Econ 204 Summer 2009 Problem Set 2 Due in Lecture Tuesday, August 2 2009

1. Boundary, Exterior and Closure

Find the boundary, exterior, and closure of the following sets:

- (a) $\{(x,y) \in \mathbf{R}^2 | x^2 + y^2 > 1\}$
- (b) $\{(x, y) \in \mathbf{R}^2 | x y = 3\}$

2. Closed Set

Show that $E = \{x \in \mathbf{R}^1 : |x - a| \le 2\}$ is a closed set where a is a real number.

3. Intersection of Closed Sets

Suppose $\{A_k\}$ is a sequence of non-empty closed sets on \mathbb{R}^n such that $A_1 \supset A_2 \supset A_3 ... \supset A_k \supset$...Show that if A_m is bounded for some m, then $\bigcap_{k=1}^{\infty} A_k \neq \emptyset$.

4. Uniform Continuity in Euclidean Metric Space

 (\mathbf{R}^n, d) is the n-dimensional Euclidean metric space. Suppose $E \subset \mathbf{R}^n$ is a nonempty set. Define $d(x, E) = \inf \{d(x, y) : y \in E\}$

- (a) Show that E is a closed set if and only if for any $x \in \mathbf{R}^n$, there exists $y \in E$, such that d(x,y) = d(x,E).
- (b) Define function $f: \mathbf{R}^n \to \mathbf{R}_+$ as f(x) = d(x, E). Show that f(x) is uniformly continuous.

5. Continuous Function in Euclidean Metric Space

 (\mathbf{R}^n, d) is the n-dimensional Euclidean metric space. $f : \mathbf{R}^n \to \mathbf{R}^1$ is a function. Show that f is countinuous if and only if for every $c \in \mathbf{R}^1$, A_c and B_c are closed sets where $A_c = \{x \in \mathbf{R}^n : f(x) \ge c\}$ and $B_c = \{x \in \mathbf{R}^n : f(x) \le c\}$.

6. Lipschitz Equivalent

Theorem 10.8 on page 107 of de la Fuente says that all norms on \mathbb{R}^n are Lipschitz-equivalent to the Euclidean norm. The Theorem is correct, but is the proof correct?

- (a) Suppose $\|\cdot\|$: $(\mathbf{R}^n, d) \to (\mathbf{R}_+, \rho)$ is a norm on \mathbf{R}^n . d is the metric generated by the norm, $d(x, y) = \|x - y\|$. ρ is the Euclidean metric. Show that $\|\cdot\|$ is a continuous function. (Hint: Use the triangle inequality.)
- (b) Now consider the Euclidean norm $\|\cdot\|_E \colon \mathbf{R}^n \to \mathbf{R}_+$. The unit circle on \mathbf{R}^n is defined as $C = \{x \in \mathbf{R}^n : \|x\|_E = 1\}$. Show that C is compact. (Hint: Show that C is closed and bounded.)
- (c) Can we use the result of part a and the extreme-value theorem to prove that that $\|\cdot\|$ attains a minimum and a maximum in the set C defined in part b?