Econ 204 Summer 2009

Problem Set 1

Due in Lecture Friday, July 312009

1. Cardinality

For each pair of set A and set B, show that A and B are numerically equivalent. (Hint: Show that there exists a bijection $f: A \rightarrow B$, i.e. f is one to one and onto.)
(a) $A=(-1,1) B=(-\infty,+\infty)$
(b) $A=[0,1] B=(0,1)$
(c) A is an infinite uncountable set, $B=A \cup C$ where C is an infinite countable set.

2. Induction

Using mathematical induction, show the following: $n=1,2,3, \ldots$
(a) $\sum_{i=1}^{n} k^{-i}=\frac{1-\frac{1}{k^{n}}}{k-1}, k \neq 1$.
(b) $\sum_{i=n}^{\infty}(k-1) k^{-i}=k^{1-n}, k>1$.
(c) $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \geq \sqrt{n}$

3. Bijection

Suppose $f: X \rightarrow Y$ is a bijection, i.e. f is one to one and onto. Show that for any $A, B \subset X$, $f(A \cap B)=f(A) \cap f(B)$.

4. Supremum Property and Completeness Axiom

Use the Completeness Axiom to prove that every nonempty set of real numbers which is bounded below has an infimum.

5. Limit of Decreasing Sequence

Show that every decreasing sequence of real numbers that is bounded below converges to its infimum. (Hint: you can directly use the result of question 4)

6. Metric Space

(a) $\rho(x, y)=\left\{\begin{array}{ll}1 & \text { if } x \neq y \\ 0 & \text { otherwise }\end{array}\right.$, prove whether or not it is a metric on \mathbf{R}^{n}.
(b) $\rho(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$, prove whether or not it is a metric on \mathbf{R}^{n}.
(c) Suppose $\left(S_{1}, d_{1}\right)$ and $\left(S_{2}, d_{2}\right)$ are metric spaces. Show that $\left(S_{1} \times S_{2}, \rho\right)$ is a metric space, where $\rho\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\max \left\{d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right\}$ for all $x_{1}, y_{1} \in S_{1}$ and all $x_{2,}, y_{2} \in$ S_{2}.

