Economics 204 Lecture 8–Wednesday, August 5, 2009 Revised 8/5/09, Revisions indicated by ** and Sticky Notes Chapter 3, Linear Algebra Section 3.1, Bases

Definition 1 Let X be a vector space over a field F. A linear combination of x_1, \ldots, x_n is a vector of the form

$$y = \sum_{i=1}^{n} \alpha_i x_i$$
 where $\alpha_1, \ldots, \alpha_n \in F$

 α_i is the *coefficient* of x_i in the linear combination. If $V \subseteq X$, span V denotes the set of all linear combinations of V. A set $V \subseteq X$ is *linearly dependent* if there exist $v_1, \ldots, v_n \in \overline{\nabla} **$ and $\alpha_1, \ldots, \alpha_n \in F$ not all zero such that

$$\sum_{i=1}^{n} \alpha_i v_i = 0$$

A set $V \subseteq X$ is *linearly independent* if it is not linearly dependent.

A set $V \subseteq X$ spans X if span V = X.

A Hamel basis (often just called a basis) of a vector space X is a linearly independent set of vectors in X that spans X.

Example: $\{(1,0), (0,1)\}$ is a basis for \mathbb{R}^2 . $\{(1,1), (-1,1)\}$ is another basis for \mathbb{R}^2 :

$$(x,y) = \alpha(1,1) + \beta(-1,1)$$
$$x = \alpha - \beta$$
$$y = \alpha + \beta$$
$$x + y = 2\alpha$$

$$\alpha = \frac{x+y}{2}$$

$$y-x = 2\beta$$

$$\beta = \frac{y-x}{2}$$

$$(x,y) = \frac{x+y}{2}(1,1) + \frac{y-x}{2}(-1,1)$$

Since (x, y) is an arbitrary element of \mathbf{R}^2 , $\{(1, 1), (-1, 1)\}$ spans \mathbf{R}^2 . If (x, y) = (0, 0),

$$\alpha = \frac{0+0}{2} = 0, \quad \beta = \frac{0-0}{2} = 0$$

so the coefficients are all zero, so $\{(1, 1), (-1, 1)\}$ is linearly independent. Since it is linearly independent and spans \mathbb{R}^2 , it is a basis.

Example: $\{(1, 0, 0), (0, 1, 0)\}$ is not a basis of \mathbb{R}^3 , because it does not span.

Example: $\{(1, 0), (0, 1), (1, 1)\}$ is not a basis for \mathbb{R}^2 .

1(1,0) + 1(0,1) + (-1)(1,1) = (0,0)

so the set is not linearly independent.

Theorem 2 (1.2', see Corrections handout) Let V be a Hamel basis for X. Then every vector $x \in X$ has a unique representation as a linear combination (with all coefficients nonzero) of a finite number of elements of V.

(Aside: the unique representation of 0 is $0 = \sum_{i \in \emptyset} \alpha_i b_i$.) **Proof:** Let $x \in X$. Since V spans X, we can write

$$x = \sum_{s \in S_1} \alpha_s v_s$$

where S_1 is finite, $\alpha_s \in F$, $\alpha_s \neq 0$, $v_s \in V$ for $s \in S_1$. Now, suppose

$$x = \sum_{s \in S_1} \alpha_s v_s = \sum_{s \in S_2} \beta_s v_s$$

where S_2 is finite, $\beta_s \in F$, $\beta_s \neq 0$, and $v_s \in V$ for $s \in S_2$. Let $S = S_1 \cup S_2$, and define

$$\alpha_s = 0 \text{ for } s \in S_2 \setminus S_1$$
$$\beta_s = 0 \text{ for } s \in S_1 \setminus S_2$$

Then

$$0 = x - x$$

= $\sum_{s \in S_1} \alpha_s v_s - \sum_{s \in S_2} \beta_s v_s$
= $\sum_{s \in S} \alpha_s v_s - \sum_{s \in S} \beta_s v_s$
= $\sum_{s \in S} (\alpha_s - \beta_s) v_s$

Since V is linearly independent, we must have $\alpha_s - \beta_s = 0$, so $\alpha_s = \beta_s$, for all $s \in S$.

$$s \in S_1 \Leftrightarrow \alpha_s \neq 0 \Leftrightarrow \beta_s \neq 0 \Leftrightarrow s \in S_2$$

so $S_1 = S_2$ and $\alpha_s = \beta_s$ for $s \in S_1 = S_2$, so the representation is unique.

Theorem 3 Every vector space has a Hamel basis.

Proof: The proof uses the Axiom of Choice. Indeed, the theorem is equivalent to the Axiom of Choice.

Theorem 4 Any two Hamel bases of a vector space X are numerically equivalent.

Proof: The proof depends on the so-called Exchange Lemma, whose idea we sketch. Suppose that $V = \{v_{\lambda} : \lambda \in \Lambda\}$ and $W = \{w_{\gamma} : \gamma \in \Gamma\}$ are Hamel bases of X. Remove one vector v_{λ_0} from V, so that it no longer spans (if it did still span, then v_{λ_0} would be a linear combination of other elements of V, and V would not be linearly independent). If $w_{\gamma} \in \text{span}(V \setminus \{v_{\lambda_0}\})$ for every $\gamma \in \Gamma$, then since W spans, $V \setminus \{v_{\lambda_0}\}$ would also span, contradiction. Thus, we can choose $\gamma_0 \in \Gamma$ such that

 $w_{\gamma_0} \not\in \operatorname{span} (V \setminus \{v_{\lambda_0}\})$

Because $w_{\gamma_0} \in \operatorname{span} V$, we can write

$$w_{\gamma_0} = \sum_{i=0}^n \alpha_i v_{\lambda_i}$$

where α_0 , the coefficient of v_{λ_0} , is not zero (if it were, then we would have $w_{\gamma_0} \in \text{span } (V \setminus \{v_{\lambda_0}\}))$. Since $\alpha_0 \neq 0$, we can solve for v_{λ_0} as a linear combination of w_{γ_0} and $v_{\lambda_1}, \ldots, v_{\lambda_n}$, so

span
$$((V \setminus \{v_{\lambda_0}\}) \cup \{w_{\gamma_0}\})$$

 \supseteq span V
 $= X$

SO

$$((V \setminus \{v_{\lambda_0}\}) \cup \{w_{\gamma_0}\})$$

spans X. From the fact that $w_{\gamma_0} \notin \text{span} (V \setminus \{v_{\lambda_0}\})$ one can show that

$$((V \setminus \{v_{\lambda_0}\}) \cup \{w_{\gamma_0}\})$$

is linearly independent, so it is a basis of X. Repeat this process to exchange every element of V with an element of W (when Vis infinite, this is done by a process called transfinite induction). At the end, we obtain a bijection from V to W, so that V and W are numerically equivalent.

Definition 5 Let dim X (read "the dimension of X") denote the cardinal number of any basis of X.

Example: The set of all $m \times n$ real-valued matrices is a vector space over **R**. A basis is given by

$$\{E_{ij}: 1 \le i \le m, 1 \le j \le n\}$$

where

$$(E_{ij})_{k\ell} = \begin{cases} 1 & \text{if } k = i \text{ and } \ell = j \\ 0 & \text{otherwise.} \end{cases}$$

The dimension of the vector space of $m \times n$ matrices is mn.

Theorem 6 (1.4) Suppose dim $X = n \in \mathbb{N}$. If $V \subseteq X$ and |V| > n (recall |V| denotes the number of elements in the set V), then V is linearly dependent.

Theorem 7 (1.5') Suppose dim $X = n \in \mathbb{N}$, $V \subseteq X$, |V| = n.

- If V is linearly independent, then V spans X, so V is a Hamel basis.
- If V spans X, then V is linearly independent, so V is a Hamel basis.

Read the material on Affine Spaces on your own.

Section 3.2, Linear Transformations

Definition 8 Let X, Y be two vector spaces over the field F. We say $T: X \to Y$ is a *linear transformation* if

$$\forall_{x_1, x_2 \in X, \alpha_1, \alpha_2 \in F} \ T(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 T(x_1) + \alpha_2 T(x_2)$$

Let L(X, Y) denote the set of all linear transformations from X to Y.

Theorem 9 L(X, Y) is a vector space over F.

Proof: The hard part is figuring out what you are being asked to prove. Once you figure that out, this is completely trivial, although writing out a complete proof that checks all the vector space axioms is rather tedious. The key is to define scalar multiplication and vector addition, and show that a linear combination of linear transformations is a linear transformation.

We define

$$(\alpha T_1 + \beta T_2)(x) = \alpha T_1(x) + \beta T_2(x)$$

We need to show that $\alpha T_1 + \beta T_2 \in L(X, Y)$.

$$(\alpha T_{1} + \beta T_{2})(\gamma x_{1} + \delta x_{2}) = \alpha T_{1}(\gamma x_{1} + \delta x_{2}) + \beta T_{2}(\gamma x_{1} + \delta x_{2}) = \alpha (\gamma T_{1}(x_{1}) + \delta T_{1}(x_{2})) + \beta (\gamma T_{2}(x_{1}) + \delta T_{2}(x_{2})) = \gamma (\alpha T_{1}(x_{1}) + \beta T_{2}(x_{1})) + \delta (\alpha T_{1}(x_{2}) + \beta T_{2}(x_{2})) = \gamma (\alpha T_{1} + \beta T_{2}) (x_{1}) + \delta (\alpha T_{1} + \beta T_{2}) (x_{2})$$

so $\alpha T_1 + \beta T_2 \in L(X, Y)$. The rest of the proof is too tedious to reproduce here.

Composition of Linear Transformations

Given $R \in L(X, Y)$ and $S \in L(Y, Z)$, $S \circ R : X \to Z$. We will show that $S \circ R \in L(X, Z)$.

$$(S \circ R)(\alpha x_1 + \beta x_2) = S(R(\alpha x_1 + \beta x_2))$$

= $S(\alpha R(x_1) + \beta R(x_2))$
= $\alpha S(R(x_1)) + \beta S(R(x_2))$
= $\alpha (S \circ R)(x_1) + \beta (S \circ R)(x_2)$

so $S \circ R \in L(X, Z)$.

Definition 10

$$Im T = T(X) \text{ (image of } T)$$

ker T = {x : T(x) = 0} (kernel of T)
Rank T = dim(Im T)

Theorem 11 (2.9, 2.7, 2.6) Let X be a finite-dimensional vector space, $T \in L(X, Y)$. Then Im T and ker T are vector subspaces of Y and X respectively, and

 $\dim X = \dim \ker T + \operatorname{Rank} T$

Theorem 12 (2.13) $T \in L(X, Y)$ is one-to-one if and only if ker $T = \{0\}$.

Proof: Suppose T is one-to-one. Suppose $x \in \ker T$. Then T(x) = 0. But since T is linear, $T(0) = T(0 \cdot 0) = 0 \cdot T(0) = 0$. Since T is one-to-one, x = 0, so $\ker T = \{0\}$.

Conversely, suppose that ker $T = \{0\}$. Suppose $T(x_1) = T(x_2)$. Then

$$T(x_1 - x_2) = T(x_1) - T(x_2) = 0$$

so $x_1 - x_2 \in \ker T$, so $x_1 - x_2 = 0$, $x_1 = x_2$. Thus, T is one-to-one. **Definition 13** $T \in L(X, Y)$ is *invertible* if there is a function

 $S: Y \to X$ such that

$$\forall_{x \in X} S(T(x)) = x \forall_{y \in Y} T(S(y)) = y$$

In other words $S \circ T = id_X$ and $T \circ S = id_Y$, where *id* denotes the identity map. Denote S by T^{-1} . Note that T is invertible if and only if it is one-to-one and onto. This is just the condition for the existence of an inverse *function*. The linearity of the inverse follows from the linearity of T:

Theorem 14 (2.11) If $T \in L(X, Y)$ is invertible, then $T^{-1} \in L(Y, X)$, *i.e.* T^{-1} is linear.

Proof: Suppose $\alpha, \beta \in F$ and $v, w \in Y$. Since T is invertible,

$$\exists !_{v',w' \in X} \begin{cases} T(v') = v & T^{-1}(v) = v' \\ T(w') = w & T^{-1}(w) = w' \end{cases}$$

Then

$$T^{-1}(\alpha v + \beta w)$$

= $T^{-1}(\alpha T(v') + \beta T(w'))$
= $T^{-1}(T(\alpha v' + \beta w'))$
= $\alpha v' + \beta w'$
= $\alpha T^{-1}(v) + \beta T^{-1}(w)$

so $T^{-1} \in L(Y, X)$.

Although the next theorem is in Section 3.3, it really belongs here:

Theorem 15 (3.2) Let X, Y be two vector spaces over the same field F, and let $V = \{v_{\lambda} : \lambda \in \Lambda\}$ be a basis for X. Then a linear transformation $T \in L(X, Y)$ is completely determined by its values on V, i.e.

1. Given any set of values $\{y_{\lambda} : \lambda \in \Lambda\} \subseteq Y$,

$$\exists_{T \in L(X,Y)} \forall_{\lambda \in \Lambda} \ T(v_{\lambda}) = y_{\lambda}$$

2. If $S, T \in L(X, Y)$ and $S(v_{\lambda}) = T(v_{\lambda})$ for all $\lambda \in \Lambda$, then S = T.

Proof:

1. If $x \in X$, x has a unique representation of the form

$$x = \sum_{i=1}^{n} \alpha_i v_{\lambda_i} \ \alpha_i \neq 0 (i = 1, \dots, n)$$

(Aside: for x = 0, we have n = 0.) Define

$$T(x) = \sum_{i=1}^{n} \alpha_i y_{\lambda_i}$$

Then $T(x) \in Y$. The verification that T is linear is left as an exercise.

2. Suppose $S(v_{\lambda}) = T(v_{\lambda})$ for all $\lambda \in \Lambda$. Given $x \in X$,

$$S(x) = S\left(\sum_{i=1}^{n} \alpha_i v_{\lambda_i}\right)$$
$$= \sum_{i=1}^{n} \alpha_i S(v_{\lambda_i})$$
$$= \sum_{i=1}^{n} \alpha_i T(v_{\lambda_i})$$
$$= T\left(\sum_{i=1}^{n} \alpha_i v_{\lambda_i}\right)$$
$$= T(x)$$

so S = T.

Section 3.3, Isomorphisms

Definition 16 Two vector spaces X, Y over a field F are *iso-morphic* if there is an invertible (recall this means one-to-one and onto) $T \in L(X, Y)$. T is called an *isomorphism*.

Isomorphic vector spaces are essentially indistinguishable as vector spaces.

Theorem 17 (3.3) Two vector spaces X, Y over the same field are isomorphic if and only if dim $X = \dim Y$.

Proof: Suppose X, Y are isomorphic, via the isomorphism T. Let

$$U = \{u_{\lambda} : \lambda \in \Lambda\}$$

be a basis of X, and let

$$v_{\lambda} = T(u_{\lambda}), \ V = \{v_{\lambda} : \lambda \in \Lambda\}$$

Since T is one-to-one, U and V are numerically equivalent. If $y \in Y$, then there exists $x \in X$ such that

$$y = T(x)$$

= $T\left(\sum_{i=1}^{n} \alpha_{\lambda_i} u_{\lambda_i}\right)$
= $\sum_{i=1}^{n} \alpha_{\lambda_i} T(u_{\lambda_i})$
= $\sum_{i=1}^{n} \alpha_{\lambda_i} v_{\lambda_i}$

which shows that V spans Y. To see that V is linearly independent, note that if

$$0 = \sum_{i=1}^{m} \beta_i v_{\lambda_i}$$

=
$$\sum_{i=1}^{m} \beta_i T(u_{\lambda_i})$$

=
$$T\left(\sum_{i=1}^{m} \beta_i u_{\lambda_i}\right)$$

Since T is one-to-one, ker $T = \{0\}$, so

$$\sum_{i=1}^{m} \beta_i u_{\lambda_i} = 0$$

Since U is a basis, we have $\beta_1 = \cdots = \beta_m = 0$, so V is linearly independent. Thus, V is a basis of Y; since U and V are numerically equivalent, dim $X = \dim Y$.

Now suppose $\dim X = \dim Y$. Let

$$U = \{u_{\lambda} : \lambda \in \Lambda\} \text{ and } V = \{v_{\lambda} : \lambda \in \Lambda\}$$

be bases of X and Y; note we can use the same index set Λ for both because dim $X = \dim Y$. By Theorem 3.2, there is a unique $T \in L(X, Y)$ such that $T(u_{\lambda}) = v_{\lambda}$ for all $\lambda \in \Lambda$. If T(x) = 0, then

$$0 = T(x)$$

$$= T\left(\sum_{i=1}^{n} \alpha_{i} u_{\lambda_{i}}\right)$$

$$= \sum_{i=1}^{n} \alpha_{i} T\left(u_{\lambda_{i}}\right)$$

$$= \sum_{i=1}^{n} \alpha_{i} v_{\lambda_{i}}$$

$$\Rightarrow \alpha_{1} = \dots = \alpha_{n} = 0 \text{ since } V \text{ is a basis}$$

$$\Rightarrow x = 0$$

$$\Rightarrow \ker T = \{0\}$$

$$\Rightarrow T \text{ is one-to-one}$$

write $u = \sum^{m} \beta_{i} v_{\lambda_{i}}$ Let

If $y \in Y$, write $y = \sum_{i=1}^{m} \beta_i v_{\lambda_i}$ Let $x = \sum_{i=1}^{m} \beta_i u_{\lambda_i}$

Then

$$T(x) = T\left(\sum_{i=1}^{m} \beta_i u_{\lambda_i}\right)$$

$$= \sum_{\substack{i=1\\m \in I}}^{m} \beta_i T(u_{\lambda_i})$$
$$= \sum_{\substack{i=1\\m \in I}}^{m} \beta_i v_{\lambda_i}$$
$$= y$$

so T is onto, so T is an isomorphism and X, Y are isomorphic.