Econ 204 Summer 2009 Problem Set 1 Solutions

1. Cardinality

For each pair of set A and set B, show that A and B are numerically equivalent. (Hint: Show that there exists a bijection $f: A \to B$, i.e. f is one to one and onto.)

- (a) $A = (-1, 1) B = (-\infty, +\infty)$
- (b) A = [0, 1] B = (0, 1)
- (c) A is an infinite uncountable set, $B = A \cup C$ where C is an infinite countable set.

Solution:

(a)
$$f(x) = \tan \frac{\pi}{2}x, x \in (-1, 1)$$

(b) $f(x) = \begin{cases} \frac{1}{2} & \text{if } x = 0\\ \frac{1}{n+2} & \text{if } x = \frac{1}{n}, n = 1, 2, ..., x \in [0, 1]\\ x & \text{otherwise} \end{cases}$

(c) Since A is an infinite set, we can obtain an infinite sequence $\{a_1, a_2, \ldots\}$ from A. Let $A_1 = \{a_1, a_2, \ldots\}$. $A_1 \subseteq A$ and $A \setminus A_1 \neq \emptyset$ as A is uncountable.

There are three cases:

Case 1: $C \cap A_1 = \emptyset$

Since C is an infinite countable set, let $C = \{c_1, c_2, \ldots\}$.

$$f(x) = \begin{cases} a_i & \text{if } x = a_{2i}, i = 1, 2, \dots, \\ c_i & \text{if } x = a_{2i-1}, i = 1, 2, \dots, \\ x & \text{if } x \in A \setminus A_1 \end{cases}$$

$$\begin{split} & \text{Case 2: } C \cap A_1 \neq \emptyset \text{ and } C \backslash A_1 \text{ is a finite set.} \\ & \text{Let } C \backslash A_1 = \{k_1, k_2, \dots, k_m\} \text{ where } m \text{ is a natural number.} \\ & f(x) = \begin{cases} a_i & \text{if } x = a_{i+m}, i = 1, 2, \dots, \\ k_i & \text{if } x = a_i, i = 1, 2, \dots, m \\ x & \text{if } x \in A \backslash A_1 \end{cases} \\ & \text{Case 3: } C \cap A_1 \neq \emptyset \text{ and } C \backslash A_1 \text{ is a infinite countable set.} \\ & \text{Let } C \backslash A_1 = \{s_1, s_2, \dots\} \\ & f(x) = \begin{cases} a_i & \text{if } x = a_{2i}, i = 1, 2, \dots \\ s_i & \text{if } x = a_{2i-1}, i = 1, 2, \dots \\ s_i & \text{if } x = a_{2i-1}, i = 1, 2, \dots \\ x & \text{if } x \in A \backslash A_1 \end{cases} \end{split}$$

2. Induction

Using mathematical induction, show the following: n = 1, 2, 3, ...

(a) $\sum_{i=1}^{n} k^{-i} = \frac{1 - \frac{1}{k^n}}{k-1}, k \neq 1.$ (b) $\sum_{i=n}^{\infty} (k-1)k^{-i} = k^{1-n}, k > 1.$ (c) $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \ge \sqrt{n}$

Solution:

(a) For
$$n = 1$$
, $\frac{1}{k} = \frac{1 - \frac{1}{k}}{k - 1}$.
Suppose for $n = m$, $\sum_{i=1}^{m} k^{-i} = \frac{1 - \frac{1}{k^m}}{k - 1}$ holds.
For $n = m + 1$, $\sum_{i=1}^{m+1} k^{-i} = \sum_{i=1}^{m} k^{-i} + \frac{1}{k^{m+1}} = \frac{1 - \frac{1}{k^m}}{k - 1} + \frac{k - 1}{k^{m+1}(k - 1)} = \frac{1 - \frac{1}{k^m}}{k - 1} + \frac{\frac{1}{k^m} - \frac{1}{k^m + 1}}{k - 1} = \frac{1 - \frac{1}{k^m + 1}}{\frac{1 - \frac{1}{k^m + 1}}{k - 1}}$.

(b) For n = 1, $\sum_{i=1}^{\infty} (k-1)k^{-i} = (k-1) \cdot \sum_{i=1}^{\infty} k^{-i} = (k-1) \cdot \lim_{n \to \infty} \frac{1 - \frac{1}{k^n}}{k-1} = 1$ Suppose for n = m, $\sum_{i=m}^{\infty} (k-1)k^{-i} = k^{1-m}$ holds. For n = m+1, $\sum_{i=m+1}^{\infty} (k-1)k^{-i} = \sum_{i=m}^{\infty} (k-1)k^{-i} - (k-1)k^{-m} = \frac{k-(k-1)}{k^m} = k^{(1-(m+1))}$. (c) .For n = 1, $\frac{1}{\sqrt{1}} \ge \sqrt{1}$. Suppose for n = m, $\sum_{i=1}^{m} \frac{1}{\sqrt{i}} \ge \sqrt{m}$ holds. For n = m+1, $\sum_{i=1}^{m+1} \frac{1}{\sqrt{i}} = \sum_{i=1}^{m} \frac{1}{\sqrt{i}} + \frac{1}{\sqrt{m+1}} \ge \sqrt{m} + \frac{1}{\sqrt{m+1}}$. Since $\sqrt{m+1} - \sqrt{m} = \frac{1}{\sqrt{m+1} + \sqrt{m}} \le \frac{1}{\sqrt{m+1}}$, we have $\sum_{i=1}^{m+1} \frac{1}{\sqrt{i}} \ge \sqrt{m+1}$.

3. Bijection

Suppose $f: X \to Y$ is a bijection, i.e. f is one to one and onto. Show that for any $A, B \subset X$, $f(A \cap B) = f(A) \cap f(B)$.

Solution:

For any $A, B \subset X$, if $y \in f(A \cap B)$, then there exists $x \in A \cap B$ such that f(x) = y, so $y \in f(A) \cap f(B)$. Hence $f(A \cap B) \subset f(A) \cap f(B)$

If $y \in f(A) \cap f(B)$, then there exists $a \in A$, $b \in B$ such that f(a) = f(b) = y. Since f is one to one, a = b, so $y \in f(A \cap B)$. Hence $f(A) \cap f(B) \subset f(A \cap B)$. So we have $f(A) \cap f(B) = f(A \cap B)$.

4. Supremum Property and Completeness Axiom

Use the Completeness Axiom to prove that every nonempty set of real numbers which is bounded below has an infimum.

Solution:

Assume the Completeness Axiom. Let $X \subset \mathbf{R}$ be a nonempty set which is bounded below. Let U be the set of all lower bounds for X. Since X is bounded below, $U \neq \emptyset$. If $x \in X$ and $u \in U$, $x \ge u$ since u is a lower bound for X. So for any $x \in X$, $u \in U$, $x \ge u$. By the Completeness Axiom, there exists $\alpha \in \mathbf{R}$, for any $x \in X$, $u \in U$, $x \ge \alpha \ge u$. Hence α is a lower bound for X, and it is larger than or equal to every other lower bound for X, so it is the largest lower bound for X, so inf $X = \alpha \in \mathbf{R}$.

5. Limit of Decreasing Sequence

Show that every decreasing sequence of real numbers that is bounded below converges to its infimum. (Hint: you can directly use the result of question 4)

Solution:

Suppose $\{x_n\}$ is a decreasing sequence of real numbers and assume it is bounded below. By the supremum property, $\{x_n\}$ has a infimum that is denoted as y. For some $\varepsilon > 0$, by the definition of infimum, $x_n \ge y$ for all n and $y + \varepsilon$ is not an lower bound of $\{x_n\}$, so there exists some $N(\varepsilon) \in N$ such that $x_{N(\varepsilon)} < y + \varepsilon$. Since $\{x_n\}$ is decreasing, we have $x_n < y + \varepsilon$ for all $n > N(\varepsilon)$ and $x_n \ge y$ for all n. Since ε is arbitrary, $\{x_n\} \to y$.

6. Metric Space

- (a) $\rho(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{otherwise} \end{cases}$, prove whether or not it is a metric on \mathbf{R}^n .
- (b) $\rho(x,y) = \sum_{i=1}^{n} |x_i y_i|$, prove whether or not it is a metric on \mathbf{R}^n .
- (c) Suppose (S_1, d_1) and (S_2, d_2) are metric spaces. Show that $(S_1 \times S_2, \rho)$ is a metric space, where $\rho((x_1, x_2), (y_1, y_2)) = max \{ d_1(x_1, y_1), d_2(x_2, y_2) \}$ for all $x_1, y_1 \in S_1$ and all $x_2, y_2 \in S_2$.

Solution:

(a) To verify that d is a metric, we need to check that

(i) $\rho(x, x) = 0 \ \forall x$ (ii) $\rho(x, y) = \rho(y, x) \ \forall x, y$, and (iii) $\rho(x, y) + \rho(y, z) \le \rho(x, z) \ \forall x, y, z$. (i) and (ii) are easily verified. To verify (iii) there are essentially two cases to consider: $x = z \text{ or } x \ne z$. Case I: Take $x \ne z$. Then, either $x \ne y \text{ or } y \ne z \Rightarrow \rho(x, y) + \rho(y, z) \ge 1 = \rho(x, z)$. Case II: Take x = z. Then, $\rho(x, y) + \rho(y, z) \ge 0 = \rho(x, z)$. It follows that (iii) holds and ρ is a metric.

(b) We need to check that

(i) $\rho(x,x) = 0 \ \forall x$ (ii) $\rho(x,y) = \rho(y,x) \ \forall x,y$, and (iii) $\rho(x,y) + \rho(y,z) \le \rho(x,z) \ \forall x,y,z$. (i) and (ii) are easily verified. To verify (iii)

$$\rho(x,y) + \rho(y,z) = \sum_{i=1}^{n} |x_i - y_i| + \sum_{i=1}^{n} |y_i - z_i| = \sum_{i=1}^{n} (|x_i - y_i| + |y_i - z_i|) \ge \sum_{i=1}^{n} |x_i - z_i| = \rho(x,z)$$

since $|x_i - y_i| + |y_i - z_i| \ge |x_i - y_i + y_i - z_i| = |x_i - z_i|$, (iii) holds and ρ is a metric.

(c) We need to check that

 $\begin{array}{l} (\mathrm{i}) \ \rho \left(\left({{x_1},{x_2}} \right),\left({{x_1},{x_2}} \right) \right) = 0 \ \forall \left({{x_1},{x_2}} \right) \in {S_1} \times {S_2} \\ (\mathrm{ii})\rho \left(\left({{x_1},{x_2}} \right),\left({{y_1},{y_2}} \right) \right) = \rho \left(\left({{y_1},{y_2}} \right),\left({{x_1},{x_2}} \right) \right) \ \forall \left({{x_1},{x_2}} \right),\left({{y_1},{y_2}} \right) \in {S_1} \times {S_2} \\ (\mathrm{iii}) \ \rho (\left({{x_1},{x_2}} \right),\left({{y_1},{y_2}} \right) \right) + \rho (\left({{y_1},{y_2}} \right),\left({{z_1},{z_2}} \right) \right) \ge \rho (\left({{x_1},{x_2}} \right),\left({{z_1},{x_2}} \right),\left({{y_1},{y_2}} \right),\left({{z_1},{z_2}} \right) \in {S_1} \times {S_2} \\ (\mathrm{iii}) \ \rho (\left({{x_1},{x_2}} \right),\left({{y_1},{y_2}} \right) \right) + \rho (\left({{y_1},{y_2}} \right),\left({{z_1},{z_2}} \right)) \ge \rho (\left({{x_1},{x_2}} \right),\left({{z_1},{x_2}} \right),\left({{y_1},{y_2}} \right),\left({{z_1},{z_2}} \right) \in {S_1} \times {S_2}. \end{array}$

(i) and (ii) are easily verified. Our job is to verify (iii):

Since $d_i(x_i, y_i)$ is a well-defined metric, for i = 1, 2, we must have $d_i(x_i, z_i) \leq d_i(x_i, y_i) + d_i(y_i, z_i)$ for any $x_i, y_i, z_i \in S_i$.

Then

$$\begin{aligned}
\rho((x_1, x_2), (z_1, z_2)) &= \max \left\{ d_1(x_1, z_1), d_2(x_2, z_2) \right\} \\
&\leq \max \left\{ d_1(x_1, y_1) + d_1(y_1, z_1), d_2(x_2, y_2) + d_2(y_2, z_2) \right\} \\
&\leq \max \left\{ d_1(x_1, y_1), d_2(x_2, y_2) \right\} + \max \left\{ d_1(y_1, z_1), d_2(y_2, z_2) \right\} * \\
&= \rho((x_1, x_2), (y_1, y_2)) + \rho((y_1, y_2), (z_1, z_2))
\end{aligned}$$

* To prove this inequality is equal to show that $\max \{a + b, c + d\} \le \max\{a, c\} + \max\{b, d\}$. WLOG, suppose that $a+b \ge c+d$.Hence $\max \{a + b, c + d\} = a+b$. Since $a \le \max\{a, c\}, b \le \max\{b, d\}, a+b \le \max\{a, c\} + \max\{b, d\}$. Thus $\max \{a + b, c + d\} \le \max\{a, c\} + \max\{b, d\}$.