
Economics 204
Lecture 7–Tuesday, August 4, 2009

Revised 8/5/09, Revisions indicated by ** and
Sticky Notes

Note: In this set of lecture notes, Ā refers to the closure of A.
Section 2.9, Connected Sets

Definition 1 Two sets A,B in a metric space are separated if

Ā ∩B = A ∩ B̄ = ∅
A set in a metric space is connected if it cannot be written as the
union of two nonempty separated sets.

**Remark: In other texts, you will see the following equivalent
definition: A set Y in a metric space X is connected if there do
not exist open sets A and B such that A ∩ B = ∅, Y ⊆ A ∪ B
and A ∩ Y �= ∅ and B ∩ Y �= ∅.
Example: [0, 1) and [1, 2] are disjoint but not separated:

[0, 1) ∩ [1, 2] = [0, 1] ∩ [1, 2] = {1} �= ∅
[0, 1) and (1, 2] are separated:

[0, 1) ∩ (1, 2] = [0, 1] ∩ (1, 2] = ∅
[0, 1) ∩ (1, 2] = [0, 1) ∩ [1, 2] = ∅

Note that d([0, 1), (1, 2]) = 0 even though the sets are separated.
Note that separation does not require that Ā ∩ B̄ = ∅.

[0, 1) ∪ (1, 2]

is not connected.

Theorem 2 (9.2) A set S of real numbers is connected if and
only if it is an interval, i.e. given x, y ∈ S and z ∈ (x, y), then
z ∈ S.
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Other texts define the notion of a connected metric space, and then say a set Y in a metric space X is connected if it is connected in the induced metric.  This translates to the following statement. 



Proof: First, we show that S connected implies that S is an
interval. We do this by proving the contrapositive: if S is not an
interval, it is not connected. If S is not an interval, find

x, y ∈ S, x < z < y, z �∈ S

Let
A = S ∩ (−∞, z), B = S ∩ (z,∞)

Then

Ā ∩B ⊆ (−∞, z) ∩ (z,∞) = (−∞, z] ∩ (z,∞) = ∅
A ∩ B̄ ⊆ (−∞, z) ∩ (z,∞) = (−∞, z) ∩ [z,∞) = ∅
A ∪B = (S ∩ (−∞, z)) ∪ (S ∩ (z,∞))

= S \ {z}
= S

x ∈ A, so A �= ∅
y ∈ B, so B �= ∅

so S is not connected. We have shown that if S is not an interval,
then S is not connected; therefore, if S is connected, then S is an
interval.

Now, we need to show that if S is an interval, it is connected.
This is much like the proof of the Intermediate Value Theorem.
See de la Fuente for the details.

Theorem 3 (9.3) Let X be a metric space, f : X → Y con-
tinuous. If C is a connected subset of X, then f (C) is con-
nected.

Proof: This is problem 5(b) on Problem Set 3. The idea is in
the diagram. Prove the contrapositive: if f (C) is not connected,
then C is not connected.
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Corollary 4 (Intermediate Value Theorem) If f : [a, b] →
R is continuous, and f (a) < d < f (b), then there exists
c ∈ (a, b) such that f (c) = d.

Proof: This is our third, and slickest, proof of the Intermediate
Value Theorem. It is short because a substantial part of the proof
was incorporated into the proof that C ⊆ R is connected if and
only if C is an interval, and the proof that if C is connected, then
f (C) is connected. Here’s the proof: [a, b] is an interval, so [a, b]
is connected, so f ([a, b]) is connected, so f ([a, b]) is an interval.
f (a) ∈ f ([a, b]), and f (b) ∈ f ([a, b]), and d ∈ [f (a), f (b)]; since
f ([a, b]) is an interval, d ∈ f ([a, b]), i.e. there exists c ∈ [a, b] such
that f (c) = d. Since f (a) < d < f (b), c �= a, c �= b, so c ∈ (a, b).
Read on your own the material on arcwise-connectedness. Please
note the discussion in the Corrections handout.
Section 2.10: Read this on your own.
Section 2.11: Continuity of Correspondences in En

Definition 5 A correspondence Ψ : X → Y is a function from
X to 2Y .

Remark 6 See Item 1 on the Corrections handout. De la Fuente’s
gives two inequivalent definitions of a correspondence on page 23.
The first agrees with the definition we just gave, while the second
requires that for all x ∈ X , Ψ(x) �= ∅. In asserting the equiva-
lence of the two definitions, he seems to believe, erroneously, that
∅ �∈ 2Y . In the literature, you will find the term correspondence
defined in both ways, so you should check what any given author
means by the term. In these lectures, we do not impose the re-
quirement that Ψ(x) �= ∅, since it will be convenient in Lecture 11
to consider a correspondence such that Ψ(x) = ∅ for some values of
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x. If Ψ(x) �= ∅ for all x, we will say that Ψ is “nonempty-valued.”

We want to talk about continuity of correspondences in a way
analogous to continuity of functions. One way a function may be
discontinuous at a point x0 is that it “jumps upward at the limit:”

∃xn→x0f (x0) > lim sup f (xn)

It could also “jump downward at the limit:”

∃xn→x0
f (x0) < lim inf f (xn)

In either case, it doesn’t matter whether the sequence xn ap-
proaches x0 from the left or the right (or both).
What should it mean for a set to “jump down” at the limit x0?
It should mean the set suddenly gets smaller, i.e. it “implodes
in the limit;” in other words there is a sequence xn → x0 and
points yn ∈ Ψ(xn) that are far from every point of Ψ(x0). The set
“jumps up” should mean that that the set suddenly gets bigger,
i.e. it “explodes in the limit;” in other words, there is a point y in
Ψ(x0) and a sequence xn → x such that y is far from every point
of Ψ(xn).

Remark 7 Caution: De la Fuente uses the term “explode” and
“implode,” but not “at the limit.” For him, a set explodes if it
suddenly gets bigger, which agrees with our use; however, instead
of looking at whether the set explodes at the limit x0, he looks
instead at whether the set explodes as you move slightly away
from the limit x0, which is equivalent to imploding at the limit.
Our approach follows the more conventional use in the literature,
while de la Fuente’s use is the opposite.

Remark 8 De la Fuente defines correspondences only with do-
main equalling a Euclidean space. In fact, we need correspondence
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defined on subsets of Euclidean space, so we need to modify his
definition.

Definition 9 Let X ⊆ En, Y ⊆ Em. Suppose Ψ : X → Y is a
correspondence.

• Ψ is upper hemicontinuous (uhc) at x0 ∈ X if, for every open
set V ⊇ Ψ(x0), there is an open set U with x0 ∈ U such that

Ψ(x) ⊆ V for every x ∈ U ∩X
This says Ψ doesn’t “implode in the limit” at x0;

• Ψ is lower hemicontinuous (lhc) at x0 ∈ X if, for every open
set V such that Ψ(x0) ∩ V �= ∅, there is an open set U with
x0 ∈ U such that

Ψ(x) ∩ V �= ∅ for every x ∈ U ∩X
This says Ψ doesn’t “explode in the limit” at x0;

• Ψ is continuous at x0 ∈ X if it is both uhc and lhc at x0.

• Ψ is closed (has closed graph) if its graph

{(x, y) : y ∈ Ψ(x)} is a closed subset of X × Em

Note that the definition of lower hemicontinuity does not just re-
place Ψ(x0) ⊆ V in the definition of upper hemicontinuity with
V ⊆ Ψ(x0); indeed, we will be very interested in correspondences
in which Ψ(x) has empty interior, so there will often be no open
sets V such that V ⊆ Ψ(x0). Unfortunately, correspondences that
arise in Economics are rarely continuous. The two most important
concepts are upper hemicontinuity and closed graph; we will focus
on these. See the drawings on the previous page.
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Example: Consider the correspondence

Ψ(x) =

⎧⎪⎪⎨
⎪⎪⎩

{
1
x

}
if x ∈ (0, 1]

{0} if x = 0

Ψ(0) = {0}. Let V = (−0.1, 0.1). Then Ψ(0) ⊂ V , but no matter
how close x is to 0,

Ψ(x) =

⎧⎪⎨
⎪⎩
1

x

⎫⎪⎬
⎪⎭ �⊆ V

so Ψ is not uhc at 0. However, note that Ψ has closed graph.
Example: Consider the correspondence

Ψ(x) =

⎧⎪⎪⎨
⎪⎪⎩

{
1
x

}
if x ∈ (0, 1]

R+ if x = 0

Ψ(0) = [0,∞), so any V ⊇ Ψ(0) contains Ψ(x) for all x. Thus, Ψ
is uhc, and has closed graph.

Theorem 10 Let X ⊆ En, Y ⊆ Em, f : X → Y a function.
Let Ψ(x) = {f (x)} for all x ∈ X. Then Ψ(x) is uhc if and
only if f is continuous.

Proof: Suppose Ψ is uhc. We consider the metric spaces (X, d)
and (Y, d), where d is the Euclidean metric. Fix V open in Y .
Then

f−1(V ) = {x ∈ X : f (x) ∈ V }
= {x ∈ X : Ψ(x) ⊆ V }

Thus, f is continuous if and only if f−1(V ) is open in X for each
open V in Y , if and only if {x ∈ X : Ψ(x) ⊆ V } is open in X for
each open V in Y , if and only if Ψ is uhc (as an exercise, think
through why this last equivalence holds).
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Definition 11 Suppose X ⊆ Em, Y ⊆ En. A correspondence
Ψ : X → Y is called closed-valued if Ψ(x) is a closed subset of
En for all x; Ψ is called compact-valued if Ψ(x) is compact for all
x.

The definition of upper hemicontinuity doesn’t handle very well
correspondences which are not closed-valued; it is not hard to
construct examples of pairs of correspondences which look equally
well-behaved (or ill-behaved) in which one of the correspondences
is uhc and the other is not. However, for closed-valued correspon-
dences, things are much better.

Theorem 12 (Not in de la Fuente) Suppose X ⊆ En and
Y ⊆ Em, and Ψ : X → Y is a correspndence.

• If Ψ is closed-valued and uhc, then Ψ has closed graph.

• If **Ψ has closed graph and there is an open set X with
x0 ∈ X and a compact set Z such that x ∈ W ∩ X ⇒
Ψ(x) ⊆ Z, then Ψ is uhc at x0.

Proof: Suppose Ψ is closed-valued and uhc. If Ψ does not have
closed graph, we can find a sequence (xn, yn) → (x0, y0), where
(xn, yn) lies in the graph of Ψ (so yn ∈ Ψ(xn)) but (x0, y0) does
not lie in the graph of Ψ (so y0 �∈ Ψ(x0)). Since Ψ is closed-valued,
Ψ(x0) is closed; since y0 �∈ Ψ(x0), there is some ε > 0 such that
Ψ(x0)∩B2ε(y0) = ∅, so Ψ(x0) ⊆ En\Bε[y0]. Let V = En\Bε[y0];
since V is the complement of a closed set, V is open, and it contains
Ψ(x0). Since Ψ is uhc, there is an open set U with x0 ∈ U such
that x ∈ U ∩X ⇒ ψ(x) ⊆ V . Since (xn, yn) → (x0, y0), xn ∈ U
for n sufficiently large, so yn ∈ Ψ(xn) ⊆ V , so |yn − y0| ≥ ε,
which shows that yn �→ y0, so (xn, yn) �→ (x0, y0), a contradiction
that shows that Ψ is closed-graph.
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**Now, suppose Ψ has closed graph and there is an open set
W with x0 ∈ U and a compact set Z such that x ∈ W ∩X ⇒
Ψ(x) ⊆ Z. Since Ψ is closed-graph, it is closed-valued. Let V be
any open set such that V ⊇ Ψ(x0). We need to show there exists
an open set U with x0 ∈ U such that x ∈ U ∩X ⇒ Ψ(x) ⊆ V .
If not, we can find a sequence xn → x0 and yn ∈ Ψ(xn) such that
yn �∈ V . Since xn → x0, xn ∈ W ∩X and thus ψ(xn) ⊆ Z for
n sufficiently large. Since Z is compact, we can find a convergent
subsequence ynk → y′. Then (xnk, ynk) → (x0, y

′); since Ψ has
closed graph, y′ ∈ Ψ(x0), so y′ ∈ V . Since V is open, ynk ∈ V for
k sufficiently large, a contradiction. Thus, Ψ is uhc at x0.

Theorem 13 (11.2) Suppose X ⊆ En and Y ⊆ Em. A
compact-valued correspondence Ψ : X → Y is uhc at x0 ∈ X
if and only if, for every sequence xn → x0, {xn} ⊆ X, and ev-
ery sequence {yn} such that yn ∈ Ψ(xn), there is a convergent
subsequence {ynk} such that lim ynk ∈ Ψ(x0).

Proof: See de la Fuente.

Remark 14 I don’t find the preceding sequential characteriza-
tion of uhc to be very useful or intuitive, so I recommend that you
bite the bullet and master the open set definition. However, the
following sequential characterization of lhc is intuitive; it says that
for any y0 ∈ Ψ(x0) and any x sufficiently close to x0, we may find
y ∈ Ψ(x) such that y is close to y0.

Theorem 15 (11.3) A correspondence Ψ : X → Y is lhc at
x0 ∈ X if and only if, for every sequence xn → x0, {xn} ⊆ X,
and every y0 ∈ Ψ(x0), there exists a companion sequence yn
with yn ∈ Ψ(xn) such that yn → y0.

Proof: See de la Fuente.
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