
Economics 204

Lecture 6–Monday, August 3, 2009

Section 2.8, Compactness

Definition 1 A collection of sets

U = {Uλ : λ ∈ Λ}

in a metric space (X, d) is an open cover of A if Uλ is open for all λ ∈ Λ and

∪λ∈ΛUλ ⊇ A

(Λ may be finite, countably infinite, or uncountable.)

A set A in a metric space is compact if every open cover of A contains a finite subcover of A. In other

words, if {Uλ : λ ∈ Λ} is an open cover of A, there exist n ∈ N and λ1, · · · , λn ∈ Λ such that

A ⊆ Uλ1 ∪ · · · ∪ Uλn

It is important to understand what this definition does not say. In particular, it does not say “A has a

finite open cover;” note that every set is contained in X, and X is open, so every set has a cover consisting

of exactly one open set. Like the ε-δ definition of continuity, in which you are given an arbitrary ε > 0

and are challenged to specify an appropriate δ, here you are given an arbitrary open cover and challenged

to specify a finite subcover of the given open cover.

Example: (0, 1] is not compact in E1. To see this, let

U =
{
Um =

(
1

m
, 2

)
: m ∈ N

}

Then

∪m∈NUm = (0, 2) ⊃ (0, 1]
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Given any finite subset {Um1, . . . , Umn} of U , let

m = max{m1, . . . , mn}

Then

∪n
i=1Umi = Um =

(
1

m
, 2

)
�⊇ (0, 1]

so (0, 1] is not compact.

Note that this argument does not work for [0, 1]. Given an open cover {Uλ : λ ∈ Λ}, there must be some

λ ∈ Λ such that 0 ∈ Uλ, and therefore Uλ ⊇ [0, ε) for some ε > 0, and a finite number of the Um’s we used

to cover (0, 1] would cover the interval (ε, 1]. This is not a proof that [0, 1] is compact, since we need to

show that every open cover has a finite subcover, but it is suggestive, and we will soon see that [0, 1] is

indeed compact.

Example: [0,∞) is closed but not compact. To see that [0,∞) is not compact, let

U = {Um = (−1, m) : m ∈ N}

Given any finite subset

{Um1, . . . , Umn}

of U , let

m = max{m1, . . . , mn}

Then

Um1 ∪ · · · ∪ Umn = (−1, m) �⊇ [0,∞)

Theorem 2 (8.14) Every closed subset A of a compact metric space (X, d) is compact.

Proof: If you can get past the abstraction (admittedly, a serious hurdle), this is easy. Let {Uλ : λ ∈ Λ}

be an open cover of A.
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In order to use the compactness of X, we need to produce an open cover of X. There are two ways to do

this:

U ′
λ = Uλ ∪ (X \ A)

Λ′ = Λ ∪ {λ0}, Uλ0 = X \ A

We choose the first path, and let

U ′
λ = Uλ ∪ (X \ A)

Since A is closed, X \ A is open; since Uλ is open, so is U ′
λ.

x ∈ X ⇒ x ∈ A ∨ x ∈ X \ A

⇒ (∃λ∈Λ x ∈ Uλ ⊆ U ′
λ) ∨ (∀λ∈Λ x ∈ U ′

λ)

Therefore, X ⊆ ∪λ∈ΛU ′
λ, so {U ′

λ : λ ∈ Λ} is an open cover of X.

Since X is compact,

∃λ1,...,λn∈Λ X ⊆ U ′
λ1

∪ · · · ∪ U ′
λn

so

a ∈ A ⇒ a ∈ X

⇒ a ∈ U ′
λi

for some i

⇒ a ∈ Uλi ∪ (X \ A)

⇒ a ∈ Uλi

so

A ⊆ Uλ1 ∪ · · · ∪ Uλn

so A is compact.

Theorem 3 (8.15) If A is a compact subset of the metric space (X, d), then A is closed.
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Proof: Suppose A is not closed. Then X \A is not open, so we can find a point x ∈ X \A such that, for

every ε > 0, A ∩ Bε(x) �= ∅, and hence A ∩ Bε[x] �= ∅. For n ∈ N, let

Un = X \ B1/n[x]

Each Un is open, and

∪n∈NUn = X \ {x} ⊇ A

since x �∈ A. Therefore, {Un : n ∈ N} is an open cover for A. Since A is compact, there is a finite subcover

{Un1 , . . . , Unk
}. Let n = max{n1, . . . , nk}. Then

Un = X \ B1/n[x]

⊇ X \ B1/nj
[x] (j = 1, . . . , k)

Un ⊇ ∪k
j=1Unj

⊇ A

But A ∩ B1/n[x] �= ∅, so A �⊆ X \ B1/n[x] = Un, a contradiction which proves that A is closed.

Definition 4 A set A in a metric space (X, d) is sequentially compact if every sequence of elements of A

contains a convergent subsequence whose limit lies in A.

Theorem 5 (8.5,8.11) A set A in a metric space (X, d) is compact if and only if it is sequentially

compact.

Proof: Suppose A is compact. We will show that A is sequentially compact. If not, we can find a sequence

{xn} of elements of A such that no subsequence converges to any element of A. Recall that a is a cluster

point of the sequence {xn} means that

∀ε>0 {n : xn ∈ Bε(x)} is infinite
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and this is equivalent to the statement that there is a subsequence {xnk
} converging to a. Thus, no

element of a can be a cluster point for {xn}, and hence

∀a∈A ∃εa>0 {n : xn ∈ Bεa(a)} is finite (1)

Then

{Bεa(a) : a ∈ A}

is an open cover of A (if A is uncountable, it will be an uncountable open cover). Since A is compact,

there is a finite subcover

{
Bεa1

(a1), . . . , Bεam
(am)

}

Then

N = {n : xn ∈ A}

⊆
{
n : xn ∈

(
Bεa1

(a1) ∪ · · · ∪ Bεam
(am)

)}

= {n : xn ∈ Bεa1
(a1)} ∪ · · · ∪ {n : xn ∈ Bεam

(am)}

so N is contained in a finite union of sets, each of which is finite by Equation (1). Thus, N must be finite,

a contradiction which proves that A is sequentially compact.

For the converse, see de la Fuente.

Definition 6 A set A in a metric space (X, d) is totally bounded if, for every ε > 0,

∃x1,...,xn∈A A ⊆ ∪n
i=1Bε(xi)

(This is the standard definition; de la Fuente’s definition is equivalent to this. See the comments in the

Corrections handout.)

Example: Take A = [0, 1] with the Euclidean metric. Given ε > 0, let n > 1
ε
. Then we may take

x1 =
1

n
, x2 =

2

n
, . . . , xn−1 =

n − 1

n
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Example: Consider X = [0, 1] with the discrete metric

d(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x �= y

0 if x = y

X is not totally bounded. To see this, take ε = 1
2
. Then for any x, Bε(x) = {x}, so given any finite set

x1, . . . , xn,

∪n
i=1Bε(xi) = {x1, . . . , xn} �⊇ [0, 1]

However, X is bounded because X = B2(0).

Remark 7 Fix ε and consider the open cover

Uε = {Bε(a) : a ∈ A}

If A is compact, then every open cover of A has a finite subcover; in particular, Uε must have a finite

subcover, but this just says that A is totally bounded.

Theorem 8 (8.16) Let A be a subset of a metric space (X, d). Then A is compact if and only if it is

complete and totally bounded.

Proof: See de la Fuente.

Corollary 9 Let A be a subset of a complete metric space (X, d). Then A is compact if and only if it is

closed and totally bounded.

Theorem 10 (8.19, Heine-Borel) If A ⊆ E1, then A is compact if and only if A is closed and bounded.

Proof: Let A be a closed, bounded subset of R. Then A ⊆ [a, b] for some interval [a, b]. Let {xn} be a

seqence of elements of [a, b]. By the Bolzano-Weierstrass Theorem, {xn} contains a convergent subsequence
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with limit x ∈ R. Since [a, b] is closed, x ∈ [a, b]. Thus, we have shown that [a, b] is sequentially compact,

hence compact. A is a closed subset of [a, b], hence A is compact.

Conversely, if A is compact, A is closed. The argument that showed that [0,∞) is not compact is easily

adapted to show that compact sets are bounded.

Theorem 11 (8.20, Heine-Borel) If A ⊆ En, then A is compact if and only if A is closed and bounded.

Proof: See de la Fuente.

Theorem 12 (8.21) Let (X, d) and (Y, ρ) be metric spaces. If f : X → Y is continuous and C is a

compact subset of (X, d), then f(C) is compact in (Y, ρ).

Proof: There is a proof in de la Fuente. In Problem 5(a) of Problem Set 3, you are asked to give a proof

using directly the open cover definition of compactness.

Corollary 13 (8.22, Extreme Value Theorem) Let C be a compact set in a metric space (X, d), and

suppose f : C → R is continuous. Then f is bounded on C and attains its minimum and maximum on C.

Proof: f(C) is compact by Theorem 8.21, hence closed and bounded. Let M = sup f(C); M < ∞. Then

there exists ym ∈ f(C) such that

M − 1

m
≤ ym ≤ M

so M is a limit point of f(C). Since f(C) is closed, M ∈ f(C), i.e. there exists c ∈ C such that

f(c) = M = sup f(C), so f attains its maximum at c. The proof for the minimum is similar.
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Theorem 14 (8.24) Let (X, d) and (Y, ρ) be metric spaces, C a compact subset of X, and f : C → Y

continuous. Then f is uniformly continuous on C.

Proof: Fix ε > 0. We ignore X and consider f as defined on the metric space (C, d). Given c ∈ C , find

δ(c) > 0 such that

x ∈ C, d(x, c) < 2δ(c) ⇒ ρ(f(x), f(c)) <
ε

2

Let

Uc = Bδ(c)(c)

Then

{Uc : c ∈ C}

is an open cover of C . Since C is compact, there is a finite subcover

{Uc1, . . . , Ucn}

Let

δ = min{δ(c1), . . . , δ(cn)}

Given x, y ∈ C with d(x, y) < δ, note that x ∈ Uci for some i ∈ {1, . . . , n}, so d(x, ci) < δ(ci).

d(y, ci) ≤ d(y, x) + d(x, ci)

< δ + δ(ci)

≤ δ(ci) + δ(ci)

= 2δ(ci)

so

ρ(f(x), f(y)) ≤ ρ(f(x), f(ci)) + ρ(f(ci), f(y))

<
ε

2
+

ε

2

= ε

which proves that f is uniformly continuous.
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