Econ 204 Summer 2009

Problem Set 1 Solutions

1. Cardinality

For each pair of set A and set B, show that A and B are numerically equivalent. (Hint: Show that there exists a bijection $f: A \rightarrow B$, i.e. f is one to one and onto.)
(a) $A=(-1,1) B=(-\infty,+\infty)$
(b) $A=[0,1] B=(0,1)$
(c) A is an infinite uncountable set, $B=A \cup C$ where C is an infinite countable set.

Solution:
(a) $f(x)=\tan \frac{\pi}{2} x, x \in(-1,1)$
(b) $f(x)= \begin{cases}\frac{1}{2} & \text { if } x=0 \\ \frac{1}{n+2} & \text { if } x=\frac{1}{n}, n=1,2, \ldots,, x \in[0,1] \\ x & \text { otherwise }\end{cases}$
(c) Since A is an infinite set, we can obtain an infiite sequence $\left\{a_{1}, a_{2}, \ldots\right\}$ from A. Let $A_{1}=$ $\left\{a_{1}, a_{2}, \ldots\right\} . A_{1} \subseteq A$ and $A \backslash A_{1} \neq \emptyset$ as A is uncountablè.
There are three cases:
Case 1: $C \cap A_{1}=\emptyset$
Since C is an infinite countable set, let $C=\left\{c_{1}, c_{2}, \ldots\right\}$.
$f(x)= \begin{cases}a_{i} & \text { if } x=a_{2 i}, i=1,2, \ldots, \\ c_{i} & \text { if } x=a_{2 i-1}, i=1,2, \ldots,, x \in A \\ x & \text { if } x \in A \backslash A_{1}\end{cases}$
Case 2: $C \cap A_{1} \neq \emptyset$ and $C \backslash A_{1}$ is a finite set.
Let $C \backslash A_{1}=\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}$ where m is a natural number.
$f(x)= \begin{cases}a_{i} & \text { if } x=a_{i+m}, i=1,2, \ldots, \\ k_{i} & \text { if } x=a_{i}, i=1,2, \ldots, m \quad, x \in A \\ x & \text { if } x \in A \backslash A_{1}\end{cases}$
Case 3: $C \cap A_{1} \neq \emptyset$ and $C \backslash A_{1}$ is a infinite countable set.
Let $C \backslash A_{1}=\left\{s_{1}, s_{2}, \ldots\right\}$
$f(x)=\left\{\begin{array}{ll}a_{i} & \text { if } x=a_{2 i}, i=1,2, \ldots \\ s_{i} & \text { if } x=a_{2 i-1}, i=1,2, \ldots, x \in A \\ x & \text { if } x \in A \backslash A_{1}\end{array}, x\right.$

2. Induction

Using mathematical induction, show the following: $n=1,2,3, \ldots$
(a) $\sum_{i=1}^{n} k^{-i}=\frac{1-\frac{1}{k^{n}}}{k-1}, k \neq 1$.
(b) $\sum_{i=n}^{\infty}(k-1) k^{-i}=k^{1-n}, k>1$.
(c) $\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \geq \sqrt{n}$

Solution:
(a) For $n=1, \frac{1}{k}=\frac{1-\frac{1}{k}}{k-1}$.

Suppose for $n=m, \sum_{i=1}^{m} k^{-i}=\frac{1-\frac{1}{k^{m}}}{k-1}$ holds.
For $n=m+1, \sum_{i=1}^{m+1} k^{-i}=\sum_{i=1}^{m} k^{-i}+\frac{1}{k^{m+1}}=\frac{1-\frac{1}{k^{m}}}{k-1}+\frac{k-1}{k^{m+1}(k-1)}=\frac{1-\frac{1}{k^{m}}}{k-1}+\frac{\frac{1}{k^{m}}-\frac{1}{k^{m}+1}}{k-1}=$ $\frac{1-\frac{1}{k^{m+1}}}{k-1}$.
(b) For $n=1, \sum_{i=1}^{\infty}(k-1) k^{-i}=(k-1) \cdot \sum_{i=1}^{\infty} k^{-i}=(k-1) \cdot \lim _{n \rightarrow \infty} \frac{1-\frac{1}{k^{n}}}{k-1}=1$

Suppose for $n=m, \sum_{i=m}^{\infty}(k-1) k^{-i}=k^{1-m}$ holds.
For $n=m+1, \sum_{i=m+1}^{\infty}(k-1) k^{-i}=\sum_{i=m}^{\infty}(k-1) k^{-i}-(k-1) k^{-m}=\frac{k-(k-1)}{k^{m}}=k^{(1-(m+1))}$.
(c). For $n=1, \frac{1}{\sqrt{1}} \geq \sqrt{1}$.

Suppose for $n=m, \sum_{i=1}^{m} \frac{1}{\sqrt{i}} \geq \sqrt{m}$ holds.
For $n=m+1, \sum_{i=1}^{m+1} \frac{1}{\sqrt{i}}=\sum_{i=1}^{m} \frac{1}{\sqrt{i}}+\frac{1}{\sqrt{m+1}} \geq \sqrt{m}+\frac{1}{\sqrt{m+1}}$.
Since $\sqrt{m+1}-\sqrt{m}=\frac{1}{\sqrt{m+1}+\sqrt{m}} \leq \frac{1}{\sqrt{m+1}}$, we have $\sum_{i=1}^{m+1} \frac{1}{\sqrt{i}} \geq \sqrt{m+1}$.

3. Bijection

Suppose $f: X \rightarrow Y$ is a bijection, i.e. f is one to one and onto. Show that for any $A, B \subset X$, $f(A \cap B)=f(A) \cap f(B)$.
Solution:
For any $A, B \subset X$, if $y \in f(A \cap B)$, then there exists $x \in A \cap B$ such that $f(x)=y$, so $y \in f(A) \cap f(B)$. Hence $f(A \cap B) \subset f(A) \cap f(B)$
If $y \in f(A) \cap f(B)$, then there exists $a \in A, b \in B$ such that $f(a)=f(b)=y$. Since f is one to one, $a=b$, so $y \in f(A \cap B)$. Hence $f(A) \cap f(B) \subset f(A \cap B)$. So we have $f(A) \cap f(B)=f(A \cap B)$.

4. Supremum Property and Completeness Axiom

Use the Completeness Axiom to prove that every nonempty set of real numbers which is bounded below has an infimum.
Solution:
Assume the Completeness Axiom. Let $X \subset \mathbf{R}$ be a nonempty set which is bounded below. Let U be the set of all lower bounds for X. Since X is bounded below, $U \neq \varnothing$. If $x \in X$ and $u \in U$, $x \geq u$ since u is a lower bound for X. So for any $x \in X, u \in U, x \geq u$. By the Completeness Axiom, there exists $\alpha \in \mathbf{R}$, for any $x \in X, u \in U, x \geq \alpha \geq u$. Hence α is a lower bound for X, and it is larger than or equal to every other lower bound for X, so it is the largest lower bound for X, so $\inf X=\alpha \in \mathbf{R}$.

5. Limit of Decreasing Sequence

Show that every decreasing sequence of real numbers that is bounded below converges to its infimum. (Hint: you can directly use the result of question 4)

Solution:

Suppose $\left\{x_{n}\right\}$ is a decreasing sequence of real numbers and assume it is bounded below. By the supremum property, $\left\{x_{n}\right\}$ has a infimum that is denoted as y. For some $\varepsilon>0$, by the definition of infimum, $x_{n} \geq y$ for all n and $y+\varepsilon$ is not an lower bound of $\left\{x_{n}\right\}$, so there exists some $N(\varepsilon) \in N$ such that $x_{N(\varepsilon)}<y+\varepsilon$. Since $\left\{x_{n}\right\}$ is decreasing, we have $x_{n}<y+\varepsilon$ for all $n>N(\varepsilon)$ and $x_{n} \geq y$ for all n. Since ε is arbitrary, $\left\{x_{n}\right\} \rightarrow y$.

6. Metric Space

(a) $\rho(x, y)=\left\{\begin{array}{ll}1 & \text { if } x \neq y \\ 0 & \text { otherwise }\end{array}\right.$, prove whether or not it is a metric on \mathbf{R}^{n}.
(b) $\rho(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$, prove whether or not it is a metric on \mathbf{R}^{n}.
(c) Suppose $\left(S_{1}, d_{1}\right)$ and $\left(S_{2}, d_{2}\right)$ are metric spaces. Show that $\left(S_{1} \times S_{2}, \rho\right)$ is a metric space, where $\rho\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\max \left\{d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right\}$ for all $x_{1}, y_{1} \in S_{1}$ and all $x_{2,} y_{2} \in$ S_{2}.

Solution:
(a) To verify that d is a metric, we need to check that
(i) $\rho(x, x)=0 \forall x$ (ii) $\rho(x, y)=\rho(y, x) \forall x, y$, and (iii) $\rho(x, y)+\rho(y, z) \leq \rho(x, z) \forall x, y, z$.
(i) and (ii) are easily verified. To verify (iii) there are essentially two cases to consider: $x=z$ or $x \neq z$.
Case I: Take $x \neq z$. Then, either $x \neq y$ or $y \neq z \Rightarrow \rho(x, y)+\rho(y, z) \geq 1=\rho(x, z)$.
Case II: Take $x=z$. Then, $\rho(x, y)+\rho(y, z) \geq 0=\rho(x, z)$.
It follows that (iii) holds and ρ is a metric.
(b) We need to check that
(i) $\rho(x, x)=0 \forall x$ (ii) $\rho(x, y)=\rho(y, x) \forall x, y$, and (iii) $\rho(x, y)+\rho(y, z) \leq \rho(x, z) \forall x, y, z$. (i) and (ii) are easily verified. To verify (iii)
$\rho(x, y)+\rho(y, z)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|+\sum_{i=1}^{n}\left|y_{i}-z_{i}\right|=\sum_{i=1}^{n}\left(\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|\right) \geq \sum_{i=1}^{n}\left|x_{i}-z_{i}\right|=\rho(x, z)$
since $\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right| \geq\left|x_{i}-y_{i}+y_{i}-z_{i}\right|=\left|x_{i}-z_{i}\right|$, (iii) holds and ρ is a metric.
(c) We need to check that
(i) $\rho\left(\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right)\right)=0 \forall\left(x_{1}, x_{2}\right) \in S_{1} \times S_{2}$
(ii) $\rho\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\rho\left(\left(y_{1}, y_{2}\right),\left(x_{1}, x_{2}\right)\right) \forall\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in S_{1} \times S_{2}$
(iii) $\rho\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)+\rho\left(\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right)\right) \geq \rho\left(\left(x_{1}, x_{2}\right),\left(z_{1}, z_{2}\right)\right) \forall\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right) \in$ $S_{1} \times S_{2}$.
(i) and (ii) are easily verified. Our job is to verify (iii):

Since $d_{i}\left(x_{i}, y_{i}\right)$ is a well-defined metric, for $i=1,2$, we must have $d_{i}\left(x_{i}, z_{i}\right) \leq d_{i}\left(x_{i}, y_{i}\right)+$ $d_{i}\left(y_{i}, z_{i}\right)$ for any $x_{i}, y_{i}, z_{i} \in S_{i}$.
Then

$$
\begin{aligned}
\rho\left(\left(x_{1}, x_{2}\right),\left(z_{1}, z_{2}\right)\right) & =\max \left\{d_{1}\left(x_{1}, z_{1}\right), d_{2}\left(x_{2}, z_{2}\right)\right\} \\
& \leq \max \left\{d_{1}\left(x_{1}, y_{1}\right)+d_{1}\left(y_{1}, z_{1}\right), d_{2}\left(x_{2}, y_{2}\right)+d_{2}\left(y_{2}, z_{2}\right)\right\} \\
& \leq \max \left\{d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right\}+\max \left\{d_{1}\left(y_{1}, z_{1}\right), d_{2}\left(y_{2}, z_{2}\right)\right\} * \\
& =\rho\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)+\rho\left(\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right)\right)
\end{aligned}
$$

* To prove this inequality is equal to show that $\max \{a+b, c+d\} \leq \max \{a, c\}+\max \{b, d\}$. WLOG, suppose that $a+b \geq c+d$.Hence $\max \{a+b, c+d\}=a+b$. Since $a \leq \max \{a, c\}, b \leq$ $\max \{b, d\}, a+b \leq \max \{a, c\}+\max \{b, d\}$. Thus $\max \{a+b, c+d\} \leq \max \{a, c\}+\max \{b, d\}$.

