
= aclU,,U(X\A)
= (LEUAZ.
SO

ACU, U+ UU,y,

so A is compact. m

Theorem 3 (8.15) If A is a compact subset of the metric space (X,d), then A is closed.



Proof: Suppose A is not closed. Then X \ A is not open, so we can find a point z € X \ A such that, for

every € > 0, AN B.(x) # (), and hence AN B.[z] # 0. For n € N, let
U, =X\ By
Each U, is open, and
UnenUn, = X\ {2z} D A

since © ¢ A. Therefore, {U,, : n € N} is an open cover for A. Since A is compact, there is a finite subcover

{Unys..., Uy, }. Let n = max{ny,...,n;}. Then
U, = X\ Bi,lz]
D X\ Bipylz] (j=1,...,k)
U, 2 U U,

o A
But AN Bylz] #0,s0 AZ X \ Byyylx] = U,, a contradiction which proves that A is closed.m

Definition 4 A set A in a metric space (X, d) is sequentially compact if every sequence of elements of A

contains a convergent subsequence whose limit lies in A.

Theorem 5 (8.5,8.11) A set A in a metric space (X,d) is compact if and only if it is sequentially

compact.

Proof: Suppose A is compact. We will show that A is sequentially compact. If not, we can find a sequence
{z,} of elements of A such that no subsequence converges to any element of A. Recall that a is a cluster

point of the sequence {z, } means that

Veso {n : z, € B.(x)} is infinite



TR




and this is equivalent to the statement that there is a subsequence {z,,} converging to a. Thus, no

element of a can be a cluster point for {z,}, and hence
Vaca Jeys0 {n : ©,, € B.,(a)} is finite (1)

Then

{B.,(a) :a € A}

is an open cover of A (if A is uncountable, it will be an uncountable open cover). Since A is compact,

there is a finite subcover

{Bey(@1), .., Bz, (am) }

Then

N = {n:z,€ A}
C {n DXy € (Beal (a)U---UB, (am))}

= {n:v,€B, (@)} U---U{n:z, € B, (am)}

so N is contained in a finite union of sets, each of which is finite by Equation (1). Thus, N must be finite,
a contradiction which proves that A is sequentially compact.

For the converse, see de la Fuente.m

Definition 6 A set A in a metric space (X, d) is totally bounded if, for every ¢ > 0,
Elaq ..... Tn€A A g U?:lBE(xi>

(This is the standard definition; de la Fuente’s definition is equivalent to this. See the comments in the
Corrections handout.)

Ezample: Take A = [0,1] with the Euclidean metric. Given € > 0, let n > 1. Then we may take

2 n—1
s, g = —y ..., Tpn_1 =
n

xr1 =

S|

n



Ezample: Consider X = [0, 1] with the discrete metric

1 ife#y
d(z,y) =
0 ife=y
X is not totally bounded. To see this, take £ = 1. Then for any z, B-(z) = {z}, so given any finite set

T1y...yTn,

U?:IBS(xi> = {33'1, cee 73771} Z [07 1]

However, X is bounded because X = By(0).

Remark 7 Fix ¢ and consider the open cover

U. = {B.(a) 1 a € A}

If A is compact, then every open cover of A has a finite subcover; in particular, 4. must have a finite

subcover, but this just says that A is totally bounded.

Theorem 8 (8.16) Let A be a subset of a metric space (X,d). Then A is compact if and only if it is

complete and totally bounded.

Proof: See de la Fuente.m

Corollary 9 Let A be a subset of a complete metric space (X,d). Then A is compact if and only if it is

closed and totally bounded.

Theorem 10 (8.19, Heine-Borel) If A C E*, then A is compact if and only if A is closed and bounded.

Proof: Let A be a closed, bounded subset of R. Then A C [a,b] for some interval [a,b]. Let {z,} be a

seqence of elements of [a, b]. By the Bolzano-Weierstrass Theorem, {x,} contains a convergent subsequence



with limit € R.. Since [a, ] is closed, x € [a,b]. Thus, we have shown that [a, b] is sequentially compact,
hence compact. A is a closed subset of [a, b, hence A is compact.
Conversely, if A is compact, A is closed. The argument that showed that [0, 00) is not compact is easily

adapted to show that compact sets are bounded.m

Theorem 11 (8.20, Heine-Borel) If A C E", then A is compact if and only if A is closed and bounded.

Proof: See de la Fuente.m

Theorem 12 (8.21) Let (X,d) and (Y, p) be metric spaces. If f : X — Y is continuous and C is a

compact subset of (X,d), then f(C) is compact in (Y, p).

Proof: There is a proof in de la Fuente. In Problem 5(a) of Problem Set 3, you are asked to give a proof

using directly the open cover definition of compactness. m

Corollary 13 (8.22, Extreme Value Theorem) Let C be a compact set in a metric space (X,d), and

suppose f : C — R is continuous. Then f is bounded on C' and attains its minimum and mazimum on C.

Proof: f(C) is compact by Theorem 8.21, hence closed and bounded. Let M = sup f(C); M < co. Then

there exists y,,, € f(C) such that

1
m

so M is a limit point of f(C'). Since f(C) is closed, M € f(C), i.e. there exists ¢ € C such that

f(c) = M =sup f(C), so f attains its maximum at ¢. The proof for the minimum is similar.m



Theorem 14 (8.24) Let (X,d) and (Y, p) be metric spaces, C' a compact subset of X, and f : C —Y

continuous. Then f is uniformly continuous on C.

Proof: Fix ¢ > 0. We ignore X and consider f as defined on the metric space (C,d). Given ¢ € C, find
d(c) > 0 such that

xeC, dz,c) <2i(c) = p(f(x), flc)) <

DO ™

Let

Ue = Bio(©)
Then

{U.:ceC}
is an open cover of C'. Since C' is compact, there is a finite subcover

{Uey..., U}
Let

d =min{d(c1),...,0(cn)}
Given z,y € C with d(z,y) < 0, note that z € U,, for some i € {1,...,n}, so d(x,¢;) < §(c).
dly,c;) < d(y,z)+d(z,c)

< 0+ (S(Cz)

IN

d(c;) + 0(¢)

SO

=
=
=
=
s
IN
>

(f(2), f(ei)) + p(f (i), ()

DO ™
DO ™

which proves that f is uniformly continuous.m



