
Economics 204
Lecture 9–Thursday, August 6, 2009

Revised 8/6/09, revisions indicated by ** and Sticky
Notes

Section 3.3 Supplement, Quotient Vector Spaces (not
in de la Fuente):

Definition 1 Given a vector space X and a vector subspace W
of X , define an equivalence relation by

x ∼ y ⇔ x − y ∈ W

Form a new vector space X/W : the set of vectors is

{[x] : x ∈ X}
where [x] denotes the equivalence class of x with respect to ∼.
Note that the vectors are sets; this is a little weird at first, but
. . . . Define

[x] + [y] = [x + y]

α[x] = [αx]

You should check on your own that ∼ is an equivalence relation
and that vector addition and scalar multiplication are well-defined,
i.e.

[x] = [x′], [y] = [y′] ⇒ [x + y] = [x′ + y′]
[x] = [x′], α ∈ F ⇒ [αx] = [αx′]

Theorem 2 If dim X < ∞, then

dim(X/W ) = dim X − dim W

Theorem 3 Let T ∈ L(X, Y ). Then Im T is isomorphic to
X/ ker T .
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Proof: If dim X < ∞, then dim X/ kerT = dim X − dim kerT
(from the previous theorem) = Rank T (from Theorem 11 in yes-
terday’s lecture) = dim Im T , so X/ ker T is isomorphic to Im T .
We shall prove that it is true in general, and that the isomorphism
is natural. Define

T̃ ([x]) = T (x)

We need to check that this is well-defined.

[x] = [x′] ⇒ x ∼ x′

⇒ x − x′ ∈ kerT

⇒ T (x − x′) = 0

⇒ T (x) = T (x′)

so T̃ is well-defined. Clearly, T̃ : X/ kerT → Im T . It is easy to
check that T̃ is linear, so T̃ ∈ L(X/ ker T, Im T ).

T̃ ([x]) = T̃ ([y]) ⇒ T (x) = T (y)

⇒ T (x − y) = 0

⇒ x − y ∈ kerT

⇒ x ∼ y

⇒ [x] = [y]

so T̃ is one-to-one.

y ∈ Im T ⇒ ∃x∈X T (x) = y

⇒ T̃ ([x]) = y

so T̃ is onto, hence T̃ is an isomorphism.
Example: Consider T ∈ L(R3,R2) defined by

T (x, y, z) = (x, y)
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Then kerT = {(x, y, z) ∈ R3 : x = y = 0} is the z-axis. Given
(x, y, z), the equivalence class [(x, y, z)] is just the line through
(x, y, 0) parallel to the z-axis. T̃ ([(x, y, z)]) = T (x, y, z) = (x, y).
Back to de la Fuente:
Every real vector space X with dimension n is isomorphic to Rn.
What’s the isomorphism?

Definition 4 Fix any Hamel basis V = {v1, . . . , vn} of X . Any
x ∈ X has a unique representation

x =
n∑

j=1
βjvj

(here, we allow βj = 0). Generally, vectors are represented as
column vectors, not row vectors.

crdV (x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

β1
...

βn

⎞
⎟⎟⎟⎟⎟⎟⎠
∈ Rn

crdV (x) is the vector of coordinates of x with respect to the basis
V .

crdV (v1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
...
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

crdV (v2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
...
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

crdV (vn) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

crdV is an isomorphism from X to Rn.

Matrix Representation of a Linear Transformation

Definition 5 Suppose T ∈ L(X, Y ), dim X = n, dim Y = m.
Fix bases

V = {v1, . . . , vn} of X

W = {w1, . . . , wm} of Y
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T (vj) ∈ Y , so

T (vj) =
m∑

i=1
αijwi

Define

MtxW,V (T ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

α11 · · · α1n
... ... ...

αm1 · · · αmn

⎞
⎟⎟⎟⎟⎟⎟⎠

Notice that the columns are the coordinates (expressed with re-
spect to W ) of T (v1), . . . , T (vn).
Observe

⎛
⎜⎜⎜⎜⎜⎜⎝

α11 · · · α1n
... ...

αm1 · · · αmn

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

α11
...

αm1

⎞
⎟⎟⎟⎟⎟⎟⎠

so

MtxW,V (T ) · crdV (vj) = crdW (T (vj))

∀x∈X MtxW,V (T ) · crdV (x) = crdW (T (x))

Multiplying a vector by a matrix does two things:

• Computes the action of T

• Accounts for the change in basis

Example: X = Y = R2, V = {(1, 0), (0, 1)}, W = {(1, 1), (−1, 1)},
T = id, T (x) = x,

MtxW,V (T ) �=
⎛
⎜⎜⎝

1 0
0 1

⎞
⎟⎟⎠

MtxW,V (T ) is the matrix which changes basis from V to W . How
do we compute it?

v1 = (1, 0) = α11(1, 1) + α21(−1, 1)
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α11 − α21 = 1

α11 + α21 = 0

2α11 = 1, α11 =
1

2

α21 = −1

2
v2 = (0, 1) = α12(1, 1) + α22(−1, 1)

α12 − α22 = 0

α12 + α22 = 1

2α12 = 1, α12 =
1

2

α22 =
1

2

MtxW,V (id) =

⎛
⎜⎜⎝

1/2 1/2
−1/2 1/2

⎞
⎟⎟⎠

Theorem 6 (3.5’) Let X and Y be vector spaces over the
same field F , dim X = n, dim Y = m, bases

V = {v1, . . . , vn} for X
W = {w1, . . . , wm} for Y

Then
MtxW,V ∈ L(L(X, Y ), Fm×n)

MtxW,V is an isomorphism from L(X, Y ) to Fm×n, the vector
space of m × n matrices over F .

Theorem 7 ((From Handout)) Let X, Y,Z be finite-dimen-
sional vector spaces with bases U, V,W respectively, S ∈ L(X, Y ),
T ∈ L(Y, Z). Then

MtxW,V (T ) · MtxV,U (S) = MtxW,U (T ◦ S)
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i.e. matrix multiplication corresponds via the isomorphism to
composition of linear transformations. Note that MtxW,V is a
function from L(X, Y ) to the space of m × n matrices, while
MtxW,V (T ) is an m × n matrix.

Proof: See handout.
The theorem can be summarized by the following “Commutative
Diagram:”

S T
X → Y → Z

crdU   crdV  crdW

Rn → Rm → Rr

MtxV,U (S) MtxW,V (T )

We say the diagram commutes because you get the same answer
any way you go around the diagram (in directions allowed by the
arrows). The crd arrows go in both directions because crd is an
isomorphism.

Section 3.5, Change of Basis, Similarity
Let X be a finite-dimensional vector space with basis V . If T ∈
L(X, X) it is customary to use the same basis in the domain and
range:

Definition 8

MtxV (T ) denotes MtxV,V (T )

Question: If W is another basis for X , how are MtxV (T ) and
MtxW (T ) related?

MtxV,W (id) · MtxW (T ) · MtxW,V (id)
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= MtxV,W (id) · MtxW,V (T ◦ id)

= MtxV,V (id ◦ T ◦ id)

= MtxV (T )

MtxV,W (id) · MtxW,V (id)

= MtxV,V (id)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0
0 1 0 · · · 0 0

0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

MtxV (T ) = P−1MtxW (T )P

where
P = MtxW,V (id)

is a change of basis matrix. On the other hand, if P is invertible,
then P is a change of basis matrix (see handout).

Definition 9 Square matrices A, B are similar if

A = P−1BP

for some invertible matrix P .

Theorem 10 Suppose that X is finite-dimensional.

• If T ∈ L(X, X) and U, W are any two bases of X, then
MtxW (T ) and MtxU(T ) are similar.

• Conversely, given similar matrices A, B with A = P−1BP
and any basis U , there is a basis W and T ∈ L(X, X) such
that

B = MtxU(T )

A = MtxW (T )
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P = MtxU,W (id)

P−1 = MtxW,U(id)

Proof: See Handout on Diagonalization and Quadratic Forms.
Section 3.6: Eigenvalues and Eigenvectors
De la Fuente defines eigenvalues and eigenvectors of a matrix.
Here, we define eigenvalues and eigenvectors of a linear transfor-
mation and show that λ is an eigenvalue of T if and only if λ is
an eigenvalue for some matrix representation of T if and only if λ
is an eigenvalue for every matrix representation of T .

Definition 11 Let X be a vector space and T ∈ L(X, X). We
say that λ is an eigenvalue of T and v �= 0 is an eigenvector
corresponding to λ if T (v) = λv.

Theorem 12 (Theorem 4 in Handout) Let X be a finite-
dimensional vector space, and U any basis. Then λ is an
eigenvalue of T if and only if λ is an eigenvalue of MtxU(T ).
v is an eigenvector of T corresponding to λ if and only if
crdU(v) is an eigenvector of MtxU(T ) corrresponding to λ.

Proof: By the Commutative Diagram Theorem,

T (v) = λv ⇔ crdU(T (v)) = crdU(λv)

⇔ MtxU(T )(crdU (v)) = λ(crdU (v))

Computing eigenvalues and eigenvectors:
Suppose dim X = n; let I be the n × n identity matrix. Given
T ∈ L(X, X), fix a basis U and let

A = MtxU(T )

8



Find the eigenvalues of T by computing the eigenvalues of A:

Av = λv ⇔ (A − λI)v = 0

⇔ (A − λI) is not invertible

⇔ det(A − λI) = 0

We have the following facts:

• If A ∈ Rn×n,
f (λ) = det(A − λI)

is an nth degree polynomial in λ with real coefficients; it is
called the characteristic polynomial of A.

• f has n roots in C, counting multiplicity:

f (λ) = (λ − c1)(λ − c2) · · · (λ − cn)

where c1, . . . , cn ∈ C are the eigenvalues; the cj’s are not
necessarily distinct. **Notice that f (λ) = 0 if and only if
λ ∈ {c1, . . . , cn}, so the roots are the solutions of the equation
f (λ) = 0.

• the roots which are not real come in conjugate pairs:

f (a + bi) = 0 ⇔ f (a − bi) = 0

• if λ = cj ∈ R, there is a corresponding eigenvector in Rn.

• if λ = cj �∈ R, the corresponding eigenvectors are in Cn \Rn.

Diagonalization

Definition 13 Suppose X is finite-dimensional with basis U .
Given a linear transformation T ∈ L(X, X), let

A = MtxU(T )
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We say that A can be diagonalized if there is a basis W for X
such that MtxW (T ) is diagonal, i.e.

MtxW (T ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 0 · · · 0 0
0 λ2 0 · · · 0 0

0 0 0 · · · 0 λn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Notice that the eigenvectors of MtxW (T ) are exactly the standard
basis vectors of Rn. But wj is an eigenvector of T for λj if and
only if crdW (wj) is an eigenvector of MtxW (T ), and crdW (wj) is
the jth standard basis vector of Rn, so W = {w1, . . . , wn} where
wj is an eigvenvector corresponding to λj.

Then the action of T is clear: it stretches each basis element wi

by the factor λi.

Theorem 14 (6.7’) Let X be an n-dimensional vector space,
T ∈ L(X, X), U any basis of X, and A = MtxU(T ). Then
the following are equivalent:

• A can be diagonalized

• there is a basis W for X consisting of eigenvectors of T

• there is a basis V for Rn consisting of eigenvectors of A

Proof: Use de la Fuente’s Theorem 6.7 and Theorem 4 from the
Handout.

Theorem 15 (6.8’) Let X be a vector space, T ∈ L(X, X).

• If λ1, . . . , λm are distinct eigenvalues of T with correspond-
ing eigenvectors v1, . . . , vm, then
{v1, . . . , vm} is linearly independent.
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• If dim X = n and T has n distinct eigenvalues, then X has
a basis consisting of eigenvectors of T ; consequently, if U
is any basis of X, then MtxU(T ) is diagonalizable.

Proof: This is an adaptation of the proof of Theorem 6.8 in de
la Fuente.
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