Economics 204

Lecture 8-Wednesday, August 5, 2009 Revised 8/5/09, Revisions indicated by ** and Sticky Notes

Chapter 3, Linear Algebra Section 3.1, Bases

Definition 1 Let X be a vector space over a field F. A linear combination of x_{1}, \ldots, x_{n} is a vector of the form

$$
y=\sum_{i=1}^{n} \alpha_{i} x_{i} \text { where } \alpha_{1}, \ldots, \alpha_{n} \in F
$$

α_{i} is the coefficient of x_{i} in the linear combination. If $V \subseteq X$, span V denotes the set of all linear combinations of V.
A set $V \subseteq X$ is linearly dependent if there exist $v_{1}, \ldots, v_{n} \in \overline{\bar{V}} * *$ and $\alpha_{1}, \ldots, \alpha_{n} \in F$ not all zero such that

$$
\sum_{i=1}^{n} \alpha_{i} v_{i}=0
$$

A set $V \subseteq X$ is linearly independent if it is not linearly dependent.
A set $V \subseteq X$ spans X if $\operatorname{span} V=X$.
A Hamel basis (often just called a basis) of a vector space X is a linearly independent set of vectors in X that spans X.
Example: $\{(1,0),(0,1)\}$ is a basis for \mathbf{R}^{2}. $\{(1,1),(-1,1)\}$ is another basis for \mathbf{R}^{2} :

$$
\begin{aligned}
(x, y) & =\alpha(1,1)+\beta(-1,1) \\
x & =\alpha-\beta \\
y & =\alpha+\beta \\
x+y & =2 \alpha
\end{aligned}
$$

$$
\begin{aligned}
\alpha & =\frac{x+y}{2} \\
y-x & =2 \beta \\
\beta & =\frac{y-x}{2} \\
(x, y) & =\frac{x+y}{2}(1,1)+\frac{y-x}{2}(-1,1)
\end{aligned}
$$

Since (x, y) is an arbitrary element of $\mathbf{R}^{2},\{(1,1),(-1,1)\}$ spans \mathbf{R}^{2}. If $(x, y)=(0,0)$,

$$
\alpha=\frac{0+0}{2}=0, \quad \beta=\frac{0-0}{2}=0
$$

so the coefficients are all zero, so $\{(1,1),(-1,1)\}$ is linearly independent. Since it is linearly independent and spans \mathbf{R}^{2}, it is a basis.
Example: $\{(1,0,0),(0,1,0)\}$ is not a basis of \mathbf{R}^{3}, because it does not span.
Example: $\{(1,0),(0,1),(1,1)\}$ is not a basis for \mathbf{R}^{2}.

$$
1(1,0)+1(0,1)+(-1)(1,1)=(0,0)
$$

so the set is not linearly independent.
Theorem 2 (1.2', see Corrections handout) Let V be a Hamel basis for X. Then every vector $x \in X$ has a unique representation as a linear combination (with all coefficients nonzero) of a finite number of elements of V.
(Aside: the unique representation of 0 is $0=\Sigma_{i \in \emptyset} \alpha_{i} b_{i}$.)
Proof: Let $x \in X$. Since V spans X, we can write

$$
x=\sum_{s \in S_{1}} \alpha_{s} v_{s}
$$

where S_{1} is finite, $\alpha_{s} \in F, \alpha_{s} \neq 0, v_{s} \in V$ for $s \in S_{1}$. Now, suppose

$$
x=\sum_{s \in S_{1}} \alpha_{s} v_{s}=\sum_{s \in S_{2}} \beta_{s} v_{s}
$$

where S_{2} is finite, $\beta_{s} \in F, \beta_{s} \neq 0$, and $v_{s} \in V$ for $s \in S_{2}$. Let $S=S_{1} \cup S_{2}$, and define

$$
\begin{aligned}
& \alpha_{s}=0 \text { for } s \in S_{2} \backslash S_{1} \\
& \beta_{s}=0 \text { for } s \in S_{1} \backslash S_{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
0 & =x-x \\
& =\sum_{s \in S_{1}} \alpha_{s} v_{s}-\sum_{s \in S_{2}} \beta_{s} v_{s} \\
& =\sum_{s \in S} \alpha_{s} v_{s}-\sum_{s \in S} \beta_{s} v_{s} \\
& =\sum_{s \in S}\left(\alpha_{s}-\beta_{s}\right) v_{s}
\end{aligned}
$$

Since V is linearly independent, we must have $\alpha_{s}-\beta_{s}=0$, so $\alpha_{s}=\beta_{s}$, for all $s \in S$.

$$
s \in S_{1} \Leftrightarrow \alpha_{s} \neq 0 \Leftrightarrow \beta_{s} \neq 0 \Leftrightarrow s \in S_{2}
$$

so $S_{1}=S_{2}$ and $\alpha_{s}=\beta_{s}$ for $s \in S_{1}=S_{2}$, so the representation is unique..

Theorem 3 Every vector space has a Hamel basis.
Proof: The proof uses the Axiom of Choice. Indeed, the theorem is equivalent to the Axiom of Choice.

Theorem 4 Any two Hamel bases of a vector space X are numerically equivalent.

Proof: The proof depends on the so-called Exchange Lemma, whose idea we sketch. Suppose that $V=\left\{v_{\lambda}: \lambda \in \Lambda\right\}$ and $W=\left\{w_{\gamma}: \gamma \in \Gamma\right\}$ are Hamel bases of X. Remove one vector $v_{\lambda_{0}}$ from V, so that it no longer spans (if it did still span, then $v_{\lambda_{0}}$ would be a linear combination of other elements of V, and V would not be linearly independent). If $w_{\gamma} \in \operatorname{span}\left(V \backslash\left\{v_{\lambda_{0}}\right\}\right)$ for every $\gamma \in \Gamma$, then since W spans, $V \backslash\left\{v_{\lambda_{0}}\right\}$ would also span, contradiction. Thus, we can choose $\gamma_{0} \in \Gamma$ such that

$$
w_{\gamma_{0}} \notin \operatorname{span}\left(V \backslash\left\{v_{\lambda_{0}}\right\}\right)
$$

Because $w_{\gamma_{0}} \in \operatorname{span} V$, we can write

$$
w_{\gamma_{0}}=\sum_{i=0}^{n} \alpha_{i} v_{\lambda_{i}}
$$

where α_{0}, the coefficient of $v_{\lambda_{0}}$, is not zero (if it were, then we would have $\left.w_{\gamma_{0}} \in \operatorname{span}\left(V \backslash\left\{v_{\lambda_{0}}\right\}\right)\right)$. Since $\alpha_{0} \neq 0$, we can solve for $v_{\lambda_{0}}$ as a linear combination of $w_{\gamma_{0}}$ and $v_{\lambda_{1}}, \ldots, v_{\lambda_{n}}$, so

$$
\begin{aligned}
& \operatorname{span}\left(\left(V \backslash\left\{v_{\lambda_{0}}\right\}\right) \cup\left\{w_{\gamma_{0}}\right\}\right) \\
& \supseteq \operatorname{span} V \\
& =X
\end{aligned}
$$

so

$$
\left(\left(V \backslash\left\{v_{\lambda_{0}}\right\}\right) \cup\left\{w_{\gamma_{0}}\right\}\right)
$$

spans X. From the fact that $w_{\gamma_{0}} \notin \operatorname{span}\left(V \backslash\left\{v_{\lambda_{0}}\right\}\right)$ one can show that

$$
\left(\left(V \backslash\left\{v_{\lambda_{0}}\right\}\right) \cup\left\{w_{\gamma_{0}}\right\}\right)
$$

is linearly independent, so it is a basis of X. Repeat this process to exchange every element of V with an element of W (when V is infinite, this is done by a process called transfinite induction).

At the end, we obtain a bijection from V to W, so that V and W are numerically equivalent.

Definition 5 Let $\operatorname{dim} X$ (read "the dimension of X ") denote the cardinal number of any basis of X.

Example: The set of all $m \times n$ real-valued matrices is a vector space over \mathbf{R}. A basis is given by

$$
\left\{E_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}
$$

where

$$
\left(E_{i j}\right)_{k \ell}=\left\{\begin{array}{l}
1 \text { if } k=i \text { and } \ell=j \\
0 \text { otherwise }
\end{array}\right.
$$

The dimension of the vector space of $m \times n$ matrices is $m n$.
Theorem 6 (1.4) Suppose $\operatorname{dim} X=n \in \mathbf{N}$. If $V \subseteq X$ and $|V|>n$ (recall $|V|$ denotes the number of elements in the set $V)$, then V is linearly dependent.

Theorem 7 (1.5') Suppose $\operatorname{dim} X=n \in \mathbf{N}, V \subseteq X,|V|=$ n.

- If V is linearly independent, then V spans X, so V is a Hamel basis.
- If V spans X, then V is linearly independent, so V is a Hamel basis.

Read the material on Affine Spaces on your own.

Section 3.2, Linear Transformations

Definition 8 Let X, Y be two vector spaces over the field F. We say $T: X \rightarrow Y$ is a linear transformation if

$$
\forall_{x_{1}, x_{2} \in X, \alpha_{1}, \alpha_{2} \in F} T\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right)=\alpha_{1} T\left(x_{1}\right)+\alpha_{2} T\left(x_{2}\right)
$$

Let $L(X, Y)$ denote the set of all linear transformations from X to Y.

Theorem $9 L(X, Y)$ is a vector space over F.
Proof: The hard part is figuring out what you are being asked to prove. Once you figure that out, this is completely trivial, although writing out a complete proof that checks all the vector space axioms is rather tedious. The key is to define scalar multiplication and vector addition, and show that a linear combination of linear transformations is a linear transformation.
We define

$$
\left(\alpha T_{1}+\beta T_{2}\right)(x)=\alpha T_{1}(x)+\beta T_{2}(x)
$$

We need to show that $\alpha T_{1}+\beta T_{2} \in L(X, Y)$.

$$
\begin{aligned}
& \left(\alpha T_{1}+\beta T_{2}\right)\left(\gamma x_{1}+\delta x_{2}\right) \\
& =\alpha T_{1}\left(\gamma x_{1}+\delta x_{2}\right)+\beta T_{2}\left(\gamma x_{1}+\delta x_{2}\right) \\
& =\alpha\left(\gamma T_{1}\left(x_{1}\right)+\delta T_{1}\left(x_{2}\right)\right)+\beta\left(\gamma T_{2}\left(x_{1}\right)+\delta T_{2}\left(x_{2}\right)\right) \\
& =\gamma\left(\alpha T_{1}\left(x_{1}\right)+\beta T_{2}\left(x_{1}\right)\right)+\delta\left(\alpha T_{1}\left(x_{2}\right)+\beta T_{2}\left(x_{2}\right)\right) \\
& =\gamma\left(\alpha T_{1}+\beta T_{2}\right)\left(x_{1}\right)+\delta\left(\alpha T_{1}+\beta T_{2}\right)\left(x_{2}\right)
\end{aligned}
$$

so $\alpha T_{1}+\beta T_{2} \in L(X, Y)$. The rest of the proof is too tedious to reproduce here.

Composition of Linear Transformations

Given $R \in L(X, Y)$ and $S \in L(Y, Z), S \circ R: X \rightarrow Z$. We will show that $S \circ R \in L(X, Z)$.

$$
\begin{aligned}
(S \circ R)\left(\alpha x_{1}+\beta x_{2}\right) & =S\left(R\left(\alpha x_{1}+\beta x_{2}\right)\right) \\
& =S\left(\alpha R\left(x_{1}\right)+\beta R\left(x_{2}\right)\right) \\
& =\alpha S\left(R\left(x_{1}\right)\right)+\beta S\left(R\left(x_{2}\right)\right) \\
& =\alpha(S \circ R)\left(x_{1}\right)+\beta(S \circ R)\left(x_{2}\right)
\end{aligned}
$$

so $S \circ R \in L(X, Z)$.

Definition 10

$$
\begin{aligned}
\operatorname{Im} T & =T(X)(\text { image of } T) \\
\operatorname{ker} T & =\{x: T(x)=0\}(\text { kernel of } T) \\
\operatorname{Rank} T & =\operatorname{dim}(\operatorname{Im} T)
\end{aligned}
$$

Theorem $11(2.9,2.7,2.6)$ Let X be a finite-dimensional vector space, $T \in L(X, Y)$. Then $\operatorname{Im} T$ and $\operatorname{ker} T$ are vector subspaces of Y and X respectively, and $\operatorname{dim} X=\operatorname{dim} \operatorname{ker} T+\operatorname{Rank} T$

Theorem 12 (2.13) $T \in L(X, Y)$ is one-to-one if and only if $\operatorname{ker} T=\{0\}$.

Proof: Suppose T is one-to-one. Suppose $x \in \operatorname{ker} T$. Then $T(x)=0$. But since T is linear, $T(0)=T(0 \cdot 0)=0 \cdot T(0)=0$. Since T is one-to-one, $x=0$, so $\operatorname{ker} T=\{0\}$.

Conversely, suppose that ker $T=\{0\}$. Suppose $T\left(x_{1}\right)=T\left(x_{2}\right)$. Then

$$
\begin{aligned}
T\left(x_{1}-x_{2}\right) & =T\left(x_{1}\right)-T\left(x_{2}\right) \\
& =0
\end{aligned}
$$

so $x_{1}-x_{2} \in \operatorname{ker} T$, so $x_{1}-x_{2}=0, x_{1}=x_{2}$. Thus, T is one-to-one. Definition $13 T \in L(X, Y)$ is invertible if there is a function $S: Y \rightarrow X$ such that

$$
\begin{aligned}
& \forall_{x \in X} S(T(x))=x \\
& \forall_{y \in Y} T(S(y))=y
\end{aligned}
$$

In other words $S \circ T=i d_{X}$ and $T \circ S=i d_{Y}$, where $i d$ denotes the identity map. Denote S by T^{-1}. Note that T is invertible if and only if it is one-to-one and onto. This is just the condition for the existence of an inverse function. The linearity of the inverse follows from the linearity of T :

Theorem 14 (2.11) If $T \in L(X, Y)$ is invertible, then $T^{-1} \in$ $L(Y, X)$, i.e. T^{-1} is linear.

Proof: Suppose $\alpha, \beta \in F$ and $v, w \in Y$. Since T is invertible,

$$
\exists!_{v^{\prime}, w^{\prime} \in X}\left\{\begin{array}{cc}
T\left(v^{\prime}\right)=v & T^{-1}(v)=v^{\prime} \\
T\left(w^{\prime}\right)=w & T^{-1}(w)=w^{\prime}
\end{array}\right.
$$

Then

$$
\begin{aligned}
& T^{-1}(\alpha v+\beta w) \\
& =T^{-1}\left(\alpha T\left(v^{\prime}\right)+\beta T\left(w^{\prime}\right)\right) \\
& =T^{-1}\left(T\left(\alpha v^{\prime}+\beta w^{\prime}\right)\right) \\
& =\alpha v^{\prime}+\beta w^{\prime} \\
& =\alpha T^{-1}(v)+\beta T^{-1}(w)
\end{aligned}
$$

so $T^{-1} \in L(Y, X)$.
Although the next theorem is in Section 3.3, it really belongs here:
Theorem 15 (3.2) Let X, Y be two vector spaces over the same field F, and let $V=\left\{v_{\lambda}: \lambda \in \Lambda\right\}$ be a basis for X. Then a linear transformation $T \in L(X, Y)$ is completely determined by its values on V, i.e.

1. Given any set of values $\left\{y_{\lambda}: \lambda \in \Lambda\right\} \subseteq Y$,

$$
\exists_{T \in L(X, Y)} \forall_{\lambda \in \Lambda} T\left(v_{\lambda}\right)=y_{\lambda}
$$

2. If $S, T \in L(X, Y)$ and $S\left(v_{\lambda}\right)=T\left(v_{\lambda}\right)$ for all $\lambda \in \Lambda$, then $S=T$.

Proof:

1. If $x \in X, x$ has a unique representation of the form

$$
x=\sum_{i=1}^{n} \alpha_{i} v_{\lambda_{i}} \alpha_{i} \neq 0(i=1, \ldots, n)
$$

(Aside: for $x=0$, we have $n=0$.) Define

$$
T(x)=\sum_{i=1}^{n} \alpha_{i} y_{\lambda_{i}}
$$

Then $T(x) \in Y$. The verification that T is linear is left as an exercise.
2. Suppose $S\left(v_{\lambda}\right)=T\left(v_{\lambda}\right)$ for all $\lambda \in \Lambda$. Given $x \in X$,

$$
\begin{aligned}
S(x) & =S\left(\sum_{i=1}^{n} \alpha_{i} v_{\lambda_{i}}\right) \\
& =\sum_{i=1}^{n} \alpha_{i} S\left(v_{\lambda_{i}}\right) \\
& =\sum_{i=1}^{n} \alpha_{i} T\left(v_{\lambda_{i}}\right) \\
& =T\left(\sum_{i=1}^{n} \alpha_{i} v_{\lambda_{i}}\right) \\
& =T(x)
\end{aligned}
$$

so $S=T$.

Definition 16 Two vector spaces X, Y over a field F are isomorphic if there is an invertible (recall this means one-to-one and onto) $T \in L(X, Y) . T$ is called an isomorphism.
Isomorphic vector spaces are essentially indistinguishable as vector spaces.
Theorem 17 (3.3) Two vector spaces X, Y over the same field are isomorphic if and only if $\operatorname{dim} X=\operatorname{dim} Y$.
Proof: Suppose X, Y are isomorphic, via the isomorphism T. Let

$$
U=\left\{u_{\lambda}: \lambda \in \Lambda\right\}
$$

be a basis of X, and let

$$
v_{\lambda}=T\left(u_{\lambda}\right), V=\left\{v_{\lambda}: \lambda \in \Lambda\right\}
$$

Since T is one-to-one, U and V are numerically equivalent. If $y \in Y$, then there exists $x \in X$ such that

$$
\begin{aligned}
y & =T(x) \\
& =T\left(\sum_{i=1}^{n} \alpha_{\lambda_{i}} u_{\lambda_{i}}\right) \\
& =\sum_{i=1}^{n} \alpha_{\lambda_{i}} T\left(u_{\lambda_{i}}\right) \\
& =\sum_{i=1}^{n} \alpha_{\lambda_{i}} v_{\lambda_{i}}
\end{aligned}
$$

which shows that V spans Y. To see that V is linearly independent, note that if

$$
\begin{aligned}
0 & =\sum_{i=1}^{m} \beta_{i} v_{\lambda_{i}} \\
& =\sum_{i=1}^{m} \beta_{i} T\left(u_{\lambda_{i}}\right) \\
& =T\left(\sum_{i=1}^{m} \beta_{i} u_{\lambda_{i}}\right)
\end{aligned}
$$

Since T is one-to-one, $\operatorname{ker} T=\{0\}$, so

$$
\sum_{i=1}^{m} \beta_{i} u_{\lambda_{i}}=0
$$

Since U is a basis, we have $\beta_{1}=\cdots=\beta_{m}=0$, so V is linearly independent. Thus, V is a basis of Y; since U and V are numerically equivalent, $\operatorname{dim} X=\operatorname{dim} Y$.

Now suppose $\operatorname{dim} X=\operatorname{dim} Y$. Let

$$
U=\left\{u_{\lambda}: \lambda \in \Lambda\right\} \text { and } V=\left\{v_{\lambda}: \lambda \in \Lambda\right\}
$$

be bases of X and Y; note we can use the same index set Λ for both because $\operatorname{dim} X=\operatorname{dim} Y$. By Theorem 3.2, there is a unique $T \in L(X, Y)$ such that $T\left(u_{\lambda}\right)=v_{\lambda}$ for all $\lambda \in \Lambda$. If $T(x)=0$, then

$$
\begin{aligned}
0 & =T(x) \\
& =T\left(\sum_{i=1}^{n} \alpha_{i} u_{\lambda_{i}}\right) \\
& =\sum_{1=1}^{n} \alpha_{i} T\left(u_{\lambda_{i}}\right) \\
& =\sum_{1=1}^{n} \alpha_{i} v_{\lambda_{i}} \\
& \Rightarrow \alpha_{1}=\cdots=\alpha_{n}=0 \text { since } V \text { is a basis } \\
& \Rightarrow x=0 \\
& \Rightarrow \operatorname{ker} T=\{0\} \\
& \Rightarrow T \text { is one-to-one }
\end{aligned}
$$

If $y \in Y$, write $y=\Sigma_{i=1}^{m} \beta_{i} v_{\lambda_{i}}$ Let

$$
x=\sum_{i=1}^{m} \beta_{i} u_{\lambda_{i}}
$$

Then

$$
T(x)=T\left(\sum_{i=1}^{m} \beta_{i} u_{\lambda_{i}}\right)
$$

$$
\begin{aligned}
& =\sum_{i=1}^{m} \beta_{i} T\left(u_{\lambda_{i}}\right) \\
& =\sum_{i=1}^{m} \beta_{i} v_{\lambda_{i}} \\
& =y
\end{aligned}
$$

so T is onto, so T is an isomorphism and X, Y are isomorphic..

